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Abstract
Radiotherapy (RT) is one of the primary treatment modalities in managing cancer 
patients. Recently, combined RT and immunotherapy (IT) (i.e., radio-IT [RIT]) have 
been aggressively investigated in managing cancer patients. However, several issues in 
conducting RIT are challenging, such as incorporating advanced irradiation techniques, 
predictive/prognostic biomarkers, and other treatment modalities. Several clinical efforts 
and novel biomarkers have been introduced and developed to solve these challenges. For 
example, stereotactic radiosurgery/stereotactic radiotherapy, stereotactic body radiotherapy/
stereotactic ablative body radiotherapy, and FLASH-RT have been applied for delivering 
precise irradiation to lung and liver tumors in conjunction with IT. Besides, several novel 
IT agents and incorporations of other therapies, such as targeted and thermal therapies, 
have been further investigated. The present study reviewed the emerging challenges 
of RIT in modern oncology. We also evaluated clinical practice, bench research, and 
multimodality treatments. In addition to several clinically applicable biomarkers, we 
emphasize the roles of advanced irradiation techniques and epigenetic modification as 
predictive/prognostic biomarkers and potential therapeutic targets. For example, 6(m) 
A-based epigenetic agents demonstrate the potential to enhance the treatment effects of 
RIT. However, further prospective randomized trials should be conducted to confirm their 
roles.

Keywords: Epigenetic modification, Immunotherapy, Outcome prediction, Radiotherapy, 
Toxicity

treatment modality in synergizing the treatment effect of 
modern immunotherapy (IT) [6].

Immunotherapy in oncology
IT has been used to manage malignant melanoma patients 

for decades [7]. However, interferon-based IT is limited in 
clinical oncology mainly due to its constraints of treatment 
toxicities. Recently, after the introduction of PD-1/
PD-L1 and CTLA-4 immune checkpoint blockages [8], 
IT has gained a considerable advance in managing cancer 
patients [9]. As mentioned above, combined RT and 
IT demonstrate a synergistic anticancer effect. Initially, 

Introduction
Radiotherapy in oncology

Radiotherapy (RT) is effective in managing cancer 
patients [1,2]. In radiobiology, RT attacks cells, mainly 

damaging the DNA [3]. Cancer cells generally demonstrate 
an impaired ability to repair their postirradiation DNA 
damage compared with normal cells [4]. As a result, 
irradiated cancer cells present more significant apoptosis 
and postmitotic death than normal cells. Post-irradiation 
damaged or dead cancer cells frequently released broken 
double-strand DNA (dsDNA) fragments into the peri-tumor 
microenvironment or peripheral blood circulation. 
Biologically, these released dsDNA fragments enrich 
cancer-specific mutations. If these mutations are significant 
enough in quality and amount, the anticancer host 
immune reaction may be apparent via the presentation of 
antigen-presenting cells (APC). The postirradiation abscopal 
effect partly supports this hypothesis in several clinical 
observations [5]. Hence, RT is recognized as a crucial 
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this combination was mainly applied to cancer patients 
with recurrent and metastatic diseases. Recently, IT has 
extended its clinical application to several new indications. 
For example, IT is tested in the context of a neoadjuvant 
setting in patients with advanced [10] or resectable [11] 
head-and-neck cancers, intending to replace the role of 
systemic chemotherapy.

Combined radiotherapy and immunotherapy for 
managing cancer patients

Combined RT and IT (i.e., radio-IT [RIT]) is a hot trend 
in modern oncology [6]. As mentioned above, one promising 
reason for applying RIT is to activate the potential abscopal 
effect of RT to enhance the treatment effects of IT [12]. 
Clinically, this combination is useful in managing several 
types of cancer patients, such as head and neck [13], 
lung [12], liver [14], glioblastoma [15,16], melanoma [17,18], 
lymphoma [19], breast [20,21], uterine cervix [22,23], 
ovarian [24], urinary bladder [25,26], prostate [27], renal cell 
carcinoma [28], esophagus [29], and pancreas [30].

