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Abstract

In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary
enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle
and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into
meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme,
CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1
expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout
fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days
after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic
prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at
least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle
and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male
germ cells during embryonic development.
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Introduction

Retinoic acid (RA) is a vitamin A derived signaling molecule

that regulates cell proliferation, migration, and differentiation

during embryonic development and adult homeostasis. RA-

mediated signaling is controlled in embryonic tissues through

coordinated regulation of RA synthesis and catabolism. Synthesis

is catalyzed by a family of retinaldehyde dehydrogenases

(ALDH1A1, ALDH1A2 and ALDH1A3) that irreversibly oxidize

retinal to form RA, while catabolism is facilitated by a family of

cytochrome P450 enzymes (CYP26A1, CYP26B1 and CYP26C1),

which convert RA to more polar, inactive metabolites [1,2].

Therefore, the distribution and activity of these enzymes define

where RA signaling will occur. Gene targeting studies have

demonstrated that changing the endogenous distribution of RA

can have severe consequences for the developing embryo.

Aldh1a22/2 embryos die around embryonic day (E) 10.5 and

display phenotypes resembling severe maternal vitamin A

deficiency, while Cyp26a1 and Cyp26b1 null embryos exhibit

numerous malformations reminiscent of RA teratogenicity [3–8].

Recent genetic studies suggest that RA plays a role in the

development of embryonic germ cells [9–11]. In mice, primordial

germ cells (PGCs) migrate from the proximal epiblast and reach

the developing gonad between E10 and 11. PGCs continue to

divide mitotically for a few days and then germ cells in males and

females follow a sexually dimorphic pathway. In males, in response

to a hypothesized unidentified masculinizing factor, germ cells

arrest in G0 phase in the mitotic cycle [12,13]. Cells re-enter the

cell cycle a few days after birth, and the first meiotic spermatocytes

are seen at postnatal day (P) 10 [14]. In contrast, female germ cells

continue through the cell cycle to enter prophase of the first

meiotic division, and progress through leptotene, zygotene and

pachytene, arresting in diplotene just before birth [15]. In the

embryonic male gonad, Cyp26b1 transcripts are detected in

somatic cells as early as E11.5 and persist throughout development

[16]. Cyp26b1 expression is detected in peritubular myoepithelial

cells in the postnatal testis, while Cyp26b1 expression is absent in

developing and adult ovaries [17]. Aldh1a2 expression in the gonad

initiates at E10.5 in the mesonephros and is maintained until at

least E13.5. Postnatally, Aldh1a2 transcripts are detected at P1, and

expression increases significantly until P20 when protein is

detected in pachytene spermatocytes, and later in the adult

expression is restricted to round spermatids [17]. Therefore, in the

male gonad, the expression of Aldh1a2 and Cyp26b1 acts as a
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‘source’ and ‘sink’ of RA, thus defining when and where RA-

mediated signaling will occur. Increasing evidence has suggested

that entry of germ cells into the prophase of the first meiotic

division requires RA and its responsive gene Stimulated by retinoic

acid gene 8 (Stra8) [9–11,18]. Our analysis of Cyp26b12/2 embryos

revealed increased levels of RA in the embryonic testes. RA

exposure at this stage causes male germ cells to prematurely enter

meiosis, followed by apoptosis [9]. Furthermore, expression of

three meiotic genes, Stra8, synaptonemal complex protein 3 (Scp3)

and dosage suppressor of mck1 homolog (Dmc1) are elevated in

E13.5 testes of Cyp26b1 null embryos [10], indicating that

CYP26B1 activity prevents entry of male germ cells into meiosis.

CYP26B1 activity may also regulate mitotic arrest in male germ

cells, as it has been shown in vitro that RA promotes mitosis in

cultured gonads [19].

The continued expression of Cyp26b1 in embryonic testes

beyond E13.5 suggests a role for CYP26B1 at later stages in

regulating male germ cell development. We have generated a

Sertoli cell-specific knockout mouse line of Cyp26b1 by crossing

floxed Cyp26b1 (Cyp26b1fl/fl) animals with mice expressing Cre

recombinase under the control of the anti-Müllerian hormone

(Amh) promoter. As the Amh-Cre transgene is expressed only in

Sertoli cells from E15 onwards [20], this conditional knockout

mouse line of Cyp26b1 allows us to define the role of CYP26B1 in

male germ cells after E15, when they are already committed to the

male developmental pathway.

