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Abstract

Background: COVID‐19 causes a range of clinical symptoms from mild to

critical and can be life‐threatening. Up to now, it has led to many deaths. We

aimed to evaluate exhausted markers on CD4+ T cells of COVID‐19 patients.

Methods: In this study, we evaluated 44 patients with confirmed COVID‐19
disease and 16 healthy individuals. Patients were divided into moderate/severe and

critical groups. Peripheral blood mononuclear cells (PBMCs) were isolated and

stained by anti‐human CD39, PD‐1, TIM‐3, and anti‐human CD4. The percentage

of each CD4+ subpopulation was calculated by flow cytometry. Furthermore, we

collected clinical information and laboratory data of both control and patient

groups.

Results:We detected overexpression of TIM‐3 on CD4+ T cells in both critical

and moderate/severe patients than in healthy individuals (HIs; p< .01 and

p< .0001, respectively). CD4+ TIM‐3+ CD39+ lymphocytes were significantly

higher in the critical patients than in HI (p< .05). Both Patient groups showed

lymphopenia in comparison with HI, but CD4+ lymphocytes did not show

any significant difference between study subjects. The increased amount of
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C‐reactive protein, erythrocyte sedimentation rate, creatinine, blood urea

nitrogen, and neutrophil count was observed in patients compared to HI.

Conclusion: T cell exhaustion occurs during COVID‐19 disease and TIM‐3 is

the most important exhausted marker on CD4+ T cells.
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1 | INTRODUCTION

Coronavirus‐2 is the leading cause of new coronavirus
disease‐2019 (COVID‐19), which was first diagnosed
in late 2019 (in Wuhan city, Hubei Province, China)
in patients with pneumonia of unknown source.1

COVID‐19 causes a range of clinical symptoms from
mild to critical. Most patients experience mild symp-
toms in the form of cough, sore throat, and fever.
Although many cases experience spontaneous im-
provement, some patients experience acute respiratory
distress syndrome (ARDS) and other lethal complica-
tions, such as septic shock, organ failure, pulmonary
edema, and severe pneumonia. Additionally, most pa-
tients admitted to the intensive care unit (ICU) were
older and/or had chronic underlying diseases, such as
cardiovascular, respiratory, and cerebrovascular ones,
as well as diabetes and hypertension.1,2

Lymphopenia has been seen in most patients. In
severe cases, cytokine storm was detected as high
levels of pro‐inflammatory cytokines, including inter-
leukin 2 (IL‐2), IL‐7, IL‐10, granulocyte colony‐
stimulating factor (G‐CSF), interferon‐inducible pro-
tein 10 (IP‐10), monocyte chemoattractant protein‐1
(MCP‐1), macrophage inflammatory protein‐1 alpha
(MIP‐1A), and tumor necrosis factor alpha (TNF‐α).
Thus, it seems that these factors are effective in the
pathogenesis of COVID‐19 and lead to severe compli-
cations.3 The adaptive immune system plays an im-
portant role in the immune response and clearance of
the virus.4 CD4+ T cells help B cells produce anti-
bodies, adjust macrophage function, and improve cy-
totoxic T cells responses. Dysfunction and reduction
of CD4+ T cells predispose an individual to many
infectious diseases.5

During cancer together with viral, parasitic, and bac-
terial infections, progressive dysfunction of T cells with
overexpression of immune checkpoint inhibitors (ICIs)
appears, which is defined as T cell exhaustion.6,7 In many
viral infections, increased expression of inhibitory re-
ceptors on exhausted T cells, such as programmed cell
death receptor 1 (PD‐1), T‐cell immunoglobulin and

mucin‐domain containing‐3 (TIM‐3), cytotoxic T lym-
phocyte antigen‐4 (CTLA‐4), CD39 (ectonucleoside tri-
phosphate diphosphohydrolase‐1 [ENTPD1]), and
lymphocyte activation gene 3 (LAG3) were detected,
which resulted in T cell hyporesponsiveness. Exhausted T
cells have dysfunction and cannot respond to viruses or
eliminate them.8–10 Therefore, in addition to lymphope-
nia, lymphocyte dysfunction also appears to be effective in
disease pathogenesis. It seems that increasing the number
and function of T helper (Th) lymphocytes can be useful
in disease management. Until now, little research has
been done on the exhaustion of T cells in COVID‐19 pa-
tients. Thus, this study aims to evaluate the exhausted
markers on CD4+ T cells of COVID‐19 patients.