Many metastatic cancer patients are also benefits from RIT, 
including brain [31] and liver metastases [32]. However, for 
lung cancer patients, PD-1/PD-L1-based IT with or without RT 
may increase the risk of treatment-related pneumonitis [33]. 
Besides, current RIT still has several challenges that are 
required to be further investigated, such as the introduction of 
advanced irradiation techniques, investigation of predictive/
prognostic biomarkers, and incorporation of other treatment 
modalities [34].

Epigenetics in oncology
Epigenetic modifications regulate gene function 

without altering its DNA sequence [35]. Several types 
of epigenetic modifications have been identified, such as 
DNA methylation [36], histone modification [37], and 
noncoding RNA regulations (e.g., micro-RNA [miRNA 
or miR] [38], long-noncoding RNA (lncRNA), and 
circular RNA [circRNA]) [39]. Biologically, epigenetic 
modification is a crucial investigating field in 
oncology [40], involving progression [41] and metastatic 
processes [42], carcinogenesis [43,44], angiogenesis [45], 
migration/invasion [46], and immune suppression and 
modulation [47,48]. Clinically, application in serving as 
diagnostic/predictive/prognostic biomarkers is a promising 
research topic in cancer epigenetics. For example, the 
lncRNA-miRNA network is recognized as potential cancer 
biomarkers [49,50]. More notably, epigenetic-based agents 
have been actively investigated as one potential anti-cancer 
treatment modality [51], particularly for managing 
treatment-resistant/recurrent patients [52].

One good point for investigating epigenetic-based 
biomarkers in oncology is that advanced epigenetic-exploring 
techniques are actively developing for pan-cancer noninvasive 
screening [53], liquid biopsy [54], and high-performance 
detection [55]. Hence, the present study aimed to review 
clinical challenges and available biomarkers of combined 
RT and IT in managing cancers. Emerging challenges of 
epigenetic application in potential biomarkers and therapeutic 
targets for RIT are also reviewed.

Clinical challenges and emerging 
issues for treatment advance, outcome 
prediction, and toxicities prevention of 
radio‑immunotherapy
Clinical challenges in treatment advance, outcome 
prediction, and toxicities prevention of radio-
immunotherapy

Several factors affect RIT’s treatment response and patient 
prognosis in managing cancer patients, including patient, 
cancer, and treatment factors [Table 1]. For example, for rectal 
cancer patients with a bulky unresectable liver metastasis 
that showed enriched PD-L1 expression, stereotactic body 
radiotherapy (SBRT) may be a better irradiation technique 
than conventional RT in conjunction with IT. However, several 
issues are still challenging in clinical practice, especially 
when the incorporation of other treatment modalities is under 
consideration, such as chemotherapy, targeted therapy, and 
thermal ablation.

Clinical challenges in treatment advance of 
radio‑immunotherapy, including advanced radiotherapy 
techniques and novel immunotherapy agent combinations

IT and RT showed a zigzag association in their synergic 
effects on treatment benefits. That is, RT demonstrates the 
role of immune sensitizer for IT [94], and IT also functions 
as a radiation sensitizer for local RT [95,96]. As a result, few 
studies suggested that IT followed by RT may be feasible 
in some specific clinical conditions. However, treatment 
sequencing about RIT is generally recommended as RT 
followed by IT. The biological reason is that RT enhances 
cancer-specific dsDNA exposure to APC and then synergizes 
the treatment effects of IT [97]. Clinical data mainly supported 
this type of treatment sequence.

Many studies have shown that patients who received RT 
combined with IT significantly benefit in overall survival 
when compared with those who received IT or RT alone [98]. 
Generally, a higher dose per fraction of RT may enhance 
cancer cell killing, improve clinical outcomes [99], and 
trigger the immune effect. For example, the combination of 
hypofractionated RT (>5 Gy per fraction) with IT has been 
reported to prolong patient survival [100]. Besides, a phase 
II clinical trial indicated that pembrolizumab given within 
7 days after SBRT, which consisted of 3 fractions of 8 Gy, 
improves progression-free and overall survival in patients with 
metastatic NSCLC [101]. However, a prior report indicated 
that irradiation doses exceeding 12–18 Gy may trigger the 
exonuclease Trex 1, which diminishes radiation-induced 
immunogenicity by breaking down cytosolic DNA [102].

