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Abstract: The microbial colonization of the lower female reproductive tract has been extensively
studied over the past few decades. In contrast, the upper female reproductive tract including
the uterine cavity and peritoneum where the ovaries and fallopian tubes reside were traditionally
assumed to be sterile under non-pathologic conditions. However, recent studies applying next-
generation sequencing of the bacterial 16S ribosomal RNA gene have provided convincing evidence
for the existence of an upper female reproductive tract microbiome. While the vaginal microbiome
and its importance for reproductive health outcomes has been extensively studied, the microbiome
of the upper female reproductive tract and its relevance for gynecologic cancers has been less studied
and will be the focus of this article. This targeted review summarizes the pertinent literature on the
female reproductive tract microbiome in gynecologic malignancies and its anticipated role in future
research and clinical applications in personalized medicine.

Keywords: female reproductive tract microbiome; upper reproductive tract microbiome; vaginal
microbiome; uterine microbiome; gynecologic cancer; endometrial cancer; ovarian cancer

1. Introduction

The human microbiome refers to the collective genomes of bacteria, viruses, bacterio-
phages, protozoa, and fungi that symbiotically inhabit the human body. While microorgan-
isms make up only about 1 to 3 percent of the human body mass, microbial cells outnumber
human cells by an estimated factor of ten [1]. The Human Microbiome Project, a conceptual
extension of the Human Genome Project [1,2], has been increasing the understanding of the
microbiome’s dynamic role in influencing inflammation, metabolic and cellular pathways,
mucosal homeostasis, and host immune responses throughout the human body [3] as well
as its perturbation in multiple types of human diseases including neoplastic processes.
The gut microbiome has been implicated in cancer progression and immunotherapeutic
responsiveness of different cancers [4,5], and emerging evidence suggests that the female
reproductive tract microbiome may play a similar role, particularly in gynecologic ma-
lignancies. Cancers of the female reproductive tract account for more than 100,000 new
cancer diagnoses and up to 30,000 deaths per year in the United States [6–9]. Gynecologic
malignancies in which microbiomes are currently under study encompass cancers of the
lower female reproductive tract, particularly the uterine cervix, as well as the ovary and
endometrium in the upper female reproductive tract.
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Recent studies applying next-generation sequencing of the bacterial 16S ribosomal
RNA (16S rRNA) gene have provided convincing evidence for the existence of an upper
female reproductive tract microbiome. Over the past few years, studies of endometrial and
peritoneal samples obtained from healthy women and those with benign and noninfectious
gynecologic conditions suggest a microbiota continuum with decreasing biomass and
increasing diversity from the lower to upper female reproductive tract [10,11]. Data
on upper female reproductive tract microbiome composition and its association with
gynecologic cancers can be considered preliminary at present. Further studies including
multi-omics and systems biology approaches are required to determine functional relevance
rather than pure presence of different microbiota and to establish causative relationships
with gynecologic diseases including cancer.

2. The Lower Female Reproductive Tract (FRT) and Vaginal Microbiome

The mucosal layer of the lower female reproductive tract (FRT) contains commensal
bacteria that play important roles for mucosal health. The vaginal microbiome is commonly
composed of different species of Lactobacillus, which can include L. crispatus, L. gasseri, L.
iners, L. jensenii, and others [12]. A Lactobacillus-dominant vaginal microbiome is considered
to be favorable due to the protective characteristics that are provided by these bacterial
communities. This includes the production of lactic acid to lower the vaginal pH and the
production of bacteriocins and hydrogen peroxide providing an acidic and antimicrobial
environment unfavorable for invading pathogens [13,14]. Nevertheless, different Lacto-
bacillus species vary considerably in their ability to produce lactic acid and antimicrobial
factors, and several are associated with increased mucosal inflammation [15,16]. Molecular
profiling has increased the understanding of vaginal microbial diversity, which has been
classified into so-called community-state types as defined by the predominant taxa [12].
Often, Lactobacillus is not the dominant microorganism, and many women have higher
diversity non-Lactobacillus microbiota characterized by an overgrowth of obligate and facul-
tative anaerobes such as Gardnerella, Prevotella, Atopobium, and Mobiluncus, which is known
as microbial dysbiosis or bacterial vaginosis. Vaginal microbial dysbiosis is associated
with changes to the mucosal microenvironment, including increased pro-inflammatory
cytokines [17], increased numbers of immune cells such as CD4+ T-cells [13,18] that are
activated, altered immune pathways [18–21], epithelial barrier disruption [22], and produc-
tion of immunomodulatory metabolites [23,24]. Vaginal microbial dysbiosis is associated
with numerous adverse reproductive health outcomes, including increased acquisition
of sexually transmitted infections, increased risk of pre-term birth, and increased risk
of HPV infection and subsequent cervical cancer, among others [25–30]. Bacterial vagi-
nosis is the most common vaginal condition for women of reproductive age [31], affecting
23–29% of women globally [32] and causing detrimental effects on a woman’s quality of
life physically, emotionally, sexually, and socially [33]. The association between highly
polymicrobial non-Lactobacillus dominant vaginal microbiome profiles with increased
risk of HPV infection, persistence, delayed clearance, and increased risk of developing
HPV-associated cervical neoplasia was demonstrated in multiple studies [28–30] and was
recently reviewed elsewhere [34].

