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ABSTRACT

In 2014, the identification of stone fruits contaminated with Listeria monocytogenes led to the subsequent identification of a
multistate outbreak. Simultaneous detection and enumeration of L. monocytogenes were performed on 105 fruits, each weighing
127 to 145 g, collected from 7 contaminated lots. The results showed that 53.3% of the fruits yielded L. monocytogenes (lower
limit of detection, 5 CFU/fruit), and the levels ranged from 5 to 2,850 CFU/fruit, with a geometric mean of 11.3 CFU/fruit (0.1
CFU/g of fruit). Two serotypes, IVb-v1 and 1/2b, were identified by a combination of PCR- and antiserum-based serotyping
among isolates from fruits and their packing environment; certain fruits contained a mixture of both serotypes. Single nucleo-
tide polymorphism (SNP)-based whole-genome sequencing (WGS) analysis clustered isolates from two case-patients with the
serotype IVb-v1 isolates and distinguished outbreak-associated isolates from pulsed-field gel electrophoresis (PFGE)-matched,
but epidemiologically unrelated, clinical isolates. The outbreak-associated isolates differed by up to 42 SNPs. All but one sero-
type 1/2b isolate formed another WGS cluster and differed by up to 17 SNPs. Fully closed genomes of isolates from the stone
fruits were used as references to maximize the resolution and to increase our confidence in prophage analysis. Putative pro-
phages were conserved among isolates of each WGS cluster. All serotype IVb-v1 isolates belonged to singleton sequence type 382
(ST382); all but one serotype 1/2b isolate belonged to clonal complex 5.

IMPORTANCE

WGS proved to be an excellent tool to assist in the epidemiologic investigation of listeriosis outbreaks. The comparison at the
genome level contributed to our understanding of the genetic diversity and variations among isolates involved in an outbreak or
isolates associated with food and environmental samples from one facility. Fully closed genomes increased our confidence in the
identification and comparison of accessory genomes. The diversity among the outbreak-associated isolates and the inclusion of
PFGE-matched, but epidemiologically unrelated, isolates demonstrate the high resolution of WGS. The prevalence and enumer-
ation data could contribute to our further understanding of the risk associated with Listeria monocytogenes contamination, es-
pecially among high-risk populations.

Listeria monocytogenes has been associated with foodborne out-
breaks linked to contaminated ice cream (1), meat (2), caramel

apples (3), and cheese (4). Recently, whole-genome sequencing
has been employed to assist in listeriosis outbreak investigations
(5–9). To do this, bioinformatics tools have been developed to
target different genomic variations of L. monocytogenes (single nu-
cleotide polymorphisms, allelic differences, k-mer, etc.) in either
the core or whole genome (10–13). In the United States, nation-
wide real-time whole-genome sequencing (WGS) was imple-
mented using the GenomeTrakr and PulseNet network to en-
hance listeriosis outbreak detection and investigation (14). In
several outbreak investigations, the U.S. Centers for Disease Con-
trol and Prevention (CDC) had employed a whole-genome mul-
tilocus sequence typing (wgMLST) tool that targets the allelic dif-
ferences in genome-wide coding regions (14), and the U.S. Food
and Drug Administration (FDA) had employed a reference-based
Center for Food Safety and Applied Nutrition (CFSAN) SNP
Pipeline that identifies single nucleotide polymorphisms (SNPs)
in the entire genome, including core genes, accessory genes, and
intergenic regions (8, 11, 15).

In July 2014, certain lots of fresh stone fruits, including whole

peaches, nectarines, plums, and pluots, were recalled by a packing
company (company A) due to contamination with L. monocyto-
genes (16). Subsequently, two clinical cases were linked to these
recalled fruits, which were the first reported human listeriosis
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cases caused by the consumption of contaminated stone fruit (14,
16). Initially, pulsed-field gel electrophoresis (PFGE) compari-
sons were performed on nationwide clinical cases reported in
PulseNet, with isolation dates between 1 May and 31 August 2014,
indicating possible exposure to the recalled fruits. This identified
isolates from 4 patients in 4 states (Illinois, South Carolina, Min-
nesota, and Massachusetts) having PFGE profiles indistinguish-
able from those of isolates collected from the stone fruits and their
packing environment (16). Subsequent epidemiological investi-
gation and WGS analysis suggested that only patients in Minne-
sota and Massachusetts were likely linked to the contaminated
stone fruits (14, 16). The wgMLST phylogeny was reported on
isolates from stone fruits and their packing environment obtained
in the present study and clinical isolates obtained during the epi-
demiological investigation (14).

Enumerating L. monocytogenes in food products linked to hu-
man listeriosis can provide a data set for our further understand-
ing of the risk associated with L. monocytogenes contamination.
Therefore, when isolating L. monocytogenes from fruits in contam-
inated lots, we performed simultaneous detection and enumera-
tion. To explore whether WGS analyses of outbreak-associated
isolates using different tools could lead to the same conclusions as
wgMLST, an SNP-based WGS method was also performed on
isolates from stone fruits, their packing environment, and patients
during the outbreak investigation. This study describes the enu-
meration and WGS of L. monocytogenes associated with this out-
break.

MATERIALS AND METHODS
Fruits. We randomly collected 105 unwounded stone fruits from seven
lots (15 fruits/lot) available at the company’s facility during the time of
sampling. These lots were on the company’s recall list, but the 105 fruits
were stored in the packing facility and had never been distributed to com-
merce. These fruits were physiologically mature, but not fully ripe, at the
time of analysis. The seven lots of fruits were composed of organic yellow
nectarines, two cultivars of conventional white nectarines, conventional
yellow nectarines, organic white peaches, conventional white peaches,
and organic yellow peaches. Each fruit weighed between 127 and 145 g,
with an average of 132 g.

