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Abstract: Cancer stem cells (CSCs) represent a rare population of tumor cells that exhibit stem cell
properties with the abilities of self-renewal and differentiation. These cells are now widely accepted to
be responsible for tumor initiation, development, resistance to conventional therapies, and recurrence.
Thus, a better understanding of the molecular mechanisms involved in the control of CSCs is essential
to improve patient management in terms of diagnostics and therapies. CSCs are regulated by signals
of the tumor microenvironment as well as intrinsic genetic and epigenetic modulators. H19, the first
identified lncRNA is involved in the development and progression of many different cancer types.
Recently, H19 has been demonstrated to be implicated in the regulation of CSCs in different types of
cancers. The aim of this review is to provide an overview of the role and mechanisms of action of
H19 in the regulation of CSCs. We summarize how H19 may regulate CSC division and cancer cell
reprogramming, thus affecting metastasis and drug resistance. We also discuss the potential clinical
implications of H19.
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1. Introduction

Despite recent progress in early detection and therapeutics outcomes, cancer remains a major
medical issue. Increasing data highlight the implication of cancer stem cells (CSCs) in tumorigenicity
and cancer progression. CSC concept states that tumor growth, analogous to the renewal of healthy
tissues, is fueled by a small number of dedicated stem cells according to a hierarchic model. At the
top of the model, CSCs, through symmetric or asymmetric divisions, will give rise to self-renewal
daughter CSCs and more differentiated transient amplifying cells to regenerate a heterogeneous
tumor population. CSCs can be derived from adult normal stem/progenitor cells after (epi)genetic
alterations. The mutated CSCs exhibit enhanced immune evasion capacity and reduced apoptosis,
resulting in tumor initiation. Due to their unlimited division potential, CSCs will accumulate additional
(epi)genetic alterations, leading to the appearance of diverse phenotypes of CSCs, tumor progression,
and metastasis formation [1].

The evolving phenotype of CSCs is found to be tightly associated to the epithelial-to-mesenchymal
transition (EMT) in cancers of epithelial origin [2–4]. EMT is a developmental process wherein
epithelial cells transdifferentiate into mesenchymal cells. This process is characterized by molecular
reprogramming, leading to cytoskeleton reorganization, cellular junction disruption, and increased
abilities of cells to migrate and invade adjacent tissue. It was shown that tumor cells expressing high
levels of the EMT master transcription factor SNAI1 display enhanced tumor-initiating capacity and
metastatic potential in mouse and human models [4]. Similarly, another EMT inducer, ZEB1, was
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described to regulate the transit of basal breast cancer cells between non-CSC and CSC states [5].
In addition, the genetic reprogramming orchestrated by EMT affects intracellular mechanisms such as
glucose, lipid, glutamine, and nucleotide metabolisms [6], sustaining the acquisition and maintenance
of CSC characteristics.

Apart from EMT, differentiated cancer cells have been largely reported to be directly reprogrammed
to CSCs by extracellular cues from the tumor microenvironment including hypoxia, ROS, and
cytokines [7,8], as well as by ectopic expression of pluripotent transcriptional factors OCT3/4, SOX2,
KLF4, and cMYC [9]. Moreover, radio- and chemotherapies are also able to increase CSCs by
reprogramming mechanisms [10–12]. From a clinical point of view, this is of major importance, as CSCs
present endogenous resistance mechanisms against radiation and chemotherapy, which confers CSCs
as a survival advantage over differentiated counterparts. In addition, CSCs can generate various
subclones, increasing the risk of a more resistant fraction after anti-cancer therapy [11].

Whatever the origins, CSCs are controlled by both extracellular stimuli common to normal
stem cells (Wnt, hedgehog, Notch, and TGF-β) and specific to tumor microenvironment (cytokines,
ROS, hypoxia). Intrinsic regulations including core stemness transcriptional factors, epigenetic
alterations such as telomerase reactivation [13,14] and deregulated dynamics of chromatin
(de)compaction lead to stemness-related gene expression and differentiation-related gene repression.
To complexify the aforementioned interconnected extracellular and intracellular networks, it is
increasingly described that non-coding RNAs including long non-coding RNAs and microRNAs
contribute to the regulation of CSCs by various mechanisms [15–17].