Materials and Methods

Generation and genotyping of Cyp26b1SC2/SC2 mice
Mice in which exons 3–6 of the Cyp26b1 locus are flanked by

loxP sites have been previously described [9]. These animals

(Cyp26b1fl/fl) were crossed with mice expressing Cre recombinase

under the control of the Amh promoter (Amh-Cre) [20] and resultant

offspring were intercrossed to excise both alleles of Cyp26b1 in

Sertoli cells (Cyp26b1SC2/SC2). Using DNA extracted from tail

clips, mice were genotyped by PCR for both Cyp26b1 and Cre

recombinase. Presence of a floxed Cyp26b1 allele was detected

using the primers P1 (59-CAGTAGATGTTTGAGTGACA-

CAGCC) and P2 (59-GAGGAAGTGTCAGGAGAAGTGG)

which flank the 59 loxP site. These primers will amplify a product

of 223 bp from a wild-type allele and 284 bp from a targeted (L3)

allele. In order to detect a null allele, DNA was extracted from

testes, and PCR was performed with the primers P1, P2 and P3

(59-GGGCCACCAAGGAAGATGCTGAGG), as P1 and P3 will

amplify a product of 364 bp from an excised allele. Cre

recombinase was detected using the primers 59-AGGGATCGC-

CAGGCGTTTTC and 59-GTTTTCTTTTCGGATCCGCC.

All PCR was performed using Taq Polymerase (Sigma-Aldrich,

St. Louis, MO), and included 1.5 mM MgCl2, 0.2 mM dNTPs

and 0.2 mM of appropriate primers. Each PCR consisted of 30

cycles of 94uC for 20 sec, 58uC for 45 sec and 72uC for 50 sec.

For embryo collection, mating females were checked in the

morning for vaginal plugs, if present, this was denoted as E0.5.

Embryos were collected in ice-cold PBS, and fetuses were

decapitated prior to tissue collection. All animal experimentation

was reviewed and approved by the Queen’s University Animal

Care and Use Committee.

RNA extraction and reverse transcription–polymerase
chain reaction (RT-PCR)

Total RNA was isolated from freshly dissected gonads with

Trizol reagent (Invitrogen, Carlsbad, CA) according to the

manufacturer’s recommendations. Total RNA (1 mg) was reverse

transcribed with random hexamers (0.2 mg) using 30 units avian

myeloblastosis virus reverse transcriptase (Promega Madison, WI)

in a total reaction volume of 25 mL. PCR was conducted by using

1 mL of cDNA as template in a total volume of 20 mL. The

following primer sets were used: Stra8: 59-CTGTTGGACCA-

GATGCTGAA-39 and 59-GCAACAGAGTGGAGGAGGAG-

39; and mouse vasa homolog (Mvh): 59-TGGCAGAGCGATTT-

CTTTTT-39 and 59-CGCTGTATTCAACGTGTGCT-39. All

PCR was performed using Advantage 2 Polymerase Mix

(Clontech, Mountain View, CA). Each PCR consisted of 35 cycles

of 95uC for 30 sec and 68uC for 1 min.

Tissue collection and histology
Freshly dissected testes from Cyp26b1SC2/SC2 and appropriate

control mice were fixed for 1 h in Bouin’s solution, washed in 70%

ethanol and paraffin embedded. Sections (5 mm) were cut,

dewaxed, and stained with hematoxylin and eosin as previously

described [9]. At least four testes from mice of each genotype were

examined at each developmental stage.

Immunofluorescence
For immunofluorescence (IF) experiments, sections were blocked

in 5% serum (matched to the species of the secondary antibody) in

PBS for 30 min at room temperature and then incubated with

primary antibodies overnight at 4uC prior to detection with

secondary antibodies. Primary antibodies used for IF were rabbit

anti-mouse vasa homolog (MVH, 1:2000, provided by T. Noce),

mouse anti-Ki67 (1:400, BD Bioscience), rabbit anti-SCP3 antise-

rum (1:500, provided by C. Heyting) [21], rat anti-TRA98 (1:1000,

provided by H. Tanaka and Y. Nishimune), and rabbit anti-3ß-

hydroxysteroid dehydrogenase (3ßHSD) (1:5000; provided by A.