Enumeration. Preliminary analysis did not recover L. monocytogenes
from the fruit pulp; therefore, we performed rinsing and direct plating
enumeration of L. monocytogenes on the surface of each individual fruit.
Briefly, each fruit was submerged in a Whirl-Pak bag (Nasco, Inc., Fort
Atkinson, WI) with 80 ml of Butterfield’s phosphate buffer (BPB), and the
sealed bags were subsequently hand-massaged for 1 min. These bagged
fruits were then put in a shaking incubator (Innova 44; Eppendorf, Inc.,
Hauppauge, NY) at 250 rpm for 5 min at room temperature. The resulting
BPB rinsate was centrifuged for 10 min at 3,500 � g, and cell pellets were
then resuspended in 1 ml of BPB. One hundred microliters of suspended
cells was plated onto each of the two ALOA (Agar Listeria according to
Ottavani and Agosti) plates (catalog no. AEB520080; bioMérieux, Inc., St.
Louis, MO) and two RAPID’L. mono agar plates (catalog no. 3563694;
Bio-Rad Laboratories, Inc., Hercules, CA), followed by incubation for up
to 48 h at 37°C. A subset of typical colonies were confirmed using the
real-time PCR scheme as described in the L. monocytogenes chapter of the
FDA’s Bacteriological Analytical Manual (17). This enumeration scheme
had a lower limit of detection (LOD) of 5 CFU/fruit, and the rinsing
generated an average of 75% recovery rate for peaches and 85% recovery
rate for nectarines (our unpublished data).

Statistical analysis. In order to perform statistics, we assumed the
concentration of L. monocytogenes to be half of the LOD (2.5 CFU/fruit)
for the fruit that did not yield L. monocytogenes. Medians, geometric
means, and arithmetic means were calculated for each lot. Comparisons

of medians among different lots were performed using a Mann-Whitney
test with Holm-Bonferroni correction (18, 19). Log-transformed values of
geometric means were compared with one-way analysis of variance
(ANOVA) (20).

Serotyping and PFGE. We performed serotyping on the following
isolates: one isolate from each of the 56 fruits that yielded L. monocyto-
genes, and an additional isolate from 38 out of these 56 fruits, as well as 2
fruit isolates and 17 environmental isolates obtained from company A.
Serotyping was performed using either a combination of antiserum ag-
glutination and multiplex PCR (21) before WGS was obtained or the in
silico serotyping tool in the Pasteur MLST L. monocytogenes database
(http://bigsdb.web.pasteur.fr/listeria/listeria.html) after WGS was ob-
tained. We performed PFGE on a subset of isolates representing all fruit
cultivars, lots, and environmental samples using the standard PulseNet
protocol (22). We obtained the PFGE profiles from PulseNet on the 4
clinical isolates identified during the initial epidemiological investigation.

WGS. We performed WGS on a subset of isolates representing all fruit
cultivars, lots, and environment samples.

DNA was isolated from pure cultures using the Qiagen DNeasy blood
and tissue kit (catalog no. 69582; Qiagen, Inc., Valencia, CA). Sequencing
libraries were prepared using the Nextera XT sample preparation kit (cat-
alog no. FC-131-1024; Illumina, Inc.), and WGS was performed using a
MiSeq (Illumina, Inc., San Diego, CA) with the version 2 kit (2 � 250 bp),
according to the manufacturer’s instructions (23).

A serotype IVb-v1 isolate (CFSAN023463) and a serotype 1/2b isolate
(CFSAN023459), both collected from fruits, were selected to be fully se-
quenced using PacBio RSII (Pacific Biosciences, Menlo Park, CA, USA), as
previously described (24, 25). Briefly, a single 10-kb library was prepared
and sequenced using C2 chemistry on 8 single-molecule real-time
(SMRT) cells with a 90-min collection protocol on the PacBio RS. These
10-kb continuous-long-read data were then de novo assembled using the
PacBio Hierarchical Genome Assembly Process (HGAP2.0)/Quiver soft-
ware package, followed by Minimus 2 to yield a single chromosomal con-
tig and a plasmid contig. Raw reads were subsequently mapped to the
contigs using Quiver for error correction. These two complete genomes
were annotated with the National Center for Biotechnology Information
(NCBI) Prokaryotic Genome Annotation Pipeline (http://www.ncbi.nlm
.nih.gov/genomes/static/Pipeline.html). During sequencing, epigenetic
modifications at each nucleotide position were measured as kinetic vari-
ations (KV) in the nucleotide incorporation rates, and methylase activities
were deduced from the KV data (26, 27). The methylomes of these two
complete genomes were analyzed and deposited in REBASE (http://tools
.neb.com/genomes/view.php?list�0&view_id�35417 and http://tools
.neb.com/genomes/view.php?view_id�36969).

Reference-based SNP analyses. WGS analyses were performed us-
ing the CFSAN SNP pipeline 0.6.1 (8, 11). Briefly, raw reads from each
serotype IVb-v1 isolate were mapped to the complete genome of
CFSAN023463, and raw reads from each serotype 1/2b isolate were
mapped to the complete genome of CFSAN023459, using default settings
within Bowtie 2 version 2.2.2 (28). For each SNP analysis, the resulting
BAM file was sorted using SAMtools version 1.3.1 (29), and a pileup
file for each isolate was produced. These files were then processed
using VarScan2 version 2.3.9 (30) to identify high-quality variant sites,
using the mpileup2snp option. An in-house Python script was used to
parse the .vcf files and construct an initial SNP matrix. We then re-
moved high-density variant sites (�3 within 1,000 bp in the refer-
ence), including 5 among outbreak isolates, 8 between the South Car-
olina isolate and the outbreak cluster, and 3 among serotype 1/2b
isolates. Additional information about these procedures, e.g., codes
and instructions, is available at https://github.com/CFSAN-Biostatistics
/snp-pipeline. The Genetic Algorithm for Rapid Likelihood Inference
(GARLI) (31) was used to infer phylogenies based on each of the SNP
matrices. WGS analyses were performed separately on (i) serotype IVb-v1
isolates, including the two clinical isolates not associated with the out-
break; and (ii) serotype 1/2b isolates, with and without an outgroup
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(CFSAN010068 [NCBI SRA ID: SRR1181548]) of multilocus sequence
typing (MLST) sequence type 5 (ST5) from a 2013 U.S. Hispanic-style
cheese outbreak (32).