2 | MATERIALS AND METHODS

2.1 | Study population

In this study, we evaluated suspected patients with
usual clinical symptoms and characteristic findings in
lung high‐resolution computed tomography (HRCT),
who were admitted to the Ayatollah Rouhani, Shahid
Yahyanezhad, and Shahid Beheshti hospitals, all as-
sociated with Babol University of Medical Sciences.
Forty‐four patients with a confirmed diagnosis of
severe acute respiratory syndrome coronavirus 2
(SARS‐CoV‐2) using quantitative reverse transcription‐
polymerase chain reaction (RT‐PCR) assay on throat
swab specimen were enrolled in this study. Sixteen
healthy individuals (HIs) with negative RT‐PCR were
selected as the control group.

Patients were divided into two groups, that is, mod-
erate/severe (who required inpatient care) and critical
(who required ICU care) groups according to the World
Health Organization (WHO) classification.11 The mean
length of hospital stay was 24.55 days for critical and 14.11
days for moderate/severe patients. The combination of
the drugs including azithromycin, dexamethasone, pre-
dnisolone, hydroxychloroquine sulfate, hydrocortisone,
and methylprednisolone was used for the treatment of the
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patients. From all patients, 7ml of venous blood samples
was collected into green‐top tubes (tubes containing
sodium heparin).

Clinical information and laboratory data, includ-
ing complete blood count with differential, biochem-
istry, C‐reactive protein (CRP), ferritin, erythrocyte
sedimentation rate (ESR), and lactate dehydrogenase
(LDH), were collected from electronic and paper
medical records.

2.2 | Ethical statement

Written informed consent was received from all study
individuals, and the Local Ethical Committee of Babol
University of Medical Sciences authorized the study
procedure.

2.3 | Peripheral blood mononuclear cell
isolation and flow cytometry analysis

Peripheral blood mononuclear cells (PBMCs) were iso-
lated by the Ficoll‐Hypaque density gradient centrifuga-
tion method. The plasma was removed from whole blood
by centrifuging for 20 min at 400 g, and a buffy coat ring
was accumulated. PBMCs were enumerated in the Neu-
bauer plate after washing in phosphate‐buffered saline
(PBS). FACS buffer (PBS containing 0.5% bovine serum
albumin) was used to wash 106 cells of isolated PBMCs.
Then, PBMCs were treated with FcR blocker (BioLe-
gend). The cells were incubated with PE anti‐human
CD39 (Clone A1), PD‐1‐ PerCp‐Cy5.5 Ab (Clone
EH12.2H7), TIM‐3 APC‐conjugated Ab (Clone F38‐2E2)
(all from BioLegend), and FITC‐labeled anti‐human CD4
(BD Biosciences) in the dark room. FACSCalibur (BD
Biosciences) flow cytometer was applied, and FlowJo
7.6.1 for Windows was used for results analysis. The
percentage of each CD4+ subpopulation was calculated
after cell gating by their forward and side scatters
parameters.

2.4 | Statistical analysis

Statistical analysis was accomplished by GraphPad
Prism 7.00 for Windows (GraphPad Software), and
data were expressed as mean ± standard deviation
(SD). Differences in the variables between groups
were determined by using an independent sample
t‐test. The normality of the data was calculated using
the Kolmogorov–Smirnov test. P‐values < 0.05 were
considered significant.

3 | RESULTS

3.1 | Demographic and clinical
characteristics of study subjects

The demographic and clinical characteristics of the study
subjects are shown in Table 1. The patients are age‐ and
sex‐matched. Patients had an increased amount of CRP,
ESR, creatinine, and blood urea nitrogen compared to
HI. Moreover, patients showed a high amount of neu-
trophil compared with HI. In contrast, lymphocytes were
lower in the patients than in HI (Table 1).