3. The Upper Female Reproductive Tract (FRT) Microbiome and Gynecologic Cancers

Studying the upper FRT and specifically the intrauterine and endometrial microbiome
is hampered by challenges of sterile access without cervicovaginal contamination and the
significantly lower biomass of the upper compared to the lower FRT. These challenges in
studying upper FRT microbiota and variability in reported microbiome composition were
also discussed in a prior review article and commentary [35–37]. A limited number of
recent studies, summarized in Table 1, have analyzed the presence and composition of a
possible uterine and upper FRT microbiome using either transcervical access to the uterine
cavity, or sterile access following sterile transection of surgical hysterectomy specimens or
during elective caesarean section. Transcervical endometrial specimens included sampling
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of catheter-tips following embryo transfer for in vitro fertilization (IVF) [38,39], aspiration
of endometrial fluid [40], endometrial swabs [41–43], or transcervical tissue sampling by
endometrial biopsy or curettage [41,44,45]. Approaches attempting sterile endometrial
sampling to avoid passage of the endocervix used sterilely opened hysterectomy specimens
from women with benign uterine disease or endometrial cancer to collect endometrial
swabs [10,11,46] sometimes with concurrent endometrial tissue samples [47–50] or endome-
trial tissue samples obtained at the time of elective caesarean section [51] (see Table 1).

Published reports to date suggest that the upper FRT shares some bacterial species
with the lower FRT, which may act as a reservoir for both healthy commensal or pathogenic
populations [11,50]. Additional possible routes of transmission and microbial seeding of the
uterine cavity include hematogenous spread of gut and oral microbiota; oral and perianal
mucosa of an individual and their sexual partners; and microbiota in semen [35,52–56].

Although the vaginal microbiome is dominated by Lactobacillus species in the majority
of women, it is unclear if this characteristic is shared in healthy or disease states of the upper
FRT including the endocervical canal and uterine cavity. While most studies of transcervi-
cally obtained intrauterine samples found a dominance of Lactobacillus [38–42,44,45], the
presence and relative abundance of Lactobacillus in uterine samples was more variable when
obtained from sterilely opened hysterectomy specimens [10,11,46–50]. Several studies that
compared lower and upper FRT microbiomes from the same individual and endometrial
samples which were not collected transcervically have suggested decreasing abundance
of Lactobacillus from the lower to upper FRT microbiomes. These studies found greater
diversity in the uterine cavity and greater abundance of species other than Lactobacillus
both in states of health and malignancy [11,44,46,48]. Despite some compositional overlap
between lower and upper FRT, functional analyses of the upper FRT microbiome have not
yet been reported, and it is unknown whether the same bacterial species may have distinct
interactions with the mucosa of the endometrium compared to the vagina or cervix.

The immunological environment of the endometrium and its ability to respond to vari-
ous pathogens and to modulate immune responses has been demonstrated in the context of
embryo implantation, infertility treatments, and reproductive health outcomes [57,58]. The
importance of host immune responses within the endometrium has long been recognized
for immune tolerance to fetal antigens and to allow trophoblast invasion and vascular
remodeling during implantation. In addition, there is an emerging notion that host immune
responses in the endometrium may be further modulated by the existence of an upper FRT
and uterine microbiome [57,58]. Future studies investigating the functional relationship
between the microbiome, mucosal inflammation, and host immune responses within the
upper FRT and uterine cavity in the context of pregnancy and gynecologic cancers may
inform each other and ultimately lead to personalized interventions.
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Table 1. Summary of studies analyzing the upper FRT microbiome, including uterine cavity and endometrium, ovaries, fallopian tubes, and peritoneal cavity.