The sequence of RT and IT has also been demonstrated 
to influence the effectiveness of treatment [57]. In a phase 
III clinical trial (PACIFIC trial), stage III non-small cell lung 
cancer patients who received concurrent chemoradiotherapy 
were randomized into two groups: one receiving durvalumab 
and the other receiving placebo. Their results showed 
that durvalumab treatment led to substantially extended 
progression-free survival compared to the placebo group [103]. 
Recently, they reported cumulative 4-and 5-year clinical 
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outcome data, indicating that adding IT after concurrent 
chemoradiotherapy increases both progression-free and overall 
survival [103-106].

In another study involving metastatic non-small cell 
lung cancer, a Phase II trial (PEMBRO-RT; NCT02492568) 
investigated the efficacy of immunotherapy (pembrolizumab) 
following RT. The initial dose of pembrolizumab was 
administered after the final dose of RT (24 Gy in 3 
fractions). They observed positive outcomes in the PD-L1–
negative subgroup, showing notable improvements in both 
progression-free and overall survival [101]. Conversely, 
another trial (NCT02444741) investigated the concurrent 
treatment of IT (pembrolizumab) and RT (either 50 Gy in 4 
fractions or 45 Gy in 15 fractions). However, no significant 
differences were found in terms of objective response rates 
or progression-free survival [107]. While a pooled analysis 
of these two randomized trials showed adding IT to RT 
significantly increased responses and outcomes in patients 
with metastatic non-small cell lung cancer [57], clinical 
outcomes may be largely influenced by age, tumor stage, 
cancer type, and the specific IT drug used.

Besides, preclinical studies showed the optimal sequence 
may vary depending on the specific immunomodulatory agent 
used. For instance, RT may demonstrate the highest synergy 
with anti-PD-L1 when administered simultaneously [108]. 
In contrast, administering a transforming growth 
factor-beta (TGF-β) inhibitor before RT might enhance the 
survival rate in vivo [109]. In a preclinical study comparing 
the sequencing of anti-CTLA-4 and anti-OX40 in relation 
to RT, the most favorable outcomes were observed when 
anti-CTLA-4 was administered before RT. However, the 
highest percentage of survival was noted in the group 
receiving anti-OX40 1 day after RT [110]. Currently, the 
sequencing of IT and RT remains a subject of debate, with 
uncertainty regarding its effects across different cancer types. 
More clinical data are needed.

When combined with IT, lymphocyte-sparing irradiation 
should be critically considered [111], particularly in vulnerable 
elderly cancer patients. Lymphocyte-sparing RT limits 
irradiation dose to lymphocyte-enriched tissue/organs, such 
as large blood vessels, noninvolved lymph nodes, spleen, 
and bone marrow. Clinically, a high accumulated dose of 
RT to the above tissue/organs induces transient or persistent 

Table 1: Factors affect the treatment response and patient prognosis of combined radiotherapy and immunotherapy in cancers
Factors Description Reference
Patient factor

Performance status (e.g., ECOG) ECOG performance score (i.e., 2 vs. 0–1) is an independent prognostic factor for OS and PFS [56]
Cancer factor

Lung cancer RIT is effective in managing SCLC and NSCLC patients, even in those with brain or liver metastases [9,12,32,57-68]
Esophagus cancer RIT is synergized in managing esophagus cancer patients; further trials are required [29]
Breast cancer RIT is effective in managing triple-negative breast cancer, even for metastatic patients [20,21]
Head-and-neck cancers RIT is helpful and challenging in patients with primary, recurrent, and metastatic HNCs [69-73]
GYN cancers RIT is effective in managing patients with cervical and ovarian cancers [22-24]
GU cancers RIT is helpful in patients with prostate, urinary bladder, and renal cell carcinoma [25,27,28]

RT techniques
SABR/SBRT Lung SABR/SBRT shows better outcomes than conventional RT [74-77]
SRS/SRT Combined SRS/SRT and IT is helpful in lung cancer with liver or brain metastases, which improves 

neurological outcomes
[31,32,62]

Charged-particle irradiation Charged-particle irradiation may enhance the RIT treatment effect with limited toxicities [78]
FLASH-RT Combined FLASH-RT and IT in managing cancer patients are under investigation [79]
BNCT Combined BNCT and IT may be a benefit in tumor control in vivo [80]