The draft genomes were de novo assembled using the CLC Genomics
Workbench 8.0.3 (Qiagen, Waltham, MA), and genes containing the
SNPs were extracted by BLAST, translated to protein sequences, and then
aligned using the global alignment program MUSCLE (33), with default
settings. This enabled the identification of SNPs as being synonymous or
nonsynonymous and of the amino acid changes for nonsynonymous
SNPs. We searched against NCBI, the protein families database (Pfam)
(34), and Kyoto Encyclopedia of Genes and Genomes (KEGG) (35) to
further identify the putative functions of the genes containing the SNPs.

Prophage, clonal group, and inlA analyses. We identified putative pro-
phages from the complete genomes of CFSAN023463 and CFSAN023459
using PHAST (36). We then used BLAST to align these putative prophages
with the draft genomes and determined the percentage of query coverage
(percentage of the query sequence that overlaps the subject sequence) and
sequence identity. In silico MLST analysis was performed using the CLC
Genomics Workbench 8.0.3 (Qiagen, Waltham, MA) and tools in the
Pasteur MLST L. monocytogenes database (http://bigsdb.pasteur.fr/listeria
/listeria.html). The alignment and mapping tools from the Qiagen CLC
Genomics Workbench were used to extract inlA sequences to determine
whether there were premature stop codons in inlA.

Accession number(s). The WGS sequences were deposited under
their GenBank accession numbers for complete genomes and Sequence
Read Archive (SRA) identifiers for draft genomes. We obtained the WGS
data from GenomeTrakr on the 4 clinical isolates previously submitted by
the CDC, seen in Table 2.

RESULTS
Enumeration. Our enumeration scheme (LOD, 5 CFU/fruit)
yielded L. monocytogenes on 53.3% (56/105) of all tested fruits
(Table 1). Specifically, 25% of the nectarines (15/60) and 91.1% of
the peaches (41/45) yielded L. monocytogenes. The geometric
means were 2.95, 3.97, 3.16, and 3.79 CFU/fruit for the 4 lots of
nectarines, and 14.45, 73.37, and 156.6 CFU/fruit for the 3 lots of
peaches. Overall, peaches had higher levels of L. monocytogenes
than nectarines (Table 1). Out of the 60 nectarines, 58 and 59
fruits contained L. monocytogenes at �10 and �20 CFU/fruit, re-
spectively, with the remaining fruit containing L. monocytogenes at
85 CFU/fruit (Fig. 1). Out of the 45 peaches, 44 fruits contained L.
monocytogenes at �500 CFU/fruit, and the remaining fruit con-
tained L. monocytogenes at 2,850 CFU/fruit (Fig. 1).

Serotyping and PFGE. Out of the 94 isolates from fruits (one

isolate from each of the 56 fruits that yielded L. monocytogenes,
and one additional isolate from 38 out of these 56 fruits) subject to
serotyping, 76 isolates were serotype IVb-v1 (12 from nectarines
and 64 from peaches), and 18 isolates were serotype 1/2b (8 from
nectarines and 10 from peaches). Serotype IVb-v1, a 4b variant, is
recognized as serotype 4b by standard serotyping using antiserum
but differs from other serotype 4b isolates by PCR-based serotyp-
ing due to acquisition of a 6.3-kb DNA fragment (13, 21). Out of
the 38 fruits that had two serotyped isolates per fruit, 5 fruits
contained a mixture of both serotype IVb-v1 and 1/2b isolates.
The 4 clinical isolates, identified by PulseNet with isolation dates
indicating possible exposure to the contaminated fruits (16), were
also serotype IVb-v1. Out of the 17 environmental isolates, 3 iso-
lates were serotype IVb-v1, and 14 isolates were serotype 1/2b.

PFGE analysis of serotype IVb-v1 isolates, including the 4
clinical isolates and a subset of food and environmental iso-
lates, revealed an identical profile (Table 2; see also Fig. S1 in
the supplemental material). PFGE analysis of a subset of sero-
type 1/2b isolates from food and environmental samples iden-
tified 8 different PFGE profiles which did not match any clini-
cal isolates in PulseNet, with isolation dates indicating possible
exposure to the contaminated fruits (16). One environmental
isolate (CFSAN024093) had a PFGE profile different from all
other isolates (Table 2) and belonged to serotype 1/2b.

SNP-based analyses. The complete genome of CFSAN023463
consists of a single contig of 2,939,733 bp (G�C content, 38%)
representing the complete chromosome with no plasmids. The
overall coverage was 139�. The outbreak cluster (serotype IVb-
v1) consisted of two clades, designated clade IVb-v1_1, containing
the Minnesota clinical isolate, and clade IVb-v1_2, containing the
Massachusetts clinical isolate (Fig. 2). Each clade contained iso-
lates from fruits of different varieties/lots and their packing envi-
ronment. The clinical isolates from Illinois and South Carolina,
although indistinguishable by PFGE from other serotype IVb-v1
isolates, were placed outside the outbreak cluster (Fig. 2); this was
consistent with the epidemiological findings and the wgMLST
phylogeny showing that these patients could not be linked to the
contaminated stone fruits (16).