Year and
First Author Study Subjects Study Region Microbial Analysis Sampling Method Dominant Uterine

Bacterial Organisms Main Findings

2015
Mitchell [10]

58 women, mean age 43
years, undergoing surgery
for benign uterine disease

United States
qPCR for 12
species-specific 16S
rRNA genes

Sterile collection of uterine
and endocervical swabs at
time of surgery, surgeries
completed without
intracavitary uterine
manipulator

Species:
-Lactobacillus iners (45%)
-Lactobacillus crispatus (33%)
-Prevotella spp. (33%)

The upper FRT is not sterile.
Upper FRT microbiome is
lower in biomass than is the
lower FRT.

2016
Fang [41]

30 reproductive age women
with regular menses with or
without endometrial polyps

China 16S rRNA Seq (V4)

Transcervical endometrial
swabs and tissue sampling
using cervicovaginal prep
and vaginal sleeve

Genera:
-Lactobacillus (26%)
-Enterobacter (16%)
-Pseudomonas (13%)

The uterine cavity is not
sterile.
Differences in population
may associate with the
presence of endometrial
polyps.

2016
Franasiak [38] 33 reproductive age women United States 16S rRNA Seq (V2-3) Transcervical IVF

catheter-tip sampling

Genera:
-Flavobacterium
-Lactobacillus

Flavobacterium and
Lactobacillus dominate the
uterine cavity microbiome at
time of embryo transfer.

2016
Khan [42]

32 reproductive age women
with and without
endometriosis

Japan Targeted 16S rRNA Seq
for 58 species (V3)

Transcervical endometrial
swabs

Family:
-Lactobacillacae
-Streptococcaceae
-Staphylococaceae
-Enterobacteria-ceae
-Moraxellaceae

The uterine cavity is not
sterile.
Populations may vary
between patients with and
without endometriosis.

2016
Moreno [40]

70 reproductive age women
(3 independent pilot cohorts:
n = 13 and n = 22 fertile and
n = 35 infertile women)

Spain 16S rRNA Seq (V3-V5)

Transcervical endometrial
fluid sampling (aspiration of
cervical mucus prior to
endometrial sampling to
reduce contamination)

Genera:
-Lactobacillus (72%)
-Gardnerella (13%)
-Bifidobacterium (4%)
-Streptococcus (3%)
-Prevotella (0.9%)

The uterine cavity is not
sterile.
Endometrial and vaginal
microbiota differ
compositionally in some
women.
Non-lactobacillus dominant
endometrial microbiota may
be associated with negative
reproductive outcomes in
IVF patients.
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Table 1. Cont.

Year and
First Author Study Subjects Study Region Microbial Analysis Sampling Method Dominant Uterine

Bacterial Organisms Main Findings

2016
Verstraelen [43] 19 women of reproductive age Belgium 16S rRNA Seq (V1-2)

Transcervical sampling with
Tao brush with
cervicovaginal sheath

Phyla:
-Bacteroidetes
-Proteobacteria
-Firmicutes

The uterine cavity is
not sterile.

2016
Walther-António
[50]

31 women undergoing
hysterectomy for benign or
malignant uterine disease

United States 16S rRNA Seq (V3-5)
Sterile collection of uterine
swabs and tissue at time of
surgery

Genera:
-Shigella
-Barnesiella
-Staphylococcus
-Blautia
-Parabacteroides
-Bacteroides
-Faecalibacterium

The uterine cavity is not
sterile.
Specific bacteria present in
the upper FRT may be
associated with gynecologic
malignancy.

2017
Chen [11]

95 reproductive age women
undergoing hysterectomy
for benign uterine disease
not known to involve
infection

China 16S rRNA Seq (V4-5)

Sterile collection of swabs
from uterine cavity at time
of surgery (additional
vaginal and cervical swabs
obtained prior to surgery)

Genera:
-Lactobacillus (31%)
-Others (11%)
-Acinetobacter (9%)
-Pseudomonas (9%)

The uterine cavity and
upper FRT are not sterile.
There is a continuum of
microbiota from the lower to
upper FRT with decreasing
biomass, decreasing
Lactobacillus abundance, and
increasing diversity towards
upper FRT.