In this review, we will first describe H19 and its action in cancer development in a general way,
and then overview how H19 may regulate CSC division and cancer cell reprogramming. We will also
discuss the potential clinical implications of H19.

2. The Long Non-Coding RNA H19 and Its Pleiotropic Oncogenic Actions in Different Cancers

At the beginning of the 2000s, the Encyclopedia of DNA Elements (ENCODE) consortium showed
that about 80% of the genome is transcribed into functional RNAs, but only 2% are translated into
proteins [18–20]. From the results of this project, a “transcriptional background noise” therefore
would exist, but also transcribed but not translated genes that produce non-coding RNAs (ncRNAs).
These ncRNAs are classified according to their length in small ncRNAs (less than 200 nt) and
long ncRNAs (more than 200 nt). Nowadays, about 20,000 lncRNAs have been identified and
characterized [21]. They show classical features of mRNAs like transcription by RNA polymerase II,
5′ capping, 3′ polyadenylation, and splicing [22,23]. LncRNAs are described to be involved in both
normal and pathological development, including cancer [24–27].

The long non-coding RNA H19 is the first discovered lncRNA. The H19 RNA is transcribed from
the H19 gene, which is subject to genomic imprinting and is maternally expressed [28]. The H19 gene
is located on the human 11p15.5 locus, near the IGF2 (Insulin-like growth factor 2) gene. This gene is
composed of 5 exons and codes for a mature RNA of 2.3 kb transcribed by the RNA polymerase II.
The transcript is normally spliced, polyadenylated, capped, and exported to the cytosol. Brannan et al.
showed that no protein is associated to this transcript, and proposed that H19 could act as a non-coding
RNA [29].

H19 is highly expressed during embryogenesis and sharply downregulated after birth for the
majority of adult tissues [30]. H19 is found to play important roles during embryogenesis and
normal tissue homeostasis. For instance, it has been described that loss of H19 lncRNA in embryonic
endothelial precursors and pre-hematopoietic stem cells (HSCs) results in failed HSC generation,
indicating a pivotal role of H19 in HSC formation from embryonic SCs [31]. Furthermore, H19 is
found to be preferentially expressed in long-term HSCs compared to short-term HSCs or multipotent
progenitors in the adult blood system where H19 is found to maintain HSCs quiescence [32]. Similarly,
H19 contributes to maintain the SC phenotype of normal prostate cells [33] and prevents adipogenesis
of bone marrow SCs [34].
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H19 is widely described to be involved in tumorigenesis and cancer progression [35]. H19 is
overexpressed in both leukemia and different types of solid cancers including glioma, melanoma,
lung adenocarcinoma, breast, ovarian, and prostate cancers, as well as cancers of digestive (tongue,
stomach, colon, liver, pancreas) and urinary systems (kidney, bladder) [35]. H19 favors tumorigenesis
by promoting genomic stability [36], enabling replicative immortality [37] and sustaining cell
growth [38,39], migration, and invasion, as well as increased resistance to chemotherapies [40–42].
Furthermore, H19 is also reported to be able to promote angiogenesis and tumor inflammation as well
as avoid immune suppression [43–45]. H19 has been demonstrated to exert its oncogenic actions at
transcriptional, post-transcriptional, and post-translational levels. At the transcriptional regulation
level, H19 can activate transcription factors like E2F1 in pancreatic ductal adenocarcinoma, leading
to increased cell proliferation [46]; H19 can also interact with the PRC2 complex to recruit it to its
target genes promoters, leading to the modulation of chromatin condensation and the inaccessibility of
gene promoters to transcription factors [47]. The post-transcriptional regulation by H19 involves the
contribution of microRNAs (miRNAs). Interestingly, the interaction of H19 with miRNAs pathways
is dual: on one hand, H19 is able to act as a “sponge” to sequester miRNAs and impede their
action [48]. On the other hand, H19 is itself the precursor of the miR-675 [49], which will in turn
regulate several targets, including the growth suppressors RB and RUNX1 [50–52]. Concerning the
post-translational regulation, the action of H19 has been spotted out outside the nucleus. Indeed,
H19 can physically interact with proteins like p53 to impair its activity in gastric cancer cells and
promote cell proliferation [39].