3.2 | TIM‐3 is highly expressed on CD4+

lymphocytes of patients

TIM‐3, PD‐1, and CD39 as the exhausted marker of T cells
were evaluated on the CD4+ lymphocytes of the study sub-
ject. First, the frequency of CD4+ TIM‐3+, CD4+ PD‐1+, and
CD4+ CD39+ lymphocytes was evaluated in the subjects.
The frequency of CD4+ TIM‐3+ lymphocytes was sig-
nificantly higher in both critical and moderate/severe
patients than in HI (p< .01 and p< .0001, respectively;
see Table 2). In contrast, there was no significant difference
between patients and HI regarding the frequency of
CD4+ PD‐1+ and CD4+ CD39+ lymphocytes (Table 2 and
Figures 1 and 3).

3.3 | Higher frequency of
CD4+ TIM3+ CD39+ lymphocytes in critical
patients

Simultaneous expression of TIM‐3 CD39, TIM‐3 PD‐1,
and PD‐1 CD39 on CD4+ lymphocytes was evaluated in
the subjects. CD4+ TIM‐3+ CD39+ lymphocytes were
significantly higher in the critical patients than in HI
(p< .05), and no significant difference was observed
between critical and moderate/severe patients or mod-
erate/severe and HI. Moreover, there was no significant
difference between study subjects regarding the fre-
quency of CD4+ TIM‐3+ PD‐1+ and CD4+ PD‐1+

CD39+ lymphocytes (Table 2 and Figures 2 and 3).

3.4 | Same frequency of
CD4+ lymphocytes between subjects

Although patients showed lymphopenia compared to HI,
CD4+ lymphocytes did not show any significant difference
between study subjects (Table 2 and Figure 1). Moreover,
when TIM‐3, PD‐1, and CD39 markers were simultaneously
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TABLE 1 Demographic and clinical characteristics of study subjects

Healthy(16) Moderate/severe(30) Critical(14) p

Age (years) 38.19 (8.81) 58.33 (18.49) 52.64 (17.83)

Gender

Female 5 14 6

Male 11 16 8

Temperature 36.56 (0.108) 37.41 (1.007) 37.41 (0.401) <.0001

Cough 0 (0%) 23 (76%) 12 (85%) <.0001

Smoking 1 (0.06%) 4 (0.13%) 0 (0%) .3555

chronic underlying disease 0 12 (40%) 10 (71%) .0006

LDH (U/L) 251.9 (80.86) 556.4 (268.5) 1863 (2709) <.0001

C‐reactive protein (mg/dl) 1.746 (1.563) 81.97 (68.83) 191.3 (116.6) <.0001

ESR (mm/h) 10.71 (3.989) 61.21 (45.62) 69.58 (32.49) <.0001

Ferritin (ng/ml) 102.9 (51.98) 689.6 (731.9) 1129 (1071) .0002

BUN (mg/dl) 15.00 (3.486) 21.35 (19.54) 39.54(27.20) .0005

Creatinine (mg/dl) 0.8143 (0.1076) 1.993 (2.764) 2.106 (2.114) .0673

AST (IU/L) 21.36 (3.875) 51.57 (65.96) 120.3 (201.5) .0100

ALT (IU/L) 18.00 (6.493) 39.33 (27.49) 180.5 (333.9) .0171

WBC 7490 (1798) 8243 (3631) 9407 (3693) .2949

Lymphocytes (% in differential) 32.19 (4.324) 23.43 (12.01) 12.29 (5.121) <.0001

Lymphocytes (absolute number) 2384 (534.7) 1825 (1130) 1069 (409.9) <.0001

Neutrophil (% in differential) 67.20 (10.11) 70.07 (11.92) 84.21 (8.059) .0002

Neutrophil (absolute number) 5059 (1530) 5897 (3048) 8036 (3595) .0234

PLT 269,267 (103,425) 267,467 (137,550) 211,429 (132,324) .3101

NLR 2.159 (0.5858) 3.98 (2.308) 8.571 (4.927) <.0001

PLR 114.2 (39.30) 184.4 (108.1) 207.2 (125.9) .0308

Hb (mg/dl) 14.58 (1.546) 11.06 (1.284) 10.45 (1.599) <.0001

Abbreviations: ALT, alanine aminotransferease; AST, aspartate aminotransferase; BUN, blood urea nitrogen; ESR, erythrocyte sedimentation rate; LDH,
lactate dehydrogenase; NLR, neutrophil‐lymphocyte ratio; PLR, platelet‐lymphocyte ratio; PLT, platelet; WBC, white blood cell.

