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Toxicity induced by heavy metals deteriorates soil fertility status. It also adversely affects the growth and
yield of crops. These heavy metals become part of the food chain when crops are cultivated in areas
where heavy metals are beyond threshold limits. Cadmium (Cd) and nickel (Ni) are considered the most
notorious ones among different heavy metals. The high water solubility of Cd made it a potential toxin for
plants and their consumers. Accumulation of Ni in plants, leaves, and fruits also deteriorates their quality
and causes cancer in humans when such a Ni-contaminated diet is used regularly. Both Cd and Ni also
compete with essential nutrients of plants, making the fertility status of soil poor. To overcome this prob-
lem, the use of activated carbon biochar can play a milestone role. In the recent past application of acti-
vated carbon biochar is gaining more and more attention. Biochar sorb the Cd and Ni and releases
essential micronutrients that are part of its structure. Many micropores and high cation exchange capac-
ity make it the most acceptable organic amendment to improve soil fertility and immobilize Cd and Ni. In
addition to improving water and nutrients, soil better microbial proliferation enhances the soil rhizo-
sphere ecosystem and nutrient cycling. This review has covered Cd and Ni harmful effects on crop yield
and their immobilization by activated carbon biochar. The focus was made to elaborate on the positive
effects of biochar on crop yield and soil health.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.sjbs.2021.09.035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sjbs.2021.09.035
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:uzmabotany@hotmail.com
mailto:sd96850@gmail.com
mailto:rahulmedcure@gmail.com
https://doi.org/10.1016/j.sjbs.2021.09.035
http://www.sciencedirect.com/science/journal/1319562X
http://www.sciencedirect.com


Ashfaq Ahmad Rahi, U. Younis, N. Ahmed et al. Saudi Journal of Biological Sciences 29 (2022) 743–750
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
2. Cadmium and nickel as a pollutant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
3. Cd, Ni, agricultural soil and living organism health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
4. Cadmium as an essential nutrient vs pollutant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
4.1. Antagonistic effects of cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

5. Antagonistic effects of Ni on plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
6. Biochar as remediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
7. Conclusion and future perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
1. Introduction

Heavy metals disturb the natural ecosystem due to their toxic
effects (Abid et al., 2017; Danish et al., 2019a; Fiaz et al., 2014;
Younis et al., 2015; Zafar-ul-Hye et al., 2020a, 2020c). These heavy
metals are continuously becoming a part of the ecosystem through
anthropogenic activities such as industrialization mining, overuse
of pesticides in agriculture, and sewage water irrigation. It is a
well-documented fact that any compound’s accumulation beyond
the soil’s threshold limit becomes a soil pollutant (Zafar-ul-Hye
et al., 2020b, 2020). The soil pollutants caused toxic effects on
the plants and animals and soil microorganisms (Adriano, 2001).
This also can affect the diversity, viability, and physiology of
microbes in rhizosphere area which play very important role for
healthy plant growth (Basu et al., 2021).

Such problematic soil conditions adversely affect the growth of
plants and cause deterioration of crop productivity and quality.
Among different environmental pollution, heavy metals are notori-
ous that induce abiotic stresses in the plants. These heavy metals
disturb the plant metabolism and restrict growth due to their high
accumulation in different plant parts. In addition to plants, heavy
metals are also dangerous for human and animal health that con-
sumes metal contaminated food (Shah and Nongkynrih, 2007).

2. Cadmium and nickel as a pollutant

Cd (Zafar-ul-Hye et al., 2020a) and Ni (Gill and Tuteja, 2011) are
the most notorious among different heavy metals. Both heavy met-
als have accumulated in Pakistan’s soils with time in significant
quantities (Bhutto et al., 2009). Indifferent biogeochemical and
environmental cycles Cd enter through anthropogenic sources
such as electroplating, industrial waste, pigments, plastic acces-
sories, paints and metal alloys (Nriagu, 1996). In addition to the
above sources, Cd also becomes a part of our environment through
wastewater irrigation, mining of zinc, overuse of phosphorus fertil-
izer, uses automobile smoke, burning of fossil fuels, higher applica-
tion of pesticides and cement industries (Dixit et al., 2011; Rao
et al., 2011).