During the past years, along with the fundamental and clinical data highlighting the implication
of CSCs in tumorigenicity and cancer progression, more and more studies show that H19 is able to
regulate CSCs. In breast cancer, our team showed that both H19 and its miR-675 are involved in CSC
enrichment [53]. In the following sections, we will discuss how H19 interconnects to the maze of CSCs.

3. The Long Non-Coding RNA H19 Promotes Symmetric Renewal of CSCs

As aforementioned, CSCs in a bulk tumor cell population may undergo asymmetric or symmetric
divisions. Asymmetric division gives rise to a stem cell (SC) and a progenitor or committed cell
(also called transient amplifying cell), while symmetric division leads to the generation of two identical
daughter cells which are either CSCs (symmetric renewal) or committed cells [1]. Upon deregulated
extrinsic and/or intrinsic cues, CSCs may preferentially undergo symmetric renewal to enlarge the
pool of CSCs and sustain cancer progression [54]. In this way, H19 is found to promote the symmetric
renewal of CSCs through the regulation of several intrinsic intermediates including let-7, LIN28,
or p53 [55]. Moreover, CSC symmetric renewal activity of H19 is further amplified by the existence of
positive regulatory loops between H19 and extrinsic actors such as estrogen receptor β. For instance,
estradiol (E2) treatment enhances H19 expression in breast cancer cells [55,56]. H19 will in turn
promote the upregulation of estrogen receptor β (ERβ) expression in these cells [55]. Similar data have
been shown in papillary thyroid carcinoma cells in which estradiol (E2) significantly promotes H19
transcription via ERβ and elevates H19 expression. On the other hand, H19 acts as a competitive RNA
to sequester miR-3126-5p, leading to enhanced ERβ expression. Depletion of H19 reverses E2-induced
stem-like properties, indicating the importance of the positive feedback loop in the enrichment of
papillary thyroid carcinoma stem cells [57] (Figure 1A). In these models, the enhanced ERβ activity
will thus promote symmetric division of CSCs and perpetuate the CSC pool within the tumor.

To go further, the mechanisms underlying this process showed an involvement of the let-7
miRNAs family. Let-7c inhibits the symmetric division and therefore stem-like phenotypes such as
sphere-forming capacities of breast CSCs. Because of its overexpression due to enhanced Wnt signaling
in this model, H19 is able to sponge let-7c, thus allowing to counter its negative regulation and promote
symmetric division of CSCs [55] (Figure 1B). Still in breast cancer, a similar mechanism has been
highlighted: miR-146a expression indirectly upregulates let-7c to promote asymmetric division of
breast CSCs. This goes through the post-translational targeting and degradation of LIN28. LIN28 is
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a transcription factor that can regulate gene expression either by binding to mRNAs or by blocking
miRNA biogenesis, especially for the let-7 family [58]. Here, the degradation of LIN28 by miR-146a
decreases Wnt signaling activation, and represses H19 expression. Let-7c upregulation will thus block
the symmetric division of breast CSCs that will in turn impact the CSCs pool [59] (Figure 1B).

One other thing concerning the symmetrical division of CSCs is the implication of p53 protein.
The TP53 gene codes for a protein involved in many cellular processes, hence its name of “cellular
regulation platform”. Indeed, p53 is found to act in response to several stresses such as DNA damage to
regulate cell cycle, senescence, apoptosis, or genetic stability. Linked to this, it has been shown that SCs
are resistant to DNA damage-induced apoptosis or senescence. This is notably due to the inactivation
of p53 protein and activation of DNA repairing mechanisms [60]. The inactivation of p53 leads to cell
cycle entry and symmetric division of SCs [61], and in the longer term might favor accumulation of
SCs harboring DNA mutations, which can reduce their functional efficiency (aging) [62], and even
favor transformation of normal SCs into CSCs.
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Figure 1. The long non-coding RNA H19 promotes symmetric division of cancer stem cells (CSCs).
(A) The activation of ERβ by the binding of its ligand (estradiol; E2) enhances H19 expression, thus
favoring miR-3126-5p sponging. H19 can in turn promote ERβ to generate an activation loop [55,57].
(B) In breast CSCs, H19 sponges let-7c and allows the de-repression of LIN28. The functional status
and symmetric/asymmetric division of CSCs will thus be determined by the balance between H19
and let-7 expressions [55,59]. (C) It has been shown that H19 sequesters p53 to inhibit its activity
and enhance gastric cancer cells proliferation [39]. Moreover, inactivation of p53 is associated with
symmetric division of SCs [61]. We can thus hypothesize that H19 could inactivate p53 to promote
CSCs symmetric division.