2017
Miles [48]

10 women undergoing
hysterectomy and bilateral
salpingo-ophorectomy for
benign (n = 8) or malignant
(n = 2) conditions

United States 16S rRNA Seq (V1-3)
Sterile collection of tissue
and swabs from uterine
cavity at time of surgery

Genera:
-Lactobacillus
-Other
-Corynebacterium
-Staphylococcus
-Blautia

The uterine cavity and
upper FRT are not sterile.

2017
Tao [39]

70 women undergoing IVF
embryo transfers United States 16S rRNA Seq (V4) Transcervical IVF

catheter-tip sampling

Genera:
-Lactobacillus
-Corynebacterium
-Bifidobacterium
-Staphylococcus
-Streptococcus

IVF catheter-tip sampling
provides data on the low
biomass uterine microbiome.
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Table 1. Cont.

Year and
First Author Study Subjects Study Region Microbial Analysis Sampling Method Dominant Uterine

Bacterial Organisms Main Findings

2018
Liu [59]

25 women with recurrent
pregnancy loss treated at
IVF clinic

China 16S rRNA Seq (V4)
Transcervical sheathed
catheter endometrial fluid
and tissue sampling

Genera:
-Lactobacillus
-Gardnerella
-Atopobium
-Bifidobacterium

The uterine cavity is not
sterile.
Endometrial fluid sampling
may not fully reflect
microbiome composition in
endometrial tissue.

2018
Wee [45]

31 women undergoing
hysteroscopy for benign
indications, with and
without history of infertility

Australia 16S rRNA Seq (V1-V3) Transcervical endometrial
tissue biopsy (curette)

Genera:
-Lactobacillus
-Bifidobacterium
-Corynebacterium
-Gardnerella
-Propionibacterium
-Propionimicrobium

The uterine cavity is not
sterile. Bacterial abundances
differ between the upper
and lower FRT, and
composition may differ by
fertility status.

2019
Walsh [49]

148 women undergoing
hysterectomy for benign
disease, endometrial
hyperplasia, or endometrial
cancer

United States 16S rRNA Seq (V3-5)
Sterile collection of uterine
swabs and tissue at time of
surgery

Phyla:
-Firmicutes
-Bacteroidetes
-Actinobacteria

The uterine cavity is not
sterile.
The FRT microbiome is
significantly different
between patients with and
without endometrial cancer.
The lower and upper FRT
microbiome are correlated.

2019
Winters [46]

25 pre-menopausal women
undergoing hysterectomy
for benign uterine disease

Italy

16S rRNA Seq (V4); and
universal and
Lactobacillus-targeted 16S
rRNA qPCR

Sterile collection of uterine
swabs at time of surgery.
Additional collection of
vaginal, cervical, rectal, and
oral swabs

Genera:
-Acinetobacter
-Pseudomonas
-Cloacibacterium
-Comamonadaceae

The uterine cavity is not
sterile. The uterine
microbiome most closely
resembles the cervical
microbiome but differs from
the vaginal microbiome and
is not dominated by
Lactobacillus.
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Table 1. Cont.

Year and
First Author Study Subjects Study Region Microbial Analysis Sampling Method Dominant Uterine

Bacterial Organisms Main Findings

2019
Zhou
[60]

25 women with ovarian
cancer and 25 women
undergoing
salpingo-oophorectomy for
benign uterine disease

China 16S rRNA Seq (V3-4)

Sterile collection of ovarian
cancer and normal distal
fallopian tube tissue at the
time of surgery

Not assessed

The upper FRT is not sterile.
Proteobacteria and
Firmicutes are the most
frequent taxa in ovarian
cancer and normal fallopian
tubes, with differences at the
phylum/genus level.

2019
Leoni
[51]

19 women undergoing
elective caesarean section for
normal pregnancies at
full term.