The pairwise SNP differences ranged from 0 to 2 (median, 1
difference) among clade IVb-v1_1 isolates, and these ranged from
0 to 11 (median, 3 differences) among clade IVb-v1_2 isolates

TABLE 1 Statistical analysis of the enumeration results from seven lots of stone fruits

Stone fruit

CFU/fruita No. of fruits

Minimum Median
Arithmetic
mean

Geometric
mean Maximum Total

Yielding
IVb-v1

Yielding
1/2b

White nectarine (cv. 1) 2.5b 2.5 A 3.5 2.95 A 15 15 2 0
White nectarine (cv. 2) 2.5 2.5 A 4.8 3.97 A 10 15 3c 4c

Yellow nectarine 2.5 2.5 A 8.0 3.16 A 85 15 1c 1c

Yellow nectarine, organic 2.5 2.5 A 4.5 3.79 A 10 15 4c 3c

White peach 2.5 10.0 B 42.3 14.45 B 325 15 13c 1c

White peach, organic 2.5 110 C 135.8 73.37 C 495 15 10 4
Yellow peach, organic 2.5 190 C 362.5 156.6 C 2,850 15 13c 2c

Total 2.5 5.0 80.2 11.28 2,850 105 46 15
a Each fruit weighed 127 to 145 g. Medians were compared by Mann-Whitney test with Holm-Bonferroni correction. Log-transformed values of geometric means were compared
with one-way ANOVA. Values with different letters are significantly different (P � 0.05).
b Half of the LOD (2.5 CFU/fruit) was assumed as the pathogen level for fruits that did not yield L. monocytogenes.
c One of the fruits had one serotype IVb-v1 isolate and one 1/2b isolate.
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(Fig. 2). The pairwise SNP differences ranged from 35 to 42 (me-
dian, 38 differences) between clade IVb-v1_1 isolates and clade
IVb-v1_2 isolates. The pairwise SNP differences ranged from 47 to
48 (median, 47.5 differences) between the Illinois clinical isolate
and clade IVb-v1_1 isolates, and these ranged from 40 to 46 dif-
ferences (median, 43 differences) between the Illinois clinical iso-
late and clade IVb-v1_2 isolates. The pairwise SNP differences
ranged from 70 to 78 between the South Carolina clinical isolate
and the stone fruit isolates, indicating that this isolate was more
distant from the outbreak cluster (Fig. 2).

In general, it did not appear that the WGS clades or subclades
were strongly associated with fruit varieties because isolates from
different fruit varieties were distributed across both clades IVb-
v1_1 and IVb-v1_2 (Fig. 2). The facility locations of environmen-
tal samples were not made available for us to establish any associ-
ation between WGS clades and different facility locations or to
determine whether the contamination was persistent or transient.
Twenty-six SNPs (12 nonsynonymous, 13 synonymous, and 1
noncoding) and 56 SNPs (29 nonsynonymous, 24 synonymous,
and 3 noncoding) distinguished the outbreak cluster from the
Illinois clinical isolate and the South Carolina clinical isolate, re-
spectively (see Table S1 in the supplemental material). Some SNPs
were in proteins, including internalins, flagellar hook proteins E
and L, and a few surface proteins with yet-unidentified functions
(see Table S1). Among all 47 outbreak-associated isolates, we
identified 58 polymorphic loci (containing 37 nonsynonymous,
14 synonymous, and 7 noncoding SNPs), some of which were in

proteins involved in bacteriocin protection, stress response, and
surface anchoring (see Tables S2 and S3 in the supplemental ma-
terial).

The complete genome of CFSAN023459 consists of three rep-
licons: a circular chromosome of 3,039,887 bp (G�C content,
38.1%), a 12,949-bp plasmid (G�C content, 36.4%), and a
52,687-bp plasmid (G�C content, 35.1%). The overall cover-
age was 119�. The MLST-matched outgroup (CFSAN010068,
as described below) and serotype 1/2b isolates, excluding
CFSAN024093, differed by at least 250 SNPs in the chromosome,
indicating a relatively distant relationship (see Fig. S2 in the sup-
plemental material). We therefore removed CFSAN010068 and
analyzed only the stone fruit 1/2b isolates, except CFSAN024093,
for the precise determination of SNPs (Fig. 3). The pairwise SNP
differences in the chromosome among the serotype 1/2b isolates
except CFSAN024093 ranged from 0 to 17 differences (median, 7
differences), indicating a very close relationship among all iso-
lates, despite possessing 7 PFGE profiles. There were 40 polymor-
phic loci in the chromosome among serotype 1/2b isolates (see
Table S4 in the supplemental material), which contained 24 non-
synonymous, 10 synonymous, and 6 noncoding SNPs (see Table
S5 in the supplemental material). CFSAN024093 was genetically
very distant from other serotype 1/2b isolates during preliminary
analysis (data not shown) and thus was not included in the anal-
yses illustrated in Fig. 2 and 3.

Prophage, clonal group, inlA, and methylation analyses. One
incomplete putative prophage of CFSAN023463 was identified by

FIG 1 Number of fruits containing L. monocytogenes at various levels. Each fruit weighed 127 to 145 g. The numbers are listed on top of each bar. Different
cultivars of the same variety are combined for this analysis. The total number of fruits of each variety is listed in parentheses following the variety name.
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TABLE 2 L. monocytogenes isolates from food, environment, and patients

Source Sample identifier Serotype PFGE profile (AscI/ApaI)a NCBI accession no. or SRA identifier

Illinois patient PNUSAL000957 IVb-v1 AscP0/ApaP0 SRR1562157
South Carolina patient PNUSAL000730 IVb-v1 AscP0/ApaP0 SRR1393979
Massachusetts patient PNUSAL000870 IVb-v1 AscP0/ApaP0 SRR1534987
Minnesota patient PNUSAL001024 IVb-v1 AscP0/ApaP0 SRR1597487
Nectarineb CFSAN023085 IVb-v1 AscP0/ApaP0 SRR1554259