Payne). Secondary antibodies used were goat anti-rabbit Alexa 488,

goat anti-rat Alexa 594 and goat anti-mouse Alexa 594 (1:500,

Molecular Probes). Sections were counterstained with nuclear stain

496-diamindino-2-phenylindole (DAPI). Images were obtained using

a Nikon Eclipse TE 2000-U microscope. Negative controls, lacking

the primary antisera, were included in each experiment.

In order to determine the mitotic index of germ cells, the total

number of Ki67-stained or unstained germ cells (MVH-labeled

cells) in the entire cross section was counted under a microscope.

At least five cross sections were analyzed for each developmental

stage.

Results

Sertoli cell specific excision of Cyp26b1
Mice in which exons 3–6 of Cyp26b1 (Cyp26b1fl/fl) are flanked by

loxP sites (Figure 1A) were generated as previously described [9].

These animals were crossed with Amh-Cre mice, which express Cre

recombinase specifically in Sertoli cells from E15 onwards [20].

Appropriate crosses were performed to generate mice in which

both alleles of Cyp26b1 were excised in Sertoli cells, known

hereafter as Cyp26b1SC2/SC2 mice (Figure 1A). In order to confirm

specificity of Cre activity in Cyp26b1SC2/SC2 mice, DNA was

extracted from tails and testes of Cyp26b1SC2/SC2 animals as well

as wild-type littermates harboring the Amh-Cre transgene

(Cyp26b1SC+/SC+). Genotyping was performed using appropriate

primers, and excision of Cyp26b1 was detected only in the testes of

Cyp26b1SC2/SC2 animals (Figure 1B, 364 bp band). It should be

noted in the testes of Cyp26b1SC2/SC2 mice, a band corresponding

to a floxed Cyp26b1 allele was still detected by PCR (Figure 1B,

284 bp band). This may indicate that there was not 100% excision

of the Cyp26b1fl/fl locus, or may reflect amplification of DNA

extracted from non-Sertoli cells in the testes.

CYP26B1 and Germ Cells
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We next sought to determine the timing of loss of CYP26B1

activity in Cyp26b1SC2/SC2 mice by examining the expression of

Stra8, a RA-responsive gene. Stra8 expression is absent in wild type

embryonic testes. In Cyp26b12/2 embryonic testes, Stra8 expression

is induced [10]. RT-PCR analysis showed no Stra8 expression in

either Cyp26b1SC+/SC2 or Cyp26b1SC2/SC2 testes at E15.5 (Figure 2),

indicating that RA levels remained unchanged at E15.5. At E16.5,

Stra8 mRNA was detected in Cyp26b1SC2/SC2 testes but not in

Cyp26b1SC+/SC2 testes (Figure 2). Mvh was used as a marker of germ

cells, and observed to be expressed in all analyzed samples.

Testis degeneration in Cyp26b1SC2/SC2 mice
Cyp26b1SC2/SC2 mice were healthy, viable and did not show

any abnormalities of external genitalia. However, they had smaller

testes than littermates having at least one wild-type Cyp26b1

allele. Morphological evaluation of testes from 3-month-old

Cyp26b1SC2/SC2 mice revealed an incompletely penetrant pheno-

type of abnormal seminiferous tubules, with some devoid of all

germ cells (Figure 3A, B, asterisks) while other tubules contained

cells from all stages of spermatogenesis. IF with the germ cell

specific antibody TRA98, confirmed that germ cells were depleted

Figure 1. Generation of Sertoli cell-specific Cyp26b1 knockout mice (Cyp26b1SC2/SC2). (A) Floxed Cyp26b1 locus showing position of primers
(P1, P2, P3) used for genotyping. LoxP sites are indicated by triangles, and the exons of Cyp26b1 are numbered. In Sertoli cells, exons 3–6 will be
excised (Cyp26b1SC2/SC2), thus allowing for PCR amplification of a 364 bp product using P1 and P3. (B) PCR genotyping using P1, P2 and P3 showing
detection of an excised allele (364 bp) only in the testes of a Cyp26b1fl/fl mouse also expressing Cre (mouse #1).
doi:10.1371/journal.pone.0007501.g001
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in some seminiferous tubules of Cyp26b1SC2/SC2 animals