Italy 16S rRNA Seq (V5-6)

Sterile collection of
endometrial tissue biopsies
during elective caesarean
section

Genera:
-Propionibacterium
-Escherichia
-Staphylococcus
-Acinetobacter
-Streptococcus

The uterine cavity of term
pregnancies is not sterile.
Lactobacillus was not
abundant in the majority of
subjects.

2020
Riganelli [44]

34 reproductive age women
undergoing infertility
treatment

Italy 16S rRNA Seq (V3-4)
Transcervical endometrial
tissue biopsy (pipelle) using
a vaginal and cervical sheath

Phyla:
-Firmicutes
-Proteobacteria
-Bacteroidetes
-Actinobacteria

The uterine cavity is not
sterile.
The uterine microbiome is
compositionally different
from the vaginal
microbiome.

2021
Lu [47]

50 women undergoing
hysterectomy for benign
disease or endometrial
cancer

China 16S rRNA Seq (V3-4)

Sterile collection of uterine
swabs and tissue at time of
surgery, noted sterile
instruments used

Genera:
-Rhodococcus
-Phyllobacterium
-Sphingomonas
-Bacteroides
-Bifidobacterium

The uterine cavity is not
sterile.
The uterine microbiome
differed in diversity and
composition between
endometrial cancer and
benign disease.

16S rRNA Seq, sequencing of bacterial 16S ribosomal rRNA genes, with primer sets used for variable gene regions indicated in parentheses; qPCR, quantitative PCR; IVF, in vitro fertilization.
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3.1. Endometrial Cancer and the FRT Microbiome

Endometrial adenocarcinoma is the most common cancer of the female reproductive
tract in the Western world, with an estimated 60,000 new cases and 12,000 deaths in
the United States in 2021 [18]. As the US population undergoes demographic changes
leading to increased life expectancy and higher prevalence of key risk factors such as
obesity, the incidence of endometrial cancer is rising and a disproportionate increase in
aggressive non-endometrioid subtypes is projected to worsen outcomes. Endometrial
cancer is increasingly appreciated to represent a heterogeneous group of cancer subtypes
that share the endometrium as an organ of origin but are driven by diverse molecular
mechanisms. The Cancer Genome Atlas (TCGA) established four molecular subtypes of
endometrial cancer with prognostic relevance [61,62]. The presence and extent of anti-
tumor immune responses have emerged as strong prognostic and predictive markers in
solid malignancies, including endometrial cancer [63,64]. However, little is known about
how this relates to tumor immunology, the upper FRT mucosal microenvironment, and
resident microbiome. The majority of studies on the upper FRT microbiome have been
conducted in healthy women or those with benign uterine disease such as endometriosis or
uterine fibroids, and only three published studies to date reported on the FRT microbiome
of women with endometrial cancer compared to healthy controls [47,49,50].

In 2016, Walther-António et al. reported a first cross-sectional study from a US tertiary
care center including 31 women undergoing hysterectomy for endometrial cancer (n = 17),
endometrial hyperplasia (n = 4), or benign uterine disease (n = 10). The authors found a
higher degree of FRT microbial diversity in women with endometrial cancer compared to
that of healthy controls, and enrichment of particular taxa such as Firmicutes, Spirochaetes,
Actinobacteria, Bacteroidetes, and Proteobacteria [50]. A subsequent larger study by the
same group comprised 148 women, including 66 with endometrial cancer, 7 with atypical
endometrial hyperplasia, and 75 with benign uterine disease, and represents the largest
study of the FRT microbiome in endometrial cancer to date. The authors confirmed
their earlier findings of increased diversity of the upper FRT microbiome in patients with
endometrial cancer compared to that of healthy controls [49]. Interestingly, the authors
found that changes in lower FRT rather than upper FRT microbiome profiles demonstrated
the strongest association with endometrial cancer. In addition, FRT microbiome changes
were related to other risk factors of endometrial cancer, such as age, menopausal status,
and obesity [49].