CFSAN023086 IVb-v1 AscP0/ApaP0 SRR1554256

Yellow nectarine, organic CFSAN023490 1/2b NA SRR1553725
CFSAN023476 1/2b AscP1/ApaP1 SRR1553871
CFSAN023477 1/2b AscP2/ApaP2 SRR1553850
CFSAN023489 IVb-v1 AscP0/ApaP0 SRR1553739
CFSAN023491 IVb-v1 AscP0/ApaP0 SRR1553882
CFSAN023506 IVb-v1 AscP0/ApaP0 SRR1553851
CFSAN023475 IVb-v1 AscP0/ApaP0 SRR1553866
CFSAN023478 IVb-v1 AscP0/ApaP0 SRR1553750

Yellow nectarine CFSAN023457 1/2b AscP2/ApaP2 SRR4090659

White nectarine cv. 1 CFSAN023473 IVb-v1 AscP0/ApaP0 SRR1553779
CFSAN023472 IVb-v1 AscP0/ApaP0 SRR1553855

White nectarine cv. 2 CFSAN023459 1/2b AscP1/ApaP6 NZ_CP014252.1
CFSAN023488 1/2b NA SRR1553796
CFSAN023879 1/2b AscP1/ApaP6 SRR1574290
CFSAN023474 IVb-v1 AscP0/ApaP0 SRR1553906
CFSAN023458 IVb-v1 AscP0/ApaP0 SRR1556285
CFSAN023460 1/2b AscP2/ApaP2 SRR1556287

Yellow peach, organic CFSAN023880 1/2b AscP1/ApaP6 SRR1574296
CFSAN023462 IVb-v1 AscP0/ApaP0 SRR1556292
CFSAN023463 IVb-v1 AscP0/ApaP0 NZ_CP012021.1
CFSAN023464 IVb-v1 AscP0/ApaP0 SRR1556294
CFSAN023465 IVb-v1 AscP0/ApaP0 SRR1556293
CFSAN023466 IVb-v1 AscP0/ApaP0 SRR1556289

White peach CFSAN023492 IVb-v1 NA SRR1553856
CFSAN023505 1/2b NA SRR1553784
CFSAN023484 IVb-v1 AscP0/ApaP0 SRR1553821
CFSAN023495 IVb-v1 NA SRR1553791
CFSAN023496 IVb-v1 NA SRR1553816
CFSAN023498 IVb-v1 NA SRR1553788
CFSAN023500 IVb-v1 NA SRR1553907
CFSAN023483 IVb-v1 AscP0/ApaP0 SRR1553773
CFSAN023503 IVb-v1 NA SRR1553792
CFSAN023507 IVb-v1 NA SRR1553827
CFSAN023508 IVb-v1 NA SRR1553774
CFSAN023479 IVb-v1 AscP0/ApaP0 SRR1553797
CFSAN023480 IVb-v1 AscP0/ApaP0 SRR1553820
CFSAN023481 IVb-v1 AscP0/ApaP0 SRR1553798
CFSAN023482 IVb-v1 AscP0/ApaP0 SRR1553826
CFSAN023497 IVb-v1 NA SRR1553756
CFSAN023499 IVb-v1 NA SRR1553804
CFSAN023501 IVb-v1 NA SRR1566225
CFSAN023502 IVb-v1 NA SRR1553840
CFSAN023504 IVb-v1 NA SRR1553867
CFSAN023493 IVb-v1 NA SRR1553764
CFSAN023494 IVb-v1 NA SRR1553740

White peach organic CFSAN023469 IVb-v1 AscP0/ApaP0 SRR1556291
CFSAN023470 IVb-v1 AscP0/ApaP0 SRR1556297
CFSAN023471 IVb-v1 AscP0/ApaP0 SRR1556295

(Continued on following page)
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PHAST (36) (Table 3). BLAST analysis of this putative prophage
against all serotype IVb-v1 draft genomes, including those from
the two epidemiologically unrelated clinical isolates, had �99%
query coverage and 100% sequence identity. This was also consis-
tent with the SNP analyses showing that none of the SNPs among
serotype IVb-v1 isolates were in the putative prophages (see Ta-
bles S1 to S3 in the supplemental material). Four putative pro-
phages of CFSAN023459 were identified by PHAST (36) (Table
3). BLAST analysis of these 4 putative prophages against serotype
1/2b draft genomes, except CFSAN024093, yielded �95% cover-
age and �99% sequence identity. The variations were mostly due
to small insertions/deletions that could be caused by incomplete
coverage of prophages by draft sequencing. This is also consistent
with the WGS analyses showing that only one of the SNPs among
serotype 1/2b isolates except CFSAN024093 was in the putative
prophages (see Tables S4 and S5 in the supplemental material). In
contrast, BLAST analysis of CFSAN023459 prophages 1, 2, 3, and
4 against CFSAN024093 yielded 100%, 3%, 0%, and 35% cover-
age, respectively, indicating significant prophage divergence be-
tween CFSAN024093 and other stone fruit-associated serotype
1/2b isolates. BLAST analysis of CFSAN023459 prophages 1, 2, 3,
and 4 against the MLST-matched outgroup (CFSAN010068,
GenBank accession no. NZ_CP014250.1) yielded 100%, 5%, 0%,
and 43% coverage, respectively, indicating significant divergence
between CFSAN010068 and stone fruit-associated serotype 1/2b
isolates.

In silico MLST analysis showed that all serotype IVb-v1 isolates
had ST382, and all but one serotype 1/2b isolates had ST5, part of
clonal complex 5 (CC5). ST382 is a singleton, not a CC, because
no other isolates that differ from ST382 by one allele have been
observed in the Pasteur MLST database (http://bigsdb.pasteur.fr
/listeria/listeria.html) as of August 2016. ST382 was alternatively
designated epidemic clone IX (13), and CC5 was alternatively des-

ignated epidemic clone VI (13, 37). One serotype 1/2b isolate,
CFSAN024093, belonged to singleton ST392. The inlA sequences
in the serotypes IVb-v1 and 1/2b isolates did not have premature
stop codons. The methyltransferases in both CFSAN023463 and
CFSAN023459 used the N6-methyladenine (m6A) methylation
(see Table S7 in the supplemental material).