TABLE 2 Frequency of exhausted
CD4+ T cells in the subjects

Healthy(16)
Moderate/
severe(30) Critical(14) P‐value

CD4+ (% Lymphocytes) 36.05 (5.676) 31.27 (15.93) 23.76 (13.34) .0816

CD4+ TIM3+ (% CD4+) 6.270 (5.169) 27.69 (13.57) 23.97 (14.88) <.0001

CD4+ PD1+ (% CD4+) 17.59 (8.027) 18.48 (8.946) 17.93 (9.164) .8585

CD4+ CD39+ (% CD4+) 8.393 (2.607) 8.835 (4.887) 14.28 (9.608) .1173

CD4+ TIM3+ CD39+ (% CD4+) 3.065 (2.536) 3.742 (1.935) 5.660 (3.169) .0304

CD4+ TIM3+ PD1+ (% CD4+) 3.375 (2.869) 5.711 (3.549) 4.910 (3.304) .0727

CD4+ PD1+ CD39+ (% CD4+) 4.572 (1.640) 4.612 (2.718) 5.176 (2.638) .8639

CD4+ TIM3+ PD1+ CD39+
(% CD4+)

1.361 (1.019) 1.577 (0.9376) 1.795 (1.469) .5616
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FIGURE 1 The frequency of CD4+ TIM‐3+ lymphocytes was significantly higher in both patient groups. PBMCs were stained with
CD4‐FITC, PD‐1‐PerCp‐Cy5.5, CD39‐PE, and TIM‐3‐APC conjugated monoclonal antibodies and analyzed with BD FACSCalibur flow
cytometer. Lymphocytes were gated based on forward and side scatters; the frequency of CD39+, TIM‐3+, and PD‐1+ subsets in CD4+ T cells,
were then detected according to the antibody staining. The frequency of CD4+ TIM‐3+ lymphocytes was significantly higher in both
moderate/severe and critical patients compared to healthy individuals (p< .0001 and p< .01, respectively). (A) the healthy individuals;
(B) the moderate/severe patients; (C) the critical patients. PBMC, peripheral blood mononuclear cell
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analyzed on CD4+ lymphocytes, no significant difference
was observed between patients and HI (Table 2 and
Figure 3).

4 | DISCUSSION

T cells migration out of blood vessels into interstitial lung
tissue result in peripheral T cell lymphopenia.12 Similar to
other studies, we observed lymphopenia in COVID‐19 pa-
tients, which increased with disease progression.3,13,14

CD4+ T cells have an important role in the immune re-
sponse by stimulating B cells and cytotoxic T cells.15 Acti-
vation, expansion, and maintenance of CD8+ T cells are
affected by CD4+ T cells.16 Previous studies have shown that

CD4+ T cells are decreased in patients, particularly in severe
ones.17–19

In this study, total lymphocytes were remarkably de-
creased in moderate/severe and critical COVID‐19 patients
compared with HI (Table 1). However, regarding the fre-
quency of CD4+ lymphocytes, no significant difference was
observed in all groups (Figure 3). In contrast, in our pre-
vious paper, we showed that, besides the total lymphocytes,
CD8+ lymphocytes were significantly decreased in both
ICU and non‐ICU COVID‐19 patients compared with HI
(unpublished paper).