A recent study in a Chinese cohort of 50 women undergoing surgery for benign uterine
disease (n = 25) or endometrial cancer (n = 25) reported some conflicting findings [47].
Lu et al. detected similar phyla in greater abundance in the upper FRT of endometrial
cancer patients compared to those with benign uterine disease, including Proteobacteria,
Actinobacteria, Firmicutes, and Bacteroidetes, with Micrococcus being most significantly
increased in endometrial cancer at the genus level. However, in contrast to the two
earlier studies by Walther-António and colleagues, they reported a lower diversity of FRT
microbiomes in association with endometrial cancer. This study also reported increased
gene expression of three inflammatory cytokines, IL-6, IL-8, and IL-17, in endometrial
tissues from cancer patients compared to patients with benign disease, and a positive
correlation between cytokine expression and the relative abundance of Micrococcus [47].
Observations in a single endometrial cancer cell line in vitro suggest that co-culture with
Atopobium spp. and Porphyromonas spp. can induce expression of proinflammatory cytokines
in HEC-1A endometrial cancer cells [65], warranting further investigation. Findings that
microbial populations in the vagina and lower FRT are related to factors long known to be
associated with endometrial cancer risk such as menopausal status [66–68], obesity [69],
pelvic inflammatory disease [70], and race [71–75] further support a correlative, if not yet
causative, relationship between changes in the FRT microbiome and the development of
endometrial cancer.

In summary, the existing literature suggests an association between the FRT micro-
biome and endometrial cancer, but it does not yet allow conclusions about whether this
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may represent cause or consequence. Future studies providing causative and mechanistic
insight into the functional relationship between FRT microbiome and endometrial cancer
development and progression will be critical in understanding how we may leverage this
knowledge for personalized medicine including FRT microbiome-targeted interventions.

3.2. Ovarian Cancer and the FRT Microbiome

Among all gynecologic cancers, the least data exists on the relationship between
ovarian cancer and the FRT microbiome. Ovarian cancer is the least common but most
lethal of all gynecologic cancers with 21,000 newly diagnosed cases and 14,000 deaths
each year in the United States and >150,000 deaths worldwide each year [76]. The lack of
effective screening tests and non-specific symptoms contribute to diagnosis at later stages
and poor outcome [77]. The peritoneal cavity, where ovarian cancer arises and spreads, has
long been considered a sterile environment under physiologic conditions, but this view
has recently been challenged. There is emerging evidence of microbial colonization of the
peritoneum and correlation between the peritoneal and upper and lower FRT microbiome
within an individual [11]. This suggests that FRT health and dysbiosis may influence
inflammation and immune response within the peritoneal cavity and consequently may
affect development and progression of cancers arising and spreading in the peritoneal
cavity, one of the most common being ovarian cancer.

A recent ovarian cancer case-control study of 580 European women assessed the
cervicovaginal microbiome in cytological ThinPrep samples by 16S rRNA sequencing [78].
This study cohort included 176 ovarian cancer patients, 109 women without cancer but
with known BRCA1 mutations, and 295 healthy controls from the United Kingdom, Italy,
Germany, Norway, and the Czech Republic. The authors found that the presence of ovarian
cancer and known risk factors including BRCA1 mutation and older age were significantly
associated with non-Lactobacillus dominant cervicovaginal microbiomes [78]. Limitations of
this study include the lack of microbiome analysis of the upper FRT, where ovarian cancer
originates, and the use of ThinPrep samples commonly obtained in a methanol-based
fixative, which may have altered the results of microbiome analysis.

Zhou et al. [60] studied the intratumoral ovarian cancer microbiome by 16S rRNA
sequencing in 25 fresh tumor samples of high grade serous ovarian cancer compared
to 25 normal distal fallopian tubes from healthy women. The authors found a similar
microbial abundance but slightly decreased diversity in ovarian cancer versus normal
tissue. Proteobacteria and Firmicutes were the most frequent taxa identified in both tumor
and normal samples, with differences in the relative proportions of certain phyla. At
the genus level, this study observed an enrichment of Acinetobacter in ovarian cancer
and enrichment of Lactococcus in normal fallopian tube tissues [60]. This study further
supports the presence of an upper FRT microbiome in sterilely collected samples from
ovaries and fallopian tubes. However, the descriptive nature of the study does not allow
conclusions about whether changes in bacterial abundance and composition are a cause
or consequence of ovarian cancer development. One study of routine formalin-fixed
and paraffin-embedded archival pathological tissues found distinct viral and bacterial
profiles in ovarian cancer compared to those of matched and non-matched normal controls;
however, the use of non-sterilely collected paraffin-embedded samples holds the potential
for sample contamination, and the use of a microarray platform primarily focused on viral
detection and including only probes for 320 bacteria provides only limited insight into
tumor microbial profiles [79]. A small study found decreased microbial diversity and a
unique microbial profile in the peritoneal fluid of 10 ovarian cancer patients compared to
20 patients with benign ovarian lesions [80]. A set of 18 microbial organizational taxonomic
units was enriched in women with ovarian cancer, including bacteria of gut microbial origin
and with predicted functionality centered around inflammatory mediators. Interestingly,
the addition of peritoneal microbial features increased the accuracy of common serum
tumor markers such as CA-125 for the diagnosis of ovarian cancer in this limited cohort of
30 patients [80].
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Despite the current lack of functional microbiome analysis and established causative
relationships, the observed associations between FRT microbial dysbiosis and ovarian
cancer risk warrant further research exploring FRT and peritoneal microbiome as potential
adjuncts to ovarian cancer prevention, diagnosis, and treatment.