Combined therapy**
Chemotherapy Several chemotherapy agents enhance RIT effects [81-84]
Targeted therapy Several targeted therapy enhances RIT effects, such as MEK inhibitors [81,82,85]
Thermal ablation Combined thermal ablation may further enhance the treatment effects of IT [86]
m(6) A epigenetic modifier Applying m (6) A epigenetic modifier, such as FTO* inhibitors, can reprogram RNA 

epitranscriptome and enhance the IT effect
[87,88]

Novel IT agents***
Nanoparticle-based IT Nanoparticle-based IT may enhance RIT treatment effects [89-91]
NKTR-214 IT Combined NKTR-214 immunotherapy and RT to stimulate systemic CD8(+) T-cell responses may 

cure multi-focal cancers [92]
[92]

Dendritic cell-based IT The role of DC-based IT in conjunction with RT and chemotherapy is still not well defined [93]. 
Further randomized trials are required

[93]

*FTO, an m(6) A demethylase, utilizes the FTO-mediated epigenetic regulation to evade immune surveillance, **Multimodality therapy is the keystone 
in managing cancer patients, particularly those with advanced diseases. Combined treatments may enhance tumor response with the cost of increasing 
toxicities, ***Several novel IT agents are potential for clinical use in conjunction with RT, such as tumor vaccine, cytokine-based therapy, and adoptive 
T-cell therapy [6]. ECOG: Eastern Cooperative Oncology Group, OS: Overall survival, PFS: Progression-free survival, RIT: Radio-immunotherapy, 
IT: Immunotherapy, SCLC: Small cell lung cancer, NSCLC: Non-small cell lung cancer, HNCs: Head-and-neck cancers, SABR: Stereotactic ablative body 
radiotherapy, SBRT: Stereotactic body radiotherapy, SRS: Stereotactic radiosurgery, SRT: Stereotactic (hypofractionated) radiotherapy, RT: Radiotherapy, 
BNCT: Boron neutron capture therapy, GU: Genitourinary cancer, GYN: Gynecology cancer
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lymphocytopenia, including depletion of CD8(+) T-cells, 
which may vastly reduce the treatment effect of IT. As a 
result, for medical-fit patients, it is wise to limit irradiation 
dose to lymphoid-enriched organs at risk (OARs) according 
to the principle of “as low as reasonably achievable [112],” 
particularly in patients treated with combined pelvic 
irradiation and IT [113,114]. In this regard, advanced RT 
techniques, such as intensity-modulated radiotherapy [115] and 
volumetric-modulated arc therapy [116], are clinically helpful.

In contrast, for patients with bulky tumors, applying 
advanced RT techniques to deliver high tumor dose with 
maximum tolerated dose to nonlymphoid-enriched adjacent 
OARs for achieving the ultimate tumor control may be 
considered [117,118]. Advanced RT techniques are useful 
in RIT, such as stereotactic radiosurgery (SRS)/stereotactic 
radiotherapy [31] and SBRT/stereotactic ablative body 
radiotherapy [74-77,119] [Table 1]. The main reason is that 
advanced irradiation techniques largely improved therapeutic 
gains – increasing tumor control and decreasing treatment 
toxicities simultaneously. Furthermore, combined SRS and IT 
have been observed to enhance tumor control and improve 
neurological outcomes in lung cancer patients with brain 
metastases [31].

Some modern RT techniques demonstrated better clinical 
outcomes than conventional RT in the context of the RIT 
setting [17], such as charged particle irradiation [78], proton 
therapy [120], and FLASH-RT [79,121]. However, these RT 
techniques should be further tested in randomized clinical 
trials to demarcate their actual effective sizes.

Several novel IT agents are potential for clinical use in 
conjunction with RT, such as tumor vaccine, cytokine-based 
therapy, adoptive T-cell therapy, and nanoparticle-based IT [6]. 
Concurrently investigating potential predictive biomarkers is 
the trend in managing cancer patients treated with RIT [122]. 
For example, combined NKTR-214 IT and RT to stimulate 
systemic CD8(+) T-cell responses are tested for curing 
multi-focal cancers [92]. In this regard, the amount and 
function quality of activated CD8(+) T-cells may play crucial 
roles in predicting treatment response [123].