DISCUSSION
This incident represented the first reported outbreak and recall
associated with fresh whole stone fruits due to the contamina-
tion of L. monocytogenes. Fresh whole fruits have now been con-
firmed to be transmission vehicles for L. monocytogenes, with out-
breaks and recalls linked to contaminated cantaloupes (38),
apples (3), mangoes (39), sliced apples (40), and melons (41).
Prior to this outbreak, the risk of L. monocytogenes contamination
in stone fruit had not been extensively studied, probably because
stone fruits have characteristics that do not support the growth of
L. monocytogenes. Peach and nectarine pulp generally have a pH
below 4.0 (42), which is not favorable for Listeria growth. Colli-
gnon and Korsten (43) showed that L. monocytogenes artificially
inoculated onto peach surfaces at initial levels of 3 and 5 log CFU/
fruit rapidly decreased during the first 6 days of refrigerated stor-
age, although they also established that the L. monocytogenes levels
did not significantly drop from the 6th day to the 20th day (final
day) of storage at refrigerated temperatures.

In this study, the levels of L. monocytogenes in 99% of the fruits
(104/105) were �500 CFU/fruit. Given that the average rinsing
recovery rate was 75% to 85% (our unpublished data), the actual
levels of L. monocytogenes on the fruits were likely �700 CFU/
fruit. The remaining fruit contained L. monocytogenes of 2,850
CFU/fruit, and thus the actual level was likely �4,000 CFU/fruit.
Due to the relatively long incubation period of listeriosis and rel-
atively short shelf-life of many ready-to-eat foods, it is difficult to

TABLE 2 (Continued)

Source Sample identifier Serotype PFGE profile (AscI/ApaI)a NCBI accession no. or SRA identifier

CFSAN023882 1/2b AscP2/ApaP2 SRR1574321
CFSAN023881 1/2b AscP2/ApaP2 SRR1574272
CFSAN023468 IVb-v1 AscP0/ApaP0 SRR1556290
CFSAN023467 IVb-v1 AscP0/ApaP0 SRR1556296

Environment CFSAN024089 IVb-v1 AscP0/ApaP0 SRR1571515
CFSAN024077 IVb-v1 AscP0/ApaP0 SRR1571519
CFSAN024082 IVb-v1 AscP0/ApaP0 SRR1571539
CFSAN024090 1/2b AscP2/ApaP4 SRR1571543
CFSAN024081 1/2b AscP2/ApaP2 SRR1571521
CFSAN024083 1/2b AscP3/ApaP3 SRR1571546
CFSAN024087 1/2b AscP2/ApaP2 SRR1571523
CFSAN024084 1/2b AscP1/ApaP1 SRR1571540
CFSAN024092 1/2b AscP2/ApaP2 SRR1571544
CFSAN024091 1/2b AscP3/ApaP3 SRR1571525
CFSAN024088 1/2b AscP4/ApaP3 SRR1571524
CFSAN024086 1/2b AscP2/ApaP2 SRR1571522
CFSAN024079 1/2b AscP2/ApaP2 SRR1571520
CFSAN024078 1/2b AscP2/ApaP4 SRR1571538
CFSAN024080 1/2b AscP3/ApaP5 SRR1571514
CFSAN024085 1/2b AscP2/ApaP2 SRR1571542
CFSAN024093 1/2b AscP5/ApaP7 SRR1571545

a NA, PFGE information not available (i.e., not performed).
b Variety information not available.
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obtain samples from the same lots as the food consumed by the
case-patients. Thus, we collected fruits from different lots that
were produced in the implicated packing facility and determined
the prevalence and levels of L. monocytogenes. It is important to
note that the fruits analyzed in our study were not fully ripe and
would have needed extra days to reach a stage of ripeness for
human consumption. These fruits had also not been distributed to
commerce, so it is possible that the behavior of L. monocytogenes

on these fruits might be different from that on fruits released to
commerce. These variables need to be taken into account when
using this data set for future risk assessment. Further, the diversity
among L. monocytogenes subpopulations suggests that the obser-
vation in this study may only apply to subpopulations of L. mono-
cytogenes most similar to those involved in this outbreak, not nec-
essarily to the entire species. In this outbreak, the Massachusetts
patient was between 80 and 89 years old, and the Minnesota pa-
tient was between 70 and 79 years old (metadata provided in the
GenomeTrakr database under the BioSample ID). A recent study
on the 2010 to 2015 U.S. multistate ice cream outbreak showed
that the levels of L. monocytogenes were �20, �50, and �100 most
probable number (MPN)/g in 92.3%, 98.4%, and 99.8% of the ice
cream, respectively (44, 55). That study showed that the geometric
means of L. monocytogenes in 7 contaminated lots of ice cream
ranged from 0.15 to 7.1 MPN/g. These ice cream samples were
linked to a cluster of 4 elderly patients hospitalized with underly-
ing conditions prior to exposure to the contaminated ice cream
(44, 55). Contaminated meat or cheese linked to a 2012-2013 Aus-
tria outbreak contained L. monocytogenes at �30 CFU/g (45).
Contaminated cheese linked to a 2012 U.S. multistate outbreak
contained L. monocytogenes at �9.0 � 103 to �3.75 � 106 CFU/g
(median, 4.77 � 104 CFU/g) (4). Contaminated foie gras from 3
unopened samples linked to a 2012-2013 Spain outbreak con-
tained L. monocytogenes at 5.2 � 104 CFU/g (56). These data could

FIG 2 Phylogenetic tree of serotype IVb-v1 isolates constructed from SNPs
identified by the CFSAN SNP Pipeline, using CFSAN023463 as the reference.
All isolates in the tree were indistinguishable by PFGE. Clinical isolate identi-
fication (ID) is followed by the abbreviation of the state where it was isolated.
For other isolates, the isolate ID is followed by the food and environmental
source of the isolate. Isolates were from patients (black), white peaches
(green), yellow peaches (blue), white nectarines (purple), yellow nectarines
(orange), nectarines of unidentified variety (red), and environment (gray).
The outbreak-associated clinical isolates are highlighted in red boxes. The
median, minimum, and maximum pairwise SNP differences among isolates of
major clades are shown near the root of each clade, with the minimum and
maximum in parentheses. Bootstrap values are shown near major nodes.