4. Interventions Targeting the FRT Microbiome and Implications for
Personalized Medicine

The FRT microbiome has been demonstrated to be modifiable through lifestyle factors, in-
cluding diet, smoking, exercise, hygiene, and sexual practices, and hormone status [81–83]. The
loss of estrogen in the vaginal epithelium either from natural menopause or the results of
hormonal or cytotoxic cancer therapies induces a shift towards non-Lactobacillus dominant
lower FRT microbiomes with increased abundance of anaerobes such as Gardnerella and
Atopobium. In addition, there is evidence that other body sites including oral and perianal
mucosa [52–54] and sexual partners [52,84] may act as a reservoir for the FRT microbiome,
which needs to be taken into consideration when designing interventions. To date, inter-
ventions manipulating the FRT microbiome have not yet been explored in the setting of
gynecologic cancers, and therapies targeting the lower FRT microbiome have been focused
on treatment of vaginal microbial dysbiosis/bacterial vaginosis. Nevertheless, experiences
from treating bacterial vaginosis may provide a proof of principle for designing future
interventions modulating the FRT microbiome in the context of prevention or treatment of
gynecologic cancers.

4.1. Treatment of Vaginal Microbial Dysbiosis or Bacterial Vaginosis

Treatment of bacterial vaginosis (BV) is mostly limited to antibiotic options, including
metronidazole or clindamycin, which lead to only a transient resolution, with approx-
imately 50% of women having a recurrence within one year post-treatment [85]. The
promotion of growth of Lactobacillus species in the vaginal tract may be multifaceted and
include the removal of BV associated bacteria, but also the degradation of the protective
biofilm formation by BV-associated bacteria such as Gardnerella vaginalis, or the presence
and promotion of sufficient Lactobacillus bacteria to generate lactate or hydrogen perox-
ide that will decrease the mucosal pH. Other treatment options have been explored in
clinical practice in addition to antibiotic treatment, such as using boric acid [86,87] or
probiotics/prebiotics that promote a more favorable vaginal microbiome composition [88].
Boric acid has been used in a few clinical trials to treat recurrent BV and was found to be
well tolerated as an intravaginal application [86,89]. The mechanism by which it alleviates
symptomatic BV is thought to be through the inhibition of biofilm formation, which may
decrease host inflammation in the mucosal site, promoting epithelial repair. The presence
of biofilms may also decrease the ability of host antibodies to reach BV-associated bacteria,
and therefore decreasing this physical barrier may promote antibody activity.

Numerous different probiotics are available for use to the public that are advertised as
a treatment for BV, and clinical studies have shown some success using oral or vaginal pro-
biotics to treat recurrent BV [88,90,91]. The addition of probiotics may promote Lactobacillus
stability, increasing the presence of immunomodulatory products such as hydrogen perox-
ide and lactic acid, decreasing inflammation. Recently, there have been studies evaluating
live biotherapeutic products [92,93] or vaginal microbiome transplants [94] as therapeutic
options for recurrent BV. The first vaginal microbiome-based live biotherapeutic product,
named Lactin-V, uses a strain of Lactobacillus crispatus isolated from the vagina of a healthy
woman [93]. In a randomized, double-blind, placebo-controlled phase 2b trial, recurrent
BV was found in 30% of women in the Lactin-V treated group and 45% in the placebo
group after 12 weeks, and there were no adverse effects recorded to be greater in the treated
group than the placebo group. The first vaginal microbiome transplant was performed
on 5 patients, with 4 observing long term remission (21 months) after treatment [94]. No
adverse effects were observed in this study. However, three patients required repeated
microbiota transplant procedures to work effectively, and one had to use a different donor
to achieve a stable Lactobacillus vaginal microbiome after a second treatment. This indicates
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vaginal microbiome transplants are a complex treatment option that would be personalized
on a case-by-case basis and not necessarily appropriate for a global treatment option.