On the bench side, several signaling pathways have 
been reported to be bridged in RT and IT, such as the 
IFN-JAK-STAT axis [124] and well-known cGAS/STING 
signaling [125]. In this regard, epigenetic modification has 
been observed to play a role in conjunction with immune 
checkpoint inhibitors in several cancers, such as colorectal 
cancer [126] and melanoma [127].

Challenges of outcome prediction of radio‑immunotherapy
Exploring clinically useful RIT biomarkers for outcome 

prediction is crucial and challenging in cancer patients 
[122,128]. Some outcome-predicting biomarkers have 
been reported, such as PD-L1 expression level, tumor 
mutation burden (TMB) [129-131], and imaging biomarkers 
[132,133] [Table 2]. Recently, combined biomarkers have been 
introduced clinically, such as the Integration of oncogene-based 
genomic profiling, tumor mutational burden, and PD-L1 
expression [152,154]. In addition to the above biomarkers, 

one potential type of outcome-predicting biomarkers is 
epigenetic-based regulating factors. For example, the m6A RNA 
methylation has been observed to associate with the immune 
microenvironment, TMB, and PD-L1 level, predicting response 
to anti-PD-L1 IT [134]. Furthermore, the miRNA signature also 
demonstrates a value in predicting response to IT [122].

Remarkably, developing imaging biomarkers is particularly 
attractive for radiation oncologists [155]. The main reason 
is that the visible intra-tumor metabolic-hot part is crucial 
for guiding precise high-dose irradiation. Clinically, 
some metabolic-function-based Imaging biomarkers are 
introduced, such as (18) F-FET [132], (18) F-FDG [133], 
and preclinical [(64) Cu] NOTA-CD8a [153] positron 
emission tomography (PET). Note that evidence from 
[(64) Cu] NOTA-CD8a PET is based on preclinical in vivo 
experiments [153], revealing that identifying novel appropriate 
isotopes of PET for clinical application is challenging in 
terms of precisely targeting, clinical availableness, and 
cost-effectiveness.

Challenge of toxicity prevention for radio‑immunotherapy
RT and IT have their treatment toxicities in managing 

cancer patients, respectively. Clinically, some treatment 
toxicities may be enhanced by applying RIT. For example, 
radiation-associated cardiovascular disease (RACVD) is a 
well-recognized late sequela in irradiated cancer survivors. 
In this regard, IT may also result in cardiovascular 
dysfunctions [156]. Hence, when IT is delivered in conjunction 
with RT, the risk of RACVD may be enhanced [157]. Besides, 
other RT-associated side effects may be enhanced with IT, 
such as lung fibrosis [158], particularly in patients treated with 
lung, breast, and esophagus RT. These toxicity enhancements 
may impair clinical outcomes and patients’ life quality.

As mentioned previously, some agents may help to prevent 
the occurrence of RACVD, such as statins (HMG-CoA 
reductase inhibitors) [159] and candesartan (an angiotensin 
II receptor antagonist) [160]. However, more clinical data are 
required to confirm whether these agents still benefit from 
preventing cardiovascular toxicities in the context of RIT.

Emerging challenge: Further multimodality 
combinations, including epigenetic agents, should be 
tested in randomized clinical trial settings

RIT gains clinical success in managing several types of cancer 
patients. However, post-RIT survived cancer cells may obtain 
acquired radioresistance and develop other strategies to evade 
immune surveillance [161]. To avoid such a condition, applying 
multimodality management, such as chemotherapy, targeted 
therapy [81,82], local intervention (e.g., thermal ablation [86]), or 
epigenetic modifier [87], may be considered in medically suitable 
patients who burden advanced cancer diseases. For example, 
cancer cells may modulate the TGF-β activation [162] or utilize 
the FTO-mediated epigenetic regulation to evade immune 
surveillance [87]. In the latter condition, applying agents to inhibit 
the activity of FTO, a m (6) A demethylase, can reprogram RNA 
epitranscriptome and synergize the treatment effect of IT [87].