In addition, it has been shown that H19 is able to inhibit p53 activity, leading to the upregulation of
gastric cancer cells proliferation [39]. Moreover, CSC treatment with a p53 pathway activator stimulates
the asymmetric division [55]. It is thus possible that H19 could promote symmetric divisions of CSCs
by inhibiting p53 (Figure 1C).
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4. H19 Contributes to the Enrichment and Maintenance of CSCs

The origin of SCs has been studied as part of the cell reprogramming mechanism. Indeed, it has
been shown that the transfection of transcription factors like Oct4, Sox2, Klf4, and c-Myc is sufficient
to induce de-differentiation of murine fibroblasts. These fibroblasts are then reprogrammed to a
pluripotent state that express a stem cell-like phenotype [63]. The phenotypic characterization of
these induced-pluripotent stem (IPS) cells showed similar morphologic and growth properties when
compared to embryonic SCs, and confirmed the expression of SC marker genes. In addition, authors
showed that these IPS cells transplanted into nude mice are able to give rise to heterogeneous tumors.
The reprogramming process starts with a set of cellular divisions, followed by epigenetic alterations:
this is favored by little or no activity of caretakers genes such as TP53 [64]. Among those epigenetic
alterations, the influence of microenvironment through radiotherapy-induced reactive oxygen species
(ROS) has been established [12,65]. Indeed, ROS activity leads to variations in the concentration of
metabolic intermediates that are essential for histones post-translational modification, thus modulating
the chromatin compaction level and so, gene expression.

It is well known in the literature that H19 is functionally involved in the regulation of both SCs and
CSCs. For instance, H19 is found to maintain hematopoietic SCs quiescence, a mechanism in favor of the
SC state. Indeed, the differentially methylated region (DMR) upstream of H19 regulates the reciprocal
expression of H19 from the maternal allele and Igf2 from the paternal allele. Deletion of the maternal
but not the paternal H19-DMR alters hematopoietic SC quiescence and function [32]. Furthermore,
H19 expression is negatively correlated with adipocyte differentiation; conversely, overexpression
of H19 in bone marrow SCs prevents adipogenesis through post-translational inhibition of histone
deacetylases (HDACs) 4-6 [34]. In prostate cancer, H19 overexpression has been positively correlated
with the expression of the well-known stemness-related factors Oct4 and Sox2, and with cellular
sphere-forming capacity [33] Furthermore, H19 expression has been shown to be higher in papillary
thyroid CSCs enriched by sphere formation than in monolayer cells. Moreover, these spheroid cells are
characterized by both enhanced expression of Nanog and Sox2 and reduced expression of differentiation
markers. This suggests that H19 is able to promote the reprogramming process, leading to the increase
of cellular stemness [57].

The long non-coding RNA H19 also participates to the maintenance of the CSC pool. For instance,
microarray analysis showed an increased expression of H19 and the pluripotent transcriptional
factors Sox2, Oct4, and Nanog in the bulk acute lymphoblastic leukemia cells compared to early
progenitors [66]. In addition, our team recently highlighted a stem cell gene signature (Aldh1a1+;
CD44+/CD24−) in breast tumors expressing higher H19. Moreover, these gene signatures were also
associated with enhanced H19-derived miR-675 expression, suggesting a role for both H19 and miR-675
in the enrichment of breast CSCs [53].