(Figure 3C, D). Other cell types were examined using antibodies

to GATA1 (Sertoli cell specific marker) and 3bHSD (Leydig cell

specific marker). It was also noted that in Cyp26b1SC2/SC2 samples,

the diameter of seminiferous tubules lacking germ cells was

reduced, and Leydig cell hyperplasia was evident outside these

tubules (Figure 3F). Such abnormalities were not observed in

Cyp26b1SC+/SC+ or Cyp26b1fl/fl control testes (Figure 3, A, C, E,

data not shown). In contrast, numbers of Sertoli cells were

unchanged between mutant (Figure 3F) and control animals

(Figure 3E).

Loss of gonocytes in Cyp26b1SC2/SC2 neonatal testes
The observed depletion of spermatogenic cells could be due to

either i) the disruption of spermatogenesis, or ii) the loss of

gonocytes, which are precursor cells of spermatogonia. In order to

distinguish between these two possibilities, IF was performed on

sections from Cyp26b1SC2/SC2 testes at P0 using the germ cell-

specific antibody TRA98.

Overall, Cyp26b1SC2/SC2 testes contained fewer germ cells in

comparison with Cyp26b1SC+/SC+ testes (Figure 4). In contrast to

Cyp26b1SC+/SC+ testes where germ cells were present in all

seminiferous tubules, (Figure 4A), some seminiferous tubules were

devoid of germ cells in Cyp26b1SC2/SC2 testes (Figure 4B),

indicating that there is loss of germ cells by P0.

Meiotic germ cells are detected in E16.5 Cyp26b1SC2/SC2

testes
Previously, we observed that loss of CYP26B1 function by

E11.5 resulted in the inappropriate initiation of meiotic prophase

in testes. As Stra8 expression is not induced at E15.5 in

Cyp26b1SC2/SC2 mice, testes were collected and sectioned from

E15.5 and E16.5 Cyp26b1SC2/SC2 and control fetuses. Sections

were stained for the synaptonemal complex protein SCP3, a

marker indicative of meiosis, which is upregulated in Cyp26b12/2

testes [9,10]. At E15.5, no SCP3-stained cells were seen in either

Cyp26b1SC+/SC+ or Cyp26b1SC2/SC2 testes (data not shown). At

E16.5, in contrast to Cyp26b1SC+/SC+ testes in which no SCP3-

stained cells were observed, SCP3-positive cells were detected in a

subset of tubules in Cyp26b1SC2/SC2 testes (Figure 5).

Germ cells exit from G0 and re-enter mitosis in E16.5
Cyp26b1SC2/SC2 testes

In order to determine if CYP26B1 is required for maintain-

ing mitotic quiescence in male germ cells, E15.5 and E16.5

testes were sectioned and IF was performed with antibody to

Ki67 (Figure 6B, E, H, K), which detects all phases of the cell

cycle except for G0 and is a common marker of mitotic cells.

Samples were also labeled with the germ cell-specific antibody,

MVH (Figure 6A, D, G, J). At E15.5, Cyp26b1SC+/SC+ and

Cyp26b1SC2/SC2testes contained very few Ki67-positive germ cells

(,1%), while somatic cells stained with Ki67 (Figure 6). At E16.5,

virtually no Ki67 expressing germ cells were detected in

Figure 2. Stra8 expression is elevated in the absence of
CYP26B1. Reverse transcription- PCR was performed with RNA
collected from E15.5 and E16.5 Cyp26b1SC+/SC2 and Cyp26b1SC2/SC2

testes. Stra8 is only detected in RNA from E16.5 Cyp26b1SC2/SC2 testes.
Mvh expression was analyzed as a positive control for RNA integrity.
doi:10.1371/journal.pone.0007501.g002

Figure 3. Loss of germ cells in adult Cyp26b1SC2/SC2 animals. 3-
month-old Cyp26b1SC+/SC+ and Cyp26b1SC2/SC2 testes stained with
hematoxylin and eosin (A and B) or antibodies to TRA98 (a germ cell
marker, red in C and D), GATA-1 (a Sertoli cell marker, red in E and F)
and 3bHSD (a Leydig cell marker, green in E and F). Note the decrease in
the seminiferous tubule size in testes from Cyp26b1SC2/SC2 mice (F)
compared to Cyp26b1SC+/SC+ mice (E). Seminiferous tubules devoid of
germ cells are indicated by asterisks. Bars, 20 mm.
doi:10.1371/journal.pone.0007501.g003