On the other hand, Ni is also a heavy metal, which also induced
toxic effects in the plants beyond the required amount. It shares 3%
composition in the earth and the 24th essential nutrient in the
earth’s crust. Emission of smoke from vehicles, mining of metals,
burning fossil fuels, organic manure, industrial and municipal
waste is also a major contributor of Ni in our environment. The role
of anthropogenic activities is also crucial in that regard (Alloway,
1995).

3. Cd, Ni, agricultural soil and living organism health

In agricultural systems, Cd accumulation due to human activi-
ties has become one of the major issues globally, protecting crop
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productivity and making food poor quality (Chen et al., 2007). Most
diseases caused by the higher accumulation of Cd in humans and
mammals are not detectable because they show no symptoms.
Search characteristics of Cd make it a potential toxin (López-
Millán et al., 2009). Untreated sewage water is a major source of
Cd contamination in both plants, especially vegetable crops, and
soils (Hossny et al., 2001; Satarug et al., 2003). It has been observed
that 80% of Cd becomes part of the human body by consuming Cd-
contaminated cereal crops and vegetables (Satarug et al., 2010).
Cancer, renal tubular dysfunction, low bone density, heart failure,
nephritis, and nephrosis are essential diseases caused by Cd toxic-
ity (Nishijo et al., 2006; Nordberg et al., 2002). As Cd can persist in
our environment for more than 20 years, it makes it a potential
life-toxic element for humans’ survival (Ruiz et al., 2009).

Similarly, Ni becomes part of biota by involving precipitation,
adsorption, and complexions with clay. It has been observed that
a decrease in the soil pH significantly increases the bioavailability
of Ni, especially in rural areas where crops are cultivated (Bencko,
1983). The distribution of Ni in the soil is mostly uniform. How-
ever, most Ni toxic effects are observed in the soil’s upper layer
with 3–100 ppm Ni concentrations (Bencko, 1983). The existence
of Ni in the soil can be in several forms such as crystalline minerals
(inorganic), on cations exchange surfaces which are inorganic,
cations surfaces that are organic, as a free ion, water-soluble and
chelated compounds (Scott-Fordsmand, 1997) which cause harm-
ful impacts on plants (Chen et al., 2009). It is necessary to dispose
of Cd contaminated waste materials with proper treatment to
avoid its contamination in the environment. In 2010 Cd generated
pollution was 21,000 tons; however, in 2011, it was up to 21,500
tons. Such conditions create alarming situations for crops cultiva-
tion in soils where Cd toxicity presents in dangerous concentra-
tions (Pinto et al., 2004).
4. Cadmium as an essential nutrient vs pollutant

Cadmium is also required in small quantities to develop plants
properly; however, its higher uptake in plants causes injuries
(Reeves and Baker, 2000). So far, all the mechanism of poisoning
caused by Cd is not well understood. Scientists are exploring the
major mechanisms that Cd adopted two induced adverse effects
in the plants (Fig. 1; Table 1). It also restricted physiological and
metabolic activities, which decreased the growth attributes of
crops. The higher Cd level in plants reduces transpiration
(Inouhe, 2005) and photosynthesis rate (Bazzaz et al., 1974).

Less uptake of carbon dioxide due to Cd higher composition
played an imperative role in disturbing the rate of photosynthesis
in the plants (Larbi et al., 2002). It also decreases the germination
of seeds when present in threshold limits in the soil. Low plant
population due to poor germination causes a significant decrease
in the yield (Larbi et al., 2002; Lozano-Rodríguez et al., 1997). Cd
toxicity tolerance is different from different crops according to



Fig. 1. Cadmium stress and plant responses to mitigate the adverse effects of Cd.

Table 1
Decrease in yield of different crops due to the toxicity of cadmium and nickel.