However, many studies describe the involvement of H19 in reprogramming mainly through its
role of miRNA sponge. Of interest, the above described loop regulation between H19 and LIN28 in
the promotion of CSCs symmetric division is also involved in reprogramming: indeed, in patient
lung cancer samples, there exists a positive correlation between H19 and LIN28 expressions, and
further analysis showed an increase of LIN28 expression by H19. This is due to the sponging of
miR-196b by H19, that normally supresses LIN28 mRNA translation. LIN28 expression allowed by
H19 leads to the promotion of lung cancer cell proliferation [67]. Similarly, H19 has been found to
sponge miR-3126-5p to allow the expression of ERβ receptor in papillary thyroid carcinoma, but
also to sponge miR-193b in hepatocellular carcinoma, leading to the activation of MAPK1 and other
oncogenes [57,68]. Furthermore, the complex regulation of miR-let-7 by H19 can be also found involved
in breast CSC reprogramming, echoing the regulation loop involved in CSC (a)symmetric division
(Figure 2). Under hypoxic condition (which reflects intra-tumoral conditions), the expression of both
HIF-1α and H19 is enhanced. One of the downstream targets of HIF-1α is the PDK1 gene, that codes
for a glycolytic enzyme. PDK1 protein promotes glycolysis in breast CSCs, which is demonstrated to
maintain cellular stemness with enhanced expression of reprogramming factors (Oct4, Lin28), enhanced
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ALDH1 activity and sphere-forming capacity (Figure 2A). However, in this model, HIF-1α expression
was repressed. Further analysis showed that HIF-1α mRNA possesses in its 3′ UTR sequence a
miR-let-7 response element: let-7 was thus responsible for HIF-1α degradation and low stem-like
phenotypes in breast cancer cells. The authors showed that H19 is able to sponge let-7 in order to
overcome these effects, leading to the upregulation of HIF-1α and PDK1, contributing to breast CSC
maintenance [69] (Figure 2A).
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Figure 2. The balance between H19 and let-7 expression controls the reprogramming of non-CSCs into
CSCs. (A) Under hypoxic conditions HIF-1α expression is enhanced. Combined with the sponging of
let-7 by H19, this leads to the enhanced expression of PDK1, which will in turn promote glycogenesis
and expression of stemness phenotype [69]. (B) In breast and lung cancers, H19 enhances the expression
of the reprogramming factor LIN28 through the sponging of let-7 and miR-196b respectively [67,69].
(C) In breast cancer, the activation of the Wnt signaling pathway increases miR-146a production, which
in turn promotes let-7 expression and so, the inhibition of reprogramming factors [55,59].

Still, in breast CSCs subpopulation, H19 enhances ALDH1 activity, clone-forming, and sphere-forming
capacities. These phenomena involve once again the enhancing of reprogramming factor LIN28 expression.
To induce LIN28 expression, H19 has to act as a competing endogenous RNA and sponge miR-let-7
(Figure 2B). However, it has been shown that LIN28 also suppresses let-7 production, and that H19 can
be downregulated by its own target let-7 in breast cancer cells. The authors therefore hypothesized
that a cellular accumulation of LIN28 can indirectly enhance H19 expression through inhibiting let-7
production. This highlights an interesting negative feedback loop involved in breast CSC maintenance.
To reinforce this idea, this loop exhibits strong correlations in primary breast carcinomas [70]. In breast
CSCs, the Wnt signaling pathway is strongly activated, leading to the enhanced expression of H19.
Treatment of cells with Axitinib, a tyrosine kinase inhibitor used in clinical trials, revealed that
the inhibition of Wnt activity was associated with both inhibition of H19 expression and increase of
asymmetric division rate [55]. However, in this model, Wnt signaling has been reported to be “naturally’
activated, as is H19 expression. Further analysis has uncovered a positive feedback loop between
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H19 expression and LIN28/let-7c axis. Indeed, Snail, a transcription factor involved in EMT, is able
to indirectly promote miR-146a maturation through Wnt activity. In turn, miR-146a represses Wnt
signaling activation through participating in the let-7c/Wnt/H19 feedback loop (Figure 2C). Thus, the
mechanisms involving miR-146a/Wnt and let-7c/Wnt contribute to form a complex and precise feedback
loop of the miR-146a/let-7c/Wnt cascade. This feedback loop regulates the downstream expression
of both let-7c and H19: the balance between these actors will thus determine the functional status of
breast CSCs [59].