Figure 4. Neonatal loss of germ cells in the absence of
CYP26B1. Postnatal day 0 (P0) testes stained for TRA98 show a loss
of germ cells in Cyp26b1SC2/SC2 mice. Bar, 20 mm.
doi:10.1371/journal.pone.0007501.g004
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Cyp26b1SC+/SC+ testes (Figure 6I), whereas 22% of the germ cells

were Ki67-positive in the testes of Cyp26b1SC2/SC2 mice (Figure 6L,

arrowheads). There was no significant difference in the overall

number of Ki67-stained somatic cells between Cyp26b1SC2/SC2 and

control mice.

Discussion

We previously reported that genetic deletion of Cyp26b1 by

E11.5, prior to the germ cell sex determination, leads to increased

RA levels in the embryonic testes resulting in premature meiotic

initiation and apoptosis in male germ cells [9]. In the present

study, we have specifically knocked out Cyp26b1 in Sertoli cells

from E15.5 onwards. We observed induction of Stra8 expression

and initiation of meiosis in germ cells as early as E16.5, and a loss

of germ cells by P0, resulting in abnormal seminiferous tubules

devoid of germ cells in adult testes. Furthermore, it was observed

that some male germ cells at E16.5 exit from G0 and enter the cell

cycle, a process that normally does not occur until a few days after

birth. These results suggest that male germ cells retain the ability

to commit to male or female development until at least E15.5.

CYP26B1 in Sertoli cells during embryonic development keeps

male germ cells undifferentiated by arresting them in mitotic

quiescence and preventing them from meiotic entry until after

birth, when mitosis resumes and meiosis initiates as required for

spermatogenesis.

It has been proposed that all germ cells enter meiosis cell

autonomously unless prevented from doing so by an unidentified

Figure 6. Re-entry into mitotic cell cycle in embryonic Cyp26b1SC2/SC2 male germ cells. Sections of testes from Cyp26b1SC+/SC+ (A, B, C, G, H,
I) and Cyp26b1SC2/SC2 (D, E, F, J, K, L) littermates at E15.5 (A–F) and E16.5 (G–L) stained for the mitotic marker Ki67 (B, E, H, K, red) and the germ cell
marker MVH (A, D, G, J, green). Overlays of images show Ki67 expressing germ cells are observed only in Cyp26b1SC2/SC2 fetuses (F, arrowheads). Bar,
20 mm.
doi:10.1371/journal.pone.0007501.g006

Figure 5. Cyp26b1SC2/SC2 male germ cells enter meiosis
prematurely. Sections of testes from Cyp26b1SC+/SC+ (A) and
Cyp26b1SC2/SC2 (B) littermates at E16.5 stained for the meiotic marker
SCP3 (green). Sections were counterstained with DAPI. Bar, 20 mm.
doi:10.1371/journal.pone.0007501.g005
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meiosis-preventing substance (MPS) in the embryonic testis [12].

Germ cells enter meiotic prophase during embryogenesis not only

in ovaries, but also in non-gonadal regions where germ cells escape

the inhibitory influence of MPS. When male germ cells from

E10.5 or E11.5 gonads are cultured with disaggregated embryonic

lung cells, they enter meiotic prophase, but germ cells from older

male embryos (E12.5 and E13.5) do not enter meiosis [12]. Based

on these observations, it has been proposed that the decision in

germ cells to commit to a male or female pathway is made

between E12.5 and 13.5 [12]. Previously, it was shown that in

Cyp26b12/2 fetuses, male germs cells enter meiosis at E13.5 [9]. In

the Cyp26b1SC2/SC2 model that we have described, CYP26B1

activity is not lost until between E15.5 and E16.5, when male germ

cells arrest in G0 and are normally already committed to develop

along a male pathway. However, in Cyp26b1SC2/SC2 fetuses,

meiotic germ cells are detected at E16.5, suggesting that male

germ cells at E15.5 still retain the potential to initiate meiosis and

that the commitment of these cells to the male developmental

pathway is reversible. These observations demonstrate that

CYP26B1 functions as a MPS to prevent male germ cells from

entering meiosis in various stages of development, and without its

inhibitory influence, male germ cells enter meiosis even though

they are already committed to the male developmental pathway.