FIG 3 Phylogenetic tree of serotype 1/2b isolates, except CFSAN024093,
constructed from SNPs identified by the CFSAN SNP Pipeline, using
CFSAN023459 as the reference. The isolate ID is followed by the food and
environmental source of the isolate. Isolates were from white peaches (green),
yellow peaches (blue), white nectarines (purple), yellow nectarines (orange)
and environment (gray). The median, minimum, and maximum pairwise SNP
differences among isolates of major clades are shown near the root of each
clade, with the minimum and maximum in parentheses. Bootstrap values are
shown near major nodes.
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help us gain better understanding of the risk associated with L.
monocytogenes contamination.

The use of ALOA and RAPID’L. mono agar was critical in the
enumeration. We investigated esculin-based agars, e.g., poly-
myxin-acriflavin-lithium chloride-ceftazidime-aesculin-man-
nitol (PALCAM) and modified Oxford agar, but the background
flora on the fruits made the plate counting difficult. In contrast,
ALOA and RAPID’L. mono agar allowed easier differentiation be-
tween L. monocytogenes and background flora. We observed pre-
sumptive Listeria spp. that were not L. monocytogenes. A Listeria
innocua isolate was also recovered from the company A environ-
ment (data not shown), confirming the value of using L. monocy-
togenes-specific chromogenic agars.

WGS helped linking clinical isolates to the recalled fruits and
separated them from PFGE-matched, but epidemiologically un-
related, isolates. Following the positive pathogen findings in
fruits, initial epidemiological investigation, and PFGE analyses,
WGS was performed in real time to help identify clinical cases
linked to the contaminated fruits (14, 16). Our study illustrates
how using SNP-based WGS analyses enabled us to exclude two
epidemiologically unrelated clinical cases that were indistinguish-
able by PFGE from outbreak-associated isolates. The CFSAN SNP
Pipeline is a reference-based SNP identification tool. Technically,
a reference genome could be one of the isolates associated with the
outbreak or an existing genome in the GenomeTrakr database that
is genetically close to the isolates being analyzed; in any case, using
a complete genome could maximize the resolution power. In the
present study, we chose complete genomes of the stone fruit iso-
lates as the references.

The WGS analyses described in the present study and that in
the epidemiological report (16) were based on completely differ-
ent phylogenetic algorithms. They generated identical phylogeny
for the same set of isolates, further increasing the confidence in the
WGS analyses. The nationwide screening of illnesses based on
onset dates and PFGE matches did not identify any patients pos-
sibly linked to serotype 1/2b isolates from the stone fruits (16).
This could be partially attributed to the lower incidence of sero-
type 1/2b (18 isolates) than serotype IVb-v1 (76 isolates) in stone
fruits with our sampling scheme, especially in peaches (10 sero-
type 1/2b isolates and 64 serotype IVb-v1 isolates), which had
higher levels of L. monocytogenes than those in nectarines. None-
theless, we still could not exclude the possibility that serotype 1/2b
isolates caused unreported illnesses, especially considering that
isolates from the same clonal group have been repeatedly involved
in previous listeriosis outbreaks as discussed below. With only two
colonies picked from each of the 38 fruits, we identified 5 fruits
containing both serotypes IVb-v1 and 1/2b; thus, it is possible that
more than 5 fruits were contaminated by both serotypes. There-

fore, we could not exclude the possibility that the case-patients
were coinfected with both serotypes, but that only serotype IVb-v1
was isolated, partially due to its higher incidence. The environ-
mental isolates collected from company A clustered with the food
and clinical isolates, indicating that the packing facility was con-
taminated; however, available environmental samples were only
from the packing facility, and specific sampling locations were not
available; thus, we cannot determine whether fruit contamination
was due to bacteria persistent in the facility or transient contami-
nation originating from sources outside the facility, e.g., fruit or-
chards.

In most previous listeriosis outbreaks, clusters of illnesses were
recognized as an outbreak, and patients were interviewed before
the food or environmental source was confirmed by microbial
source tracking. In contrast, the investigation and recognition of
this outbreak started from the positive pathogen findings in foods
(14, 16). One limitation with such an approach is that the identi-
fication of clinical cases can be affected by the sampling bias of the
food products. We sampled 105 fruits from 7 lots and also ob-
tained fruit and environmental isolates collected by company A;
however, we did not have any evidence to determine whether
there were L. monocytogenes strains of other genotypes in other
lots of the fruits.

WGS data in the present study also provided valuable informa-
tion about the genetic diversity among isolates involved in a com-
mon-source outbreak or isolates associated with foods manufac-
tured in a single packing facility. Previous studies have identified
such diversity to be 0 to 5 SNPs (6, 46), 5 to 10 SNPs (47, 48), 10 to
20 SNPs (7), and 20 to 30 SNPs (9), although we need to keep in
mind that different studies might target slightly different regions
of the genome and employ different bioinformatics tools or pa-
rameters to identify SNPs. The Illinois clinical isolate and the out-
break-associated isolates differed by 40 to 48 SNPs, similar to the
number of SNP differences (up to 42) among outbreak-associated
isolates. However, the WGS phylogeny clearly placed the Illinois
clinical isolate outside the outbreak cluster. Similarly, the number
of wgMLST allelic differences (up to 47) between the Illinois clin-
ical isolate and the outbreak cluster was similar to the number of
allelic differences (up to 43) among isolates in the outbreak clus-
ter, but the Illinois clinical isolate was clearly placed outside the
outbreak cluster by wgMLST (16). This indicates that the SNP
threshold or the genetic diversity of isolates should not serve as the
purpose of outbreak case definition; rather, it should always be
combined with WGS phylogeny and epidemiologic evidence to
identify strain relationships.