As described above (Figure 1B), increased let-7 production by miR-146a leads to the degradation
of LIN28, and the downstream inhibition of the Wnt pathway, which in turn regulates H19
expression [55,59] (Figure 2C). Thus, depending of the functional status of H19, this double regulation
loop influences the CSC expansion. Sponging of let-7 by H19 has also been described in glioblastoma.
In this model, the inhibition of let-7 leads to the enhanced expression of its target HMGA2, which
acts as an oncogene in several cancers. Re-expression of HMGA2 enhances mesenchymal transition
of glioblastoma and self-renewal of glioblastoma SCs. For further investigations, the authors used
phenformin, a mitochondrial complex I inhibitor used to inhibit cell growth and induce apoptosis
of glioblastoma SCs. They showed that phenformin increases let-7 expression and thus represses
H19-mediated stem-like phenotypes due to HMGA2 inhibition [71].

In other models such as hepatocellular carcinoma, H19 has been demonstrated to induce both
stemness and EMT to accelerate invasion of hepatocellular carcinoma cells in vitro. Indeed, as described
above, it is known that EMT plays an important role in both inducing CSC characteristics and promoting
cellular resistance to treatment [72,73]. In this model, H19 sponges miR-193b, which will promote
MAPK1 expression and de-repress several oncogenes like EGFR, KRAS, PTEN, and IGF1R. This is
associated with enhanced expression of stemness genes such as Lin28, Sox2, Notch1, Nanog, and Oct4.
All these events will thus trigger hepatocellular carcinoma progression and initiate the metastatic
development [68]. The role of H19 in the balance between both epithelial and mesenchymal phenotypes
has also been shown by our team in the breast cancer model: thus, the mechanisms described in
hepatocellular carcinoma could be transposed in the regulation of breast CSCs [74].

5. H19 Enhances Drug Resistance of CSCs

Drug resistance is a major cause of low recurrence-free survival in various cancers. Cancer cells
chemoresistance is multifactorial: it involves key factors such as cell behavior and growth kinetics,
tumor heterogeneity, physical obstacles, and tumor microenvironment. Applying theses therapeutic
pressures to cancer cells can also lead to tumor functional and adaptive reorganization, in order
to persist despite the treatment. Particularly, within the tumor, CSCs are inherently more resistant
to chemotherapy treatments, and have been proven to contribute to cancer relapse. Indeed, both
chemotherapy and radiotherapy may promote CSC self-renewal through cytokine production and DNA
repair mechanisms [75–77]. This is mainly due to the responsibility of CSCs in tumor heterogeneity.
Thus, a high cellular proportion expressing CSC markers is correlated to poor prognosis and low
response to treatments [78,79].