Altogether, these observations suggest that entry into meiosis is the

result of an inductive program subject to RA signaling, rather than

a cell-intrinsic event.

Importantly, we find that Cyp26b1SC2/SC2 male germ cells exit

from G0 and re-enter the mitotic cell cycle. In mice, germ cells

within the developing gonad undergo sexually dimorphic cell

cycles between E12.5 and E15.5. This developmental switch is

dependent on the sex of the somatic cells, rather than the sex

chromosome constitution of the germ cells [12]. It has been

proposed that a masculinizing factor(s) produced by somatic cells

direct male germ cells to arrest in G0 of the cell cycle instead of

entering the meiosis as female germ cells do at the same time [12].

The finding that Cyp26b1SC2/SC2 male germ cells exit from G0

and re-enter the mitotic cell cycle is significant, as it shows that

CYP26B1 activity in Sertoli cells not only prevents meiosis in germ

cells, but is also required for maintaining mitotic arrest in the

developing testes, suggesting that CYP26B1 (due to its RA-

catabolizing activity) is a candidate masculinizing factor. Further-

more, our findings demonstrate that male germ cells at E15.5 and

older retain the ability to continue through the mitotic cell cycle

and enter meiotic prophase in response to RA signaling. Thus,

CYP26B1 activity in Sertoli cells keeps male germ cells

undifferentiated during embryonic development. It has been

reported that RA promotes the proliferation of both cultured

PGCs [22] and embryonic male germ cells , but has no effects on

the somatic cell proliferation [23]. We have provided in vivo

evidence that male germ cells must remain in an RA-depleted state

to enter mitotic arrest. In the mouse testes, germ cells arrest in G0

of the cell cycle between E12.5–E15.5, which coincides with the

expression of Cyp26b1 in the male gonad. Germ cells remain in

mitotic quiescence until shortly after birth when mitosis is resumed

as required for spermatogenesis [24]. This timing corresponds with

testicular expression of Aldh1a2, as ALDH1A2 is first detected in

Figure 7. Proposed model for the role of CYP26B1 in maintaining male germ cells in an undifferentiated state during
embryogenesis. In wild-type gonads, germ cells exhibit sex-specific divergence during embryogenesis as male germ cells enter mitotic arrest, while
female germ cells enter mitosis followed by meiosis. However, in Cyp26b1SC2/SC2 fetuses, Cyp26b1 activity is inactivated after E15.5, thus elevating
levels of retinoic acid within the testes. As a result, male germ cells exit from G0 to re-enter the cell cycle and initiate meiotic prophase, which
subsequently culminates in loss of male germ cells.
doi:10.1371/journal.pone.0007501.g007

CYP26B1 and Germ Cells
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the developing testis at birth, and levels increase postnatally [17].

Collectively, these results suggest that RA signaling may also play a

role in maintaining the mitotic activity in both PGCs and

undifferentiated spermatogonia in postnatal testis.

In the embryonic testes, the ALDHs and CYP26B1 act as a

source and sink for RA. It has been proposed that RA is

synthesized in the mesonephros by ALDH1A enzymes, and

diffuses into adjacent cells until reaching Sertoli cells where it is

catabolized by CYP26B1. This process is essential for germ cell

maturation, as an RA-depleted environment is required for the

entry of male germ cells into mitotic arrest and thus prevents germ

cells from entry into meiotic prophase. CYP26B1 in Sertoli cells

directs male germ cells to develop along a male pathway (mitotic

quiescence) and maintains the undifferentiated state of the male

germ cells from E11.5 onward. However, the absence of CYP26B1

in Sertoli cells enables endogenous levels of RA to rise in the testes

at a time when they should be low or absent. Subsequently, germ

cells exit the G0 stage to re-enter the cell cycle and initiate meiotic

prophase (Figure 7). At this point, we hypothesize that a factor is

released from Sertoli cells that either directly, or indirectly initiates

apoptosis of germ cells. The identity of such a factor(s), and

mechanisms underlying initiation of apoptosis are currently under

investigation.
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