The SNP differences (�48 SNPs) between outbreak-associated
isolates and PFGE-matched, but epidemiologically unrelated, iso-
lates were smaller than those between the stone fruit-associated

TABLE 3 Putative prophages in the complete genomes of CFSAN023463 and CFSAN023459 identified by PHAST (36)

Strain Prophage ID Length (kbp)
Prophage
completeness Positionsa Most common match, accession no.

CFSAN023463 1 22.9 Incomplete 134411–157386 Listeria A118, NC_003216

CFSAN023459 1 22.9 Incomplete 118524–141499 Listeria A118
2 32.4 Intact 689648–722048 Listeria A118
3 27.6 Incomplete 1799035–1826710 Lactobacillus iA2, NC_028830
4 57.7 Intact 2439092–2496851 Listeria vB_LmoS_293, NC_028929

a Position based on each complete genome.
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serotype 1/2b isolates and MLST-matched outgroup (�250 SNPs)
and those between the outbreak-associated isolates and MLST-
matched, but epidemiologically unrelated, isolates in several pre-
vious studies (6, 7). This is consistent with the observation that
PFGE possessed more discriminatory power than MLST (37).
Therefore, the inclusion of PFGE-matched and epidemiologically
unrelated isolates demonstrated the high resolution of WGS and
also allowed the identification of SNPs highly specific to the out-
break isolates; many of the SNPs were in surface proteins (see
Tables S1, S3, and S5 in the supplemental material), possibly as-
sociated with virulence (49).

Putative prophages were conserved among isolates from
the fruits and their packing environment. Our WGS analyses
revealed one putative prophage in the complete genome of
CFSAN023463 and four putative prophages in the complete
genome of CFSAN023459. The PHAST-identified prophage 4
included a 43.1-kbp comK prophage (between positions 2453301
and 2496449), indicating that the PHAST results need to be man-
ually examined before any future in-depth analysis. These puta-
tive prophages showed a heavily mosaic nature, because each re-
gion contained proteins that were similar to multiple different
Listeria phages and phages from other species (see Table S6 in the
supplemental material). We used fully closed reference genomes
to maximize the resolution power in identifying prophage varia-
tions. The �95% query coverage of BLAST analyses between the
reference genomes and all but one draft genome indicated that our
draft sequencing provided good coverage for prophage regions.
BLAST analyses showed that all isolates except CFSAN024093
contained these putative prophages, and the SNP-based WGS
analyses revealed 0 and 1 SNP in the putative prophages among
serotype IVb-v1 isolates and 1/2b isolates, respectively (see Tables
S1 to S5 in the supplemental material). Our finding is consistent
with previous observations suggesting that prophages could serve
as markers for epidemiology of L. monocytogenes. Specifically, for
MLST-matched isolates, prophages were conserved among those
involved in a single outbreak/incident or those resident in a facility
for a relatively short period of time, but they were more diverse
among those involved in different outbreaks/incidents or persis-
tent in a facility for a relatively long period of time (7, 48, 50, 51).
In this study, there were no major variations in the putative pro-
phages between the outbreak-associated isolates and the two
PFGE-matched, but epidemiologically unrelated, isolates, consis-
tent with some previous findings suggesting that prophage varia-
tions and PFGE possessed similar discriminatory power (50, 51).
The prophages of all but one stone fruit-associated serotype
1/2b isolate were conserved, but they differed significantly
from the MLST-matched outgroup CFSAN010068 from a dif-
ferent outbreak, confirming previous observations that pro-
phages among MLST-matched isolates from different incidents
could have significant divergence (50, 51). More whole-genome
sequences, especially complete genomes, are needed in order to
better understand the Listeria prophage variations among isolates
in the same outbreak or those from the same facility.

WGS data provided information on clonal groups of the iso-
lates from fruits and environment. The serotype IVb-v1 isolates
in this study belonged to singleton ST382, which was not observed
in two large-scale surveys studying over 8,000 L. monocytogenes
isolates from multiple sources and geographic locations (52, 53).
However, ST382 had been associated with a 2014-2015 U.S. mul-
tistate caramel apple outbreak and a 2015-2016 U.S. multistate

packaged leafy green salad outbreak (13). The singleton ST382
thus represents an emerging clonal group of L. monocytogenes. All
but one serotype 1/2b isolate in this study were MLST ST5, part of
CC5. The same ST had been involved in a 2011 U.S. multistate
cantaloupe outbreak (37, 38), a 2013 U.S. Hispanic-style cheese
outbreak (13, 32), a 2010 to 2015 U.S. multistate ice cream out-
break (1, 13), a 2012-2013 Austria outbreak linked to meat and/or
cheese (45) (in silico MLST performed in our study using pub-
lished WGS but not described in Materials and Methods), and a
1996 Canada imitation crabmeat outbreak (37, 54). Thus, CC5
appears to be a widely distributed clone contaminating a variety of
food products and processing environments and causing out-
breaks.

Conclusions. The SNP-based WGS analysis provided further
discrimination between outbreak-associated isolates and epide-
miologically unrelated clinical isolates that were indistinguishable
by PFGE. The study highlights the importance to combine WGS
with epidemiological evidence to for identifying outbreak-associ-
ated isolates. The enumeration data could be useful for future
risk-based characterization of L. monocytogenes.
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