In addition, much evidence shows that H19 is involved in drug resistance. Overexpression of
H19 in many cancers is associated with acquired chemoresistance and cancer cell survival, involving
various mechanisms of action such as oncogene expression, epigenetic gene silencing, enhanced cell
proliferation, apoptosis inhibition, and metastasis [80–83]. Furthermore, links between H19, CSCs, and
drug resistance have also been established. In prostate CSCs, H19 expression has been shown to promote
both resistance to the androgen deprivation therapy (ADT) and the induction of highly metastatic
form of prostate cancer [66]. In glioblastoma, knockdown of H19 expression leads to decreased cellular
proliferation and a higher apoptotic rate after induction by chemotherapy (temozolomide). This is
accompanied by a downregulation of the CSC markers CD133, Nanog, Oct4, and Sox2, and thus the
loss of glioblastoma cellular stemness. This is the proof that H19 expression reinforces both stemness
and chemoresistance of glioblastoma cells [84]. Moreover, H19 is also associated with the stemness
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of colorectal cancer cells. High H19 expression rates are found in patient samples at different tumor
node metastasis (TNM) stages, and correlated with chemoresistance of colorectal cancer cells in vitro
and in vivo after treatment with oxaliplatin. Indeed, H19 expression enhances the populations of
ALDH1high cancer cells, the sphere-forming capacity of colorectal cancer cells, and the expression
of pluripotency transcription factors Nanog, Oct4, and Sox2. In addition, resistance to oxaliplatin in
H19 overexpressing cells has been reported to be further enhanced [85]. In hepatocellular carcinoma,
MDR1 (multidrug resistance 1) and GST-π (glutathione S-transferase-π) high protein expression levels
were detected in CD133+ CSCs, in association with an overexpression of H19. In these cell lines,
H19 has been shown to affect the degree of oxidative stress by reducing the reactive oxygen species
(ROS) production. In this model, inhibition of H19 expression reduces CD133+ CSC chemoresistance
through the enhancement of ROS production, the promotion of cell apoptosis and the blocking of
the MAPK/ERK signaling pathway [86]. In liver CSCs, another non-coding RNA named CUDR
(cancer up-regulated drug resistant) has been reported to confer cellular resistance to doxorubicin
treatment [87]. Consequently, to its expression and activation after doxorubicin treatment, CUDR is
able to increase both proliferation and malignant transformation of liver CSCs. This goes through the
association of both cyclin D1 and PTEN in an inactive trimeric complex. PTEN knockdown leads to
increase in the binding capacity of CUDR to cyclin D1, thus forming an active CUDR/cyclin D1 dimer
that demethylates H19 promoter and the downstream increase of telomerase activity. However, H19 has
been reported to regulate telomerase activity according to cell context, as H19 would rather function
as a molecular chaperone promoting either the association or the dissociation of telomerase subunits
(TERT and TERC) [88]. In any cases, the expression of H19 due to the demethylation of its promoter
leads to the enhancement of liver CSC activity, and thus the tumor resistance to doxorubicine treatment.
H19 expression will also influence the telomerase activity and thus the long-term self-renewal capacity
of liver CSCs [37].

6. H19 Expression Is Propagated in the Tumor Micro-Environment to Promote Stemness

In addition to the maintenance of CSCs population, H19 is found to promote and spread cellular
stemness within a tissue or an organism. To do so, a transport means is needed to propagate H19 within
the extracellular environment. One of the possible options is the use of intercellular communication
through extracellular vesicles, particularly the production of exosomes. Exosomes are a specific type
of microvesicles produced in the endosomal compartment. They are characterized by their fusion
with the cell surface to directly release their content (including proteins, lipids, and RNAs) in the
extracellular medium [89]. Exosomes are present in many tissues and can also be found in blood.
Moreover, they are also released in vitro by cultured cells into their growth medium [90].

Recently, exosomes released from cancer cells have been proposed to play a role in cancer
progression. For example, exosomes are able to promote metastasis in initiating pre-metastatic niches
in various cancers [91–93]. Furthermore, it has been shown that cancer cells and cancer associated
fibroblasts (CAFs) can secrete exosomes [94,95]. According to their tumoral or stromal origin, those
exosomes contribute to the crosstalk between cancer cells and the tumor microenvironment. In that
manner, exosomes can be considered as critical intermediaries in tumor progression and metastasis.

Among the markers expressed by those exosomes, several molecules have been identified,
including long non-coding RNAs like H19 (Figure 3). Indeed, H19 can act not only as an intrinsic factor,
but can also act on neighboring cells. For instance, the involvement of the exosomes-derived expression
of H19 has been demonstrated in specific phenomena and pathologies such as trophoblast cell invasion,
diabetic foot ulcers, and chronic cholestatic liver diseases, supporting our idea that exosomal H19
can extend its action to surrounding cells [96–98]. In cancer models, it has been demonstrated that
H19 expression is upregulated in non-small cells lung cancer, particularly in gefitinib-resistant cells.
Moreover, in these cells, H19 is packaged into exosomes and secreted in the extracellular medium, to
be then taken up by recipient cells and promote their gefitinib resistance [41].
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Figure 3. The long non-coding RNA H19 disseminates into extracellular environment through exosomes,
propagating its action in both normal and cancer cells.

Concerning the regulation of CSCs, it has been shown that colorectal cancer cells treated with
conditioned medium derived from CAFs present an increase of sphere propagating capacity, cell
viability, and activation of the Wnt/β-catenin pathway. More importantly, H19 expression was found
in CAFs-derived exosomes: this demonstrates the transport of H19 from cells to others through
exosomes [85]. In other models such as liver cancer, exosomes isolated from CD90+ cells promoted
angiogenic phenotype and cell adhesion. CD90+ liver cancer cells are described as cancer stem cell-like,
characterized with aggressive and metastatic phenotype. Further analysis of exosomes content showed
an enrichment in H19, and that H19 plays an major role in exosome-mediated phenotype of endothelial
cells [99].