Combined chemotherapy or targeted therapy’s role in 
enhancing IT’s treatment effect is also interesting in clinical 
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oncology [81,82]. For example, combined short-course RT 
and IT are evaluated in conjunction with chemotherapy 
in the context of total neoadjuvant therapy for patients 
with local-regionally advanced rectal cancer [163]. If 
medical fit, one potential treatment direction is combining 
chemoradiotherapy and IT in patients with locoregionally 
advanced diseases [83]. However, the above new combinations 
of multimodality therapies planned to combine with RIT 
should be further tested in randomized clinical trials to define 
their effective sizes in tumor control and the potential harms 
of treatment toxicity.

Emerging challenge: The role of epigenetic modification 
in radiotherapy and immunotherapy in terms of 
potential biomarkers and therapeutic targets

As mentioned above, in addition to clinically applicable 
biomarkers, such as PD-L1 expression and TMB [129-131], 
several studies investigated novel predictive/prognostic 
biomarkers for RIT. Of these, endogenous noncoding RNAs, 
e.g., miRNA and lncRNA, that function in modulating 
gene expression grasp interests in both outcome-predicting 
biomarkers and potential treatment targets [164].

Emerging challenge of bench studies for outcome prediction 
in radio‑immunotherapy, focusing on epigenetic biomarkers 

Detecting miRNA levels in plasma or serum is actively 
investigated in outcome prediction and disease follow-up. 
Several miRNAs have been reported to show potential 
roles in predicting outcomes in cancer patients treated 
with RIT [49,50], such as miR-16-5p [135] and miR-195/
miR-497 [136] [Table 2]. In epigenetics, one biological effect 
of circular RNAs (circRNAs) is to act as miRNA sponges 
that attenuate the function of pair-matched miRNAs [165]. 
As a result, circRNAs have been reported as one candidate of 
epigenetic biomarkers in RIT, e.g., Has_circ_0006692 [39]. 
Besides, other epigenetic-based biomarkers are potential 
for clinical application in RIT, such as 5 mC score [140] 
and lncRNA [49,50]. Note that the competitive endogenous 
RNA (ceRNA) network analysis should be considered to 
investigate the role of miRNA or lncRNA [141]. Besides, as 
mentioned previously [166], applying epigenetic biomarkers 
in clinical practice have some limitations and challenges. 
For example, different test timing may show different results 
that affect interpretations. Hence, at least two test time 

Table 2: Potential biomarkers in predicting treatment response and patient prognosis of combined radiotherapy and 
immunotherapy in cancers
Potential biomarkers Description Reference

Epigenetic-based potential biomarkers
m6A RNA 
methylation

The m6A RNA methylation associates with the immune microenvironment, TMB, and PD-L1 level, 
predicting response to anti-PD-L1 IT

Besides, developing m6A RNA epigenetic agents is a potential direction to the synergy treatment effect of IT

[87,88,134]

miRNA signature Several miRNAs and their associated gene expression/signature are potential for predicting/prognostic 
biomarkers in RIT

[49,50,122,135-137]

miR-16-5p Serum exosomal miR-16-5p regulates PD-L1 expression, serving as a biomarker for PD-L1-based IT [135]
miR-195/miR-497 miR-195/miR-497 regulates PD-L1 (i.e., CD274) expression in triple-negative breast cancer [136,138]

IMS A high immune microenvironment score shows a better response to PD1/PDL1-based IT [139]
5mC score A high 5mC score predicts low sensitivity to IT, neoadjuvant chemotherapy, and RT [140]
lncRNA Several immune-related lncRNAs predict prognosis and treatment response [49,50,141-143]
circRNA Has_circ_0006692 promoted NSCLC progression via the mir-205-5p/CDK10 axis and might serve as a 

prognostic biomarker and therapeutic target
[39]

Nonepigenetic-based potential biomarkers
TCR Post-RT-released cancer dsDNAs activate the cGas-STING pathway and host T-cells. The function of 

activated T-cells plays an essential role in RIT
[144]

CD8(+) T-cells CD8(+) T-cell signature plays a role in the outcome prediction of IT [123]
PNI PNI and NLR may predict treatment response in IT [56]
NLR Elevated NLR was a poor predictor for OS in advanced and brain-metastatic NSCLC [9,56,145]
TMB High TMB predicts better IT outcomes in several cancers, such as gastric cancer and NSCLC [129-131]
MSI-H IT is effective in MSI-H cancer patients [146]
MMR-P IT alone is ineffective in patients with MMR-P mCRC, even in conjunction with RT [146,147]
PD-L1 expression PD-L1 expression is clinically applied for prescribing PD-L1-based IT [131,148,149]
TME score TME score predicts prognosis and treatment response to IT in breast cancer patients [150]
Serum tumor markers Dynamic changes of serum tumor markers, such as CEA, CA-125, and SCC-Ag, may be prognostic in IT [151]
KMT2C/TP53 
co-mutation