Crop Decrease in yield
(%)

Heavy metal
toxicity

References

Wheat 72.0 Ni (Ouzounidou et al.,
2006)

Barley 27.2 Ni (Kumar et al., 2018)
Maize 30.0 Cd (Dresler et al., 2015)
Bean 36.5 Ni (Al-Qurainy, 2009)
Chickpea 28.9 Cd (Hasan et al., 2008)
Sunflower 50.0 Ni (Ahmad et al., 2011)
Radish 52.0 Ni (Yadav et al., 2009)
Mustard 43.8 Cd (Irfan et al., 2013)
Tomato 80.0 Ni (Palacios et al., 1998)
Alfalfa 33.2 Cd (Dražić et al., 2006)
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their stages; however, sitting stages are more susceptible to Cd
toxicity (Sharma et al., 2010).
Fig. 2. Heavy metals uptake and accumulation in the plants leaves vacuole.

4.1. Antagonistic effects of cadmium

Cadmium also showed antagonistic relationships with the dif-
ferent essential nutrient elements that are required for the opti-
mum growth of plants (Fig. 2). Higher intake and mobility of
cadmium in the plants significantly decreased the iron uptake
resulting in chlorosis (Genchi et al., 2020; Larbi et al., 2002). It also
disturbs the optimum uptake of magnesium, potassium, and cal-
cium; thus, plants suffer from nutritional deficiency stress (Dong
et al., 2006; Greger et al., 1991; Larbi et al., 2002). In plants, Cd
uptake beyond the threshold limit induces oxidative stress and
restricts the electron transport chain activity, directly affecting
the plant’s nucleic acid-associated mechanisms (Cuypers et al.,
2010). Low uptake of zinc, iron, and manganese also disturb the
plant cell’s proper functioning (Lasat, 2002), which played an
essential role in decreasing the yield (Dong et al., 2006).
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5. Antagonistic effects of Ni on plant

In plants, the edible part of vegetables is a significant Ni accu-
mulator that humans consume and other living organisms
(Gupta et al., 2010; Olowoyo et al., 2012). Plants that suffer from
Ni toxicity mostly show chlorosis and necrosis symptoms
(Ahmad and Rasool, 2014). Likewise, Cd also decreases the uptake
of iron, which adversely affects crop productivity (Kabata-Pendias,
2011). Ni also shows the antagonistic relationship between magne-
sium and calcium. Less uptake of magnesium deteriorates the
structure of chlorophyll in the leaves. Low chlorophyll content in
leaves ultimately resulted in the poor rate of photosynthesis in
the plants (Piccini and Malavolta, 1992).



Fig. 3. Adverse effects of nickel on plant (Chen et al., 2009).

Table 2
Increase in yield of different crops by variable application rate of biochar.

Crop Biochar
(t/ha)

Yield increase
(%)

References

Wheat 25 21.5 (Ali et al., 2019)
Barley 10 39.5 (Agegnehu et al., 2016)
Maize 25 20.0 (Arif et al., 2016)
Rice 10.5 10.0 (Liu et al., 2016)
Sorghum 22 22.0 (Laghari et al., 2015)
Winter rye 20 14.5 (Kraska et al., 2016)
Cotton 20 21.9 (Tian et al., 2018)
Soybean 10 45.4 (Van Zwieten et al., 2010)
Bean 30 30.0 (Rondon et al., 2004)
Radish 10 33.5 (Van Zwieten et al., 2010)
Carrot 30 100 (Rondon et al., 2004)
peanut 8.5 45.6 (Tando et al., 2017)
Tomato 10 70.0 (Hossain et al., 2010)
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Seregin and Ivanov (2001) noted that mainly Ni is accumulated
in the plant’s laminar region and adversely affected photosystem II,
which played a significant role in low photosynthesis (Maksymiec,
1998; Veeranjaneyulu and Das, 1982). It causes plastoquinone QA
and Fe to plastoquinone QB and change the structure of the elec-
tron carrier (Krupa and Baszynski, 1995; Mohanty et al., 1989).
Sheoran et al. (1990) observed restriction of Calvin cycle in the
lives of Cajanus cajan. They argued that in 1 mM NiCl2, the Ni inhi-
bits the activities of Rubisco, 3-phosphoglycerate kinase, fructose-
1, 6-bisphosphatase, aldolase, and NAD. Search conditions decrease
the rate of photosynthesis and result in the development of toxicity
of Ni. Molas (1998) observed a significant reduction in the photo-
synthesis of Brassica oleracea in the presence of 10–20 g/m3 NiSO4-
�7H2O. They suggested that the cell’s moisture contents
were decreased when plants were cultivated in Ni toxicity and
induced a condition of stress, which results in low photosynthetic
activity of leaves.