More importantly, it has been shown for bladder cancer diagnosis and prognosis that the
concentration of circulating H19 was significantly higher in serum exosomes than in exosomes-depleted
supernatants in serum or tissue samples. Moreover, exosomes H19 level was significantly increased
in serum of bladder cancer patients when compared to healthy people or benign disease patients.
Exosomes H19 level was also correlated with poor survival. The detection of serum exosomal H19
could thus be used as a new non-invasive diagnostic and prognostic biomarker for bladder cancer
patients [100]. Combined with the proof of CSC regulation by H19, this highlights the importance of
exosomal transportation of H19 within the tumor.

7. Discussion

Both H19 and H19-derived miR-675 are overexpressed in human bone marrow mesenchymal
SCs. In this model, the downregulation of H19 and miR-675 is correlated with the upregulation
of IGFR1 (insulin-like growth factor receptor type 1) during neural differentiation [101]. miR-675
action in SCs is transposable in cancer as our team showed that miR-675 expression is associated
with that of stem cell marker genes and that this miR is able to enhance stem-like phenotypes such as
sphere-forming capacity [53]. From a clinical point of view, plasma levels of H19 have been highlighted
as predictive markers for breast, stomach, and lung cancers, but also as a way to follow the evolution
of cancers [102–104]. Interestingly, the clinically approved medicine aspirin (acetylsalicylic acid) is able
to inhibit H19 expression and so repress expression of Oct4 and c-Myc in breast CSCs [69]. Similarly,
H19 is overexpressed in papillary thyroid carcinoma cells through estradiol (E2); H19 overexpression
is associated with increased stemness-related factors expression, increased ADLH+ population, and
sphere forming capacity as well as enhanced tumor growth. In this model, aspirin attenuates E2-induced
CSCs-like characteristics through decreasing both H19 and ERβ expression.
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The accumulated data demonstrating the role of H19 and more recent findings of the involvement
of miR-675 in CSC regulation complexify the regulatory network of CSCs (Figure 4). Further studies
are warranted to verify if H19 and miR-675 could be used as new markers of CSCs and therapeutic
targets in the medical care of patients.
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Figure 4. The long non-coding RNA H19 promotes cancer stem cells phenotypes. H19 is expressed
by cancer stem cells and is exported to the extracellular medium through exosomes [85]. H19 is then
captured and internalized by surrounding cells. Within those cells, H19 can act in different ways: H19
can be translocated into the nucleus where it sponges miRNAs such as let-7. This allows the expression
of reprogrammation factors and promotes stemness phenotypes [70]. In addition, H19 can regulate the
activity of factors such as p53 in order to promote symmetric division of CSCs [39,61]. Downstream, all
these mechanisms will lead to the promotion of stem cells phenotype (symmetric division, reprogramming)
in order to progress in the tumoral development and to reinforce CSCs’ resistance to therapies. Illustrations
of this figure are from Servier Medical Art (https://smart.servier.com/).
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DMR Differentially methylated region
EGFR Epidermal growth factor receptor
EMT Epidermal-to-mesenchymal transition
ERβ Estrogen receptor β
GST-π Glutathione S-transferase-π
HDAC Histone deacetylase
HIF-1α Hypoxia-inducible factor 1 alpha
HMGA2 High mobility group AT-hook 2
HSC Hematopoietic stem cells
IGF1R Insulin-like growth factor 1 receptor
IGF2 Insulin-like growth factor 2
IPS Induced-pluripotent cells
KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
LncRNA Long non-coding RNA
MDR1 Multidrug resistance 1
miRNA MicroRNA
PDK1 Pyruvate dehydrogenase kinase 1
PRC2 Polycomb repressive complex 2
PTEN Phosphatase and tensin homolog
RB Retinoblastoma protein
ROS Reactive oxygen species
RUNX1 Runt-related transcription factor 1
SC Stem cell
TNM Tumor node metastasis
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