There are several negative regulatory pathways involving
in T cell exhaustion. During some viral infectious diseases,
exhausted CD4+ Tcells reveal diminished proliferative
capability and lack of multifunctional cytokine response,

FIGURE 2 The simultaneous expression levels of TIM‐3 and CD39 had no significant difference in PD‐1+ CD4+ cells of COVID‐19
patients and healthy individuals. PBMCs were stained with CD4‐FITC, PD‐1‐PerCp‐Cy5.5, CD39‐PE, and TIM‐3‐APC conjugated
monoclonal antibodies and analyzed with BD FACSCalibur flow cytometer. PD‐1+ CD4+ T cells were initially gated from the lymphocyte
population to analyze the obtained graphs, and then the simultaneous expression levels of CD39 and TIM‐3 markers were determined in
the PD‐1+ CD4+ T cell populations. (A) the healthy individuals; (B) the moderate/severe patients; (C) the critical patients. PBMC,
peripheral blood mononuclear cell
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particularly decreased production of IL‐2, which results in
disease progression. The antibody‐mediated blockade of in-
hibitory receptors improves the functional and proliferative
capabilities of exhausted T cells.6 Yang et al.20 found that the
expression of PD‐1 was upregulated in CD4+ T cells of
COVID‐19 patients. In a study conducted by Diao et al.,17

PD‐1 expression in CD4+ T cells was also upregulated
in COVID‐19 patients and influenced by disease severity. In
our experience, PD‐1 overexpression in CD4+ T cells of
COVID‐19 patients was not observed. However, the expres-
sion of TIM‐3 was upregulated.

TIM‐3 is another marker of exhausted T cells. In differ-
ent settings, it has discrete ligands, which explain its different
functions.21 Galectin‐9 (Gal‐9) is one of the TIM‐3 ligands.
Previous studies have demonstrated that interaction between
TIM‐3/Gal‐9 induces apoptosis of Th1 cells.22,23 Previous
studies on several viral infections have revealed over-
expression of TIM‐3 on exhausted T cells due to sustained
stimulation.6,24,25 In our previous experience, we showed

that TIM‐3 was overexpressed by CD8+ lymphocytes of pa-
tients with active chronic hepatitis B and not with inactive
chronic hepatitis B.26 Moreover, in our recent study, critical
COVID‐19 patients had increased frequency of CD8+ TIM‐
3+ and CD8+ TIM‐3+ CD39+ lymphocytes compared with
noncritical and HI subjects (unpublished paper).

Diao et al.17 found increased expression of TIM‐3 on
CD4+ T cells in COVID‐19 patients admitted to the
ICU. Consistent with their study, we found increased ex-
pression of TIM‐3 on CD4+ T cells in both moderate/severe
and critical patients. Our paper indicated that CD4+ TIM‐
3+ lymphocytes were remarkably higher in the critical
COVID‐19 patients than in the moderate/severe and HI
subjects. Thus, our study can support the role of TIM‐3 in
Th cell exhaustion during the SARS‐CoV‐2 infection. It has
been shown that TIM‐3 blockade immunotherapy can im-
prove the function of exhausted T cells.27

CD39 is also associated with T cell exhaustion.28

CD39 is an ectoenzyme producing extracellular

FIGURE 3 The subset analysis of the exhausted CD4+ cells in healthy individuals and COVID‐19 patients. The percentage of each
subset was evaluated in CD4+ cells. Each dot represents single healthy individuals or patients. p< .05 was considered statistically significant
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adenosine by hydrolase of extracellular adenosine tri-
phosphate (ATP). Injured cells secrete extracellular ATP,
resulting in pro‐inflammatory responses. On the other
hand, extracellular adenosine restricts inflammatory re-
sponses by hampering activated immune cells.29,30

Bono et al.29 reported that CD39 expression was detected
in all Th subpopulations. Overexpression of CD39 on T cells
was identified during several viral and bacterial dis-
eases.9,31–33 In this study, we also showed that critical
COVID‐19 patients had increased frequency of CD4+ TIM‐
3+ CD39+ lymphocytes compared with moderate/severe and
HI subjects.

5 | CONCLUSION

Critical COVID‐19 patients have various dysregulation in
their immune system response, such as lymphopenia, cyto-
kine storm, and increased frequency of exhausted CD4+ and
CD8+ lymphocytes. These characteristics consequently could
increase the mortality rate, especially in critical patients. In
this regard, an attempt to prevent exhaustion of both
CD4+ and CD8+ lymphocytes may help the COVID‐19
patients generate a better response against the disease.
As lymphopenia is an indispensable characteristic of
CVID‐19 patients, it is crucial to maintain those residual
lymphocytes vigorously.
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