Barsukova and Gamzikova (1999) noted that the reduction in
the intake of Mg, Fe and Zn due to a higher intake of Ni (Calzado
et al., 2005) resulted in the chlorosis (Khalid and Tinsley, 1980;
Piccini and Malavolta, 1992). Pandolfini et al. (1992) noted a signif-
icant decrease in wheat’s calcium and magnesium concentration
when cultivated under 0.1–1 mM Ni concentration. Also, Ni shows
an iron antagonistic relationship with potassium in the soil
(Pulford and Watson, 2003).

Furthermore, pigeon pea’s mitotic activity is significantly
decreased due to Ni higher concentration (Madhava Rao and
Sresty, 2000). The toxicity of Ni also reduces the germination of
plants (Madhava Rao and Sresty, 2000). In the case of cereals,
mostly the wheat plants (Fig. 3), it retards the growth of shoot
(Gajewska et al., 2006) and also decreased productivity due to
low pods in seed formation (Tripathy et al., 1981). Therefore, the
necessity of time is to introduce such an organic amendment that -
can detoxify these toxins from the soil on a long-term basis.
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6. Biochar as remediation

Activated black carbon fiber is one of such organic amendments
that immobilizes heavy metals in the soil and decreases their
bioavailability to the plants (Danish and Zafar-ul-Hye, 2020;
Major, 2011; Radziemska et al., 2021; Sultan et al., 2020;
Verheijen et al., 2010; Zafar-ul-Hye et al., 2020c). It is a fine black
powder, a highly porous carbon structure that can be used as a fer-
tilizer and soil conditioner. It can modify the physical, chemical,
and biological attributes of the soil. Most physical properties of soil
such as texture, structure, pore size distribution, and density with
implications for soil aeration, water holding capacity (Danish et al.,
2020, 2015a, 2015b; Danish and Zafar-ul-Hye, 2020, 2019; Fiaz
et al., 2014; Zafar-ul-Hye et al., 2020c) and soil workability are pos-
itively and directly affected biochar’s application in the soil as an
amendment (Danish et al., 2019b, 2015b; Downie et al., 2012;
Hashmi et al., 2019; Zafar-ul-Hye et al., 2019).



Fig. 4. Preparation of Biochar.
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The history of biochar starts from the ‘‘Terra Preta de Indio” oxi-
sols in Brazil which are suggested as Amazonian Dark Earth (ADE)
developed about 7000 years ago. Most anthropogenic activities
were involved in the establishment of these soils (Glaser, 2007).
It has been observed that the fertility status of the soils was excel-
lent due to the presence of significant amounts of char and organic
debris, which act as natural soil fertilizers in the soil (Woods and
Denevan, 2009). A significant increase in the yield of crops (Table 2)
was observed in these soils compared to other soils where char
was not applied as an amendment (Renner, 2007).