KMT2C/TP53 co-mutation in conjunction with PD-L1 expression and TMB may be effective biomarkers in 
IT

[152]

Imaging biomarkers PET-based imaging biomarkers, such as (18) F-FET, (18) F-FDG, and preclinical [(64) Cu] NOTA-CD8a 
PET*, help monitor the treatment response of IT and RT

[132,133,153]

*The evidence from [(64) Cu] NOTA-CD8a PET is based on preclinical in vivo experiments [153], revealing that identifying novel appropriate isotopes 
of PET for clinical application is challenging in terms of precisely targeting, clinical availableness, and cost-effectiveness. TCR: T-cell receptors, 
PNI: Prognostic nutrition index, NLR: Neutrophil-to-lymphocyte ratio, TMB: Tumor mutational burden, MSI-H: Microsatellite instability-high, 
PD-L1: Programmed death ligand-1, IR: Ionizing radiation, IT: Immunotherapy, IMS: Immune microenvironment score, ceRNA: Competitive endogenous 
RNA, NSCLC: Non-small cell lung cancer, lncRNA: Long noncoding RNA, MMR-P: Mismatch repair-proficient, mCRC: Metastatic colorectal cancer, 
TME: Tumor microenvironment, PET: Positron emission tomography, miR: MicroRNA, also termed miRNA, OS: Overall survival, RT: Radiotherapy
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points should be implemented and denoted as pretreatment 
references, i.e., before initiating RT and IT, respectively.

Emerging challenge of bench studies for epigenetically 
therapeutic targets in radio‑immunotherapy

Epigenetic regulation plays an active role in RT. For 
example, epigenetic dysregulation has been recognized to 
involve cancer radioresistance [167]. Remarkably, epigenetic 
regulators may reprogram the epigenome and restore 
radiosensitivity [168]. Similarly, applying epigenetic agents, 
such as HDAC inhibitors [169], to IT also gains ongoing 
interest [170]. Several epigenetically biological targets are 
investigated in RIT, such as PD-L1 [171], YTH domain 
containing 2 [172], and m6A RNA modification.

Of these, m6A RNA modification has been reported 
to be involved in cancer treatment resistance [88], and 
applying m6A RNA epigenetic agents may reverse the 
resistance and restore treatment effect [87]. Besides, 
DNA methylation of some target genes has been reported 
to correlate with immune infiltration and survival [173], 
serving as potential candidates for treatment targets. 
However, DNA-methylation-based epigenetic therapy 
has a challenge for clinical application. That is, 
targeted methylation/de-methylation is difficult to be 
achieved [174]. Unfortunately, this type of epigenetic 
modification is essential to leading DNA-methylation-based 
epigenetic therapy being clinically helpful and applicable. 
Remarkably, targeting noncoding RNAs, such as miRNA 
and lncRNA, are the preferred epigenetic modulation in 
cancer epigenetic-based therapy [175]; however, the role in 
the context of RIT should be further demarcated.

Conclusion
Combined RT and IT are one active treatment direction in 

managing cancer patients. Further efforts from clinical trials are 
ongoing to define the best combination, such as incorporating 
advanced RT techniques, novel IT agents, and other treatment 
modalities. Besides, bench and clinical studies are emergently 
required to improve the prediction of treatment response and 
clinical outcomes. Integrating other treatment modalities in 
conjunction with RIT, such as chemotherapy, targeted therapy, 
and other local therapies (e.g.,, thermal ablation), is warranted 
and ongoing. On ClinicalTrials.gov [176], more than 800 
clinical trials are registered for investigating challenging 
issues of RIT in several cancer diseases. These data show a 
still hot trend of combined RIT in oncology. Results from 
these prospective trials are expected. Further investigations to 
explore effective epigenetics-based biomarkers and potential 
treatment targets are encouraged.
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