Lessons from treating vaginal microbial dysbiosis suggest that maintenance of a
healthy FRT microbiome is complex, and future interventions may require combinatorial
approaches targeting the microbiota along with the mucosal microenvironment including
immunomodulatory microbial metabolites and host immune response to achieve a lasting
therapeutic modulation of the FRT microbiome.

4.2. FRT Microbiome and Cancer Therapy

There are no published studies yet demonstrating an impact of the FRT microbiome
on response to treatment of gynecologic cancers. Changes in the vaginal and cervical
microbiome were observed following pelvic radiation therapy, a commonly used primary
or adjuvant treatment for cervical and endometrial cancer [95,96]. However, possible
associations between the FRT microbiome and treatment response were not assessed in
these small pilot studies.

Associations have been recently reported between antibiotic treatment and the out-
come of women with gynecologic cancers undergoing chemotherapy or immunotherapy.
In a retrospective study of 424 women with advanced stage epithelial ovarian cancer
who underwent surgery and platinum-based chemotherapy, receiving antibiotic treatment
against gram-positive organisms for at least 48 h during chemotherapy was associated
with decreased progression-free and overall survival [97]. Similarly, in a retrospective
study of 101 recurrent endometrial, ovarian, and cervical cancer patients, pre-treatment
with antibiotics within the 30 days prior to treatment, but not during treatment, with
immune checkpoint inhibitors was associated with decreased response rate and shorter
progression-free and overall survival [98]. Further studies are needed to validate the ad-
verse effect of antibiotic treatment on response to cancer chemotherapy or immunotherapy,
its dependence on timing relative to cancer therapy, and whether its effect is mediated
through changes in the gut or FRT microbiome or both.

Increasing evidence has implicated the gut microbiome in modulating the response to
cancer immunotherapies [4,5], and early phase clinical trials have demonstrated successful
gut microbiome-targeted interventions to improve treatment response. Therapeutic modu-
lation of the gut microbiome such as bacterial supplementation with Akkermansia [99] or
fecal microbiota transplants derived from donors with prior favorable response to cancer
immunotherapy [100] have been shown to overcome resistance to checkpoint inhibitors
such as anti-PD-1 therapy in previous non-responders. These studies also found unique
proteomic and metabolomic signatures in the tumor microenvironment, suggesting the
effect is therapeutically transferrable [100].

Together, these prior reports demonstrating the importance of the gut microbiome for
modulating responses to cancer treatment including chemotherapy and immunotherapy
provide a rationale for exploring similar effects of the FRT microbiome in future studies.

5. Perspective and Future Directions

We deliberately focused our review on microbiome data from human cohorts, and
a discussion of FRT microbiome of in vivo or in vitro models of gynecologic cancers was
beyond the scope of this article. In conclusion, we have discussed the evidence supporting
the existence of an upper FRT and uterine microbiome and emerging evidence suggesting
its interplay with local inflammation and host immune responses. Despite the current lack
of mechanistic insight, observed associations between changes in the FRT microbiome and
the development, progression, and outcome of gynecologic cancers warrant further studies.
Evidence demonstrating the importance of the gut microbiome for response to cancer
treatments and early success of gut microbiome-targeted interventions lay the groundwork
to explore FRT microbiome-targeted interventions. The FRT microbiome has been demon-
strated to be modifiable through nutritional interventions, probiotic and live biotherapeutic
products, and vaginal microbiota transplants. If causative relationships to carcinogenesis
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can be established, microbiome-targeted interventions might aid in primary and secondary
preventions of gynecologic cancers or be able to modulate and enhance responses to
conventional cancer therapies. Future studies should include multi-omics approaches
including metagenomics, metaproteomics, and metabolomics for functional analysis of the
FRT microbiome to gain mechanistic insight and identify targets for personalized medicine.
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