Current assessments elaborated that biotech application in soil
significantly increased the carbon pool of soil through pyrolysis
and unlimited oxygen availability. Biochar is produced using the
organic waste materials collected from agricultural fields (Danish
and Zafar-ul-Hye, 2020; Lehmann et al., 2006; Woolf et al.,
2010). When carbon-containing biomass is heated in the absence
of oxygen at 450–6500C, a significant amount of volatile matter
is admitted in gases. These gases can be collected in condensed
to get bio-oils, which help decrease environmental pollution
and provide an alternative energy source (Sohi et al., 2010). The
biochar is mainly prepared by pyrolysis, which is divided into three
major stages. In the first one, biomass having carbon is converted
into unreacted water and residue (Fig. 4). In the second step, most
of the volatile gases are emitted and left the biochar behind. In the
Table 3
Different functional group in different waste material produced biochar which can
immobilize Ni and Cd.

Waste material
for biochar

Functional

groups

Heavy
metal
which is
absorbed

References

Rice straw Carboxyl Ni (Ali et al., 2020)

Wood and bark
chars

Hydroxyl Cd (Mohan et al., 2007)

Cotton seed hull
char

Carbonyl,

Carboxyl

Ni, Cd (Uchimiya et al.,
2011)

Green waste Aromatic Cd (Park et al., 2011)
Wheat straw Carbonyl Cd (Cui et al., 2012)

Rice straw Carboxyl,

Hydroxyl

Cd (Jiang et al., 2012)

Rice straw Carboxyl,

Hydroxyl

Ni, Cd (Deng et al., 2019)
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last step, the structural and chemical modifications occur in this
biochar (Demirbas, 2004).

Scientists nowadays are developing different biochar using dif-
ferent organic waste Biomass through pyrolysis (Park et al., 2011;
Sohi et al., 2010). The application of biochar saved our environment
from polluted gases and played an essential role in decreasing fer-
tilizers’ volatilization losses (Woolf et al., 2010), also use of bios-
timulant and foliar application of fertilizer reduses the direct
application of fertilizer to the soil (Abbas et al., 2020; Izhar Shafi
et al., 2020; Rafiullah et al., 2020; Ullah et al., 2020). Micropores
of biochar significantly increased the soil’s water holding capacity
and decreased the soil infiltration rate. It also plays a crucial role in
increasing the soil’s surface area (Downie et al., 2012). It has been
observed that chemical properties of soil such as pH, electrical con-
ductivity, cation exchange capacity, nutrients holding capacity, and
water holding capacity of soil become improved when biochar is
applied as an amendment. A significant improvement in the micro-
bial growth and soil population through biochar application vali-
dated its effectiveness as a soil amendment (Amonette and
Joseph, 2009; Verheijen et al., 2010; Warnock, 2009). Furthermore,
micro aggregates’ stability is also enhanced due to activated carbon
biochar’s high binding ability (Lu et al., 2014).

Small pore spaces in biochar provide shelter to the microorgan-
ism present in the rhizosphere. Such conditions provide a chance
for microbes to better floor acceleration and growth (Quilliam
et al., 2013). As compared to organic matter, the shelf life of acti-
vated carbon is high. It remains in the soil for an extended period
compared to the organic matter due to its high resistance against
the composition process (Downie et al., 2012; Pathan et al.,
2018; Thies and Rillig, 2009; Woods and Denevan, 2009). Activated
carbon biochar has many functional groups that act as binding
sites for heavy metals (Table 3).

When biochar is applied in the soil, the heavy metals become
bound on the biochar’s active sites, significantly decreasing their
mobility in soil and bioavailability to the plants (Machida et al.,
2005). The above mineral nutrition, an integral part of the biochar
structure, is also released in the soil and on the exchange sites that
become readily available to the plants. Such conditions improve
soil fertility and decrease the chances of heavy metals uptake,
potentially toxins for plants, humans, and animals (Quilliam
et al., 2013).
7. Conclusion and future perspective

Biochar is an effective organic amendment that can improve soil
fertility status. Besides improving soil health by ameliorating the
physio-chemical and biological properties of soil, it can mitigate
Cd and Ni toxicity in different crops. The different scientist has
done much work for manufacturing of thermo-pyrolyzed biochar.
However, the need for time is to convert the production technology
to chemically pyrolyzed biochar manufacturing. It decreases the
potential hazards and can be easy for the industry to produce acti-
vated carbon on a large scale.
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