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Abstract
The Asian clam, Corbicula fluminea, is an invasive alien species (IAS) originally from Asia

that has spread worldwide causing major ecological and economic impacts in aquatic eco-

systems. Here, we evaluated C. fluminea genetic (using COI mtDNA, CYTb mtDNA and

18S rDNA gene markers), morphometric and sperm morphology variation in Portuguese

freshwater ecosystems. The COI marker revealed a single haplotype, which belongs to the

Asian FW5 invasive lineage, suggesting a common origin for all the 13 Portuguese C. flumi-
nea populations analysed. Morphometric analyses showed differences between the popula-

tions colonizing the North (with the exception of the Lima River) and the Centre/South

ecosystems. The sperm morphology examination revealed the presence of biflagellate

sperm, a distinctive character of the invasive androgenetic lineages. The low genetic vari-

ability of the Portuguese C. fluminea populations and the pattern of sperm morphology have

been illuminating for understanding the demographic history of this invasive species. We

hypothesize that these populations were derived from a unique introductory event of a Cor-
bicula fluminea FW5 invasive androgenic lineage in the Tejo River, which subsequently dis-

persed to other Portuguese freshwater ecosystems. The C. fluminea asexual reproductive
mode may have assisted these populations to become highly invasive despite the low

genetic diversity.

Introduction
Biological invasions by bivalve mollusc species have become a worldwide problem due to their
dispersal capacity and effects on biological diversity, and ecosystems functions and services [1–
3]. The Asian clam Corbicula fluminea (Müller, 1774) is nowadays globally distributed and its
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invasive success is responsible for major ecological and economic impacts [4–6]. The successful
invasive behaviour of C. flumineamay be related to their biological traits, namely: (i) rapid
growth, (ii) early sexual maturation, (iii) short life span, (iv) high fecundity, (v) high filtration
rates, (vi) broad dispersal capacities (which include natural vectors), (vii) ability to inhabit dif-
ferent substrate types, (viii) competitive success over native species and (ix) interactions with
human activities [4,7,8]. Major ecological impacts are related with trophic and non-trophic
(engineering) mechanisms [8,9]. As a filter feeder, this species is responsible for great changes
in phytoplankton and zooplankton communities [8,9]. C. fluminea populations may reach
great densities and biomass being also consumed by higher trophic levels [8,9]. Regarding non-
trophic mechanisms major effects are related with engineering activities, which may be respon-
sible for great changes in water clarity, bioturbation of sediments, nutrient cycling and sub-
strate colonization mainly due to the massive presence of shells [6,10–12].

Even though the ecological and economic impacts caused by C. fluminea are substantially
documented, their taxonomic status is still unclear. Initially, morphology-based taxonomy led
to an excessive number of species within the genus Corbicula [13]. This was mainly due to the
observed high shell plasticity [14,15], which is attributed to different biotic (e.g. predation) and
abiotic (e.g. water current, sediment) factors [16]. However, additional studies relying mostly
on genetic analyses—alloenzymes [17–19] and mitochondrial cytochrome c oxidase subunit I
DNA sequences [20,21]–proposed the existence of fewer species [14,22,23].

Interestingly, the genus Corbicula presents different reproductive strategies, being able to
reproduce sexually [24,25] and asexually [26–30]. Previous reports also indicate that a rare
form of asexual reproduction known as androgenesis occurs within the genus Corbicula. This
phenomenon occurs after the self-fertilization process—by an oocyte and a biflagellate sperm,
which is a distinctive character of androgenetic lineages of the genus Corbicula found in both
native and invasive populations [25,28,31–35]–where the maternal nuclear DNA is completely
removed, while the retained male pronucleus develops into an “all-male” zygote nucleus, thus
giving rise to a progeny of paternal clones [26,27,31,32]. In addition, “egg parasitism” also
known as “mitochondrial DNA capture”may occur between the crossing of two different
androgenic lineages of the genus Corbicula, with the sperm from one lineage being able to fer-
tilize the egg of another lineage [34,36]. The maternal nuclear DNA of the second lineage is
generally mostly extruded from the egg, while the paternal nuclear genome continues to
develop but the maternal mitochondrial DNA from the second lineage is captured in this pro-
cess, giving rise to offspring that possess cytoplasmic-nuclear disjunction [34,37–42]. However,
occasionally during this process, part or the entire maternal nuclear DNA is not completely
expelled from the egg, giving rise to “nuclear genome capture” whereby the offspring inherits a
hybrid genome [35,36,39,40]. Such distinctive reproductive modes seem to benefit Corbicula
species fitness and may contribute to the invasive success of the four genus Corbicula invasive
lineages. Three of these, namely FW1 (form B), FW4 (form Rlc) and FW5 (forms A/R) have
been reported in the native (Eastern Asia) and in the non-native range (Europe and North
America). The fourth, FW17 (form C/S) has been detected outside the native range but not yet
in Eastern Asia [35,36,40,42].

Currently, C. fluminea presents a widespread geographic distribution and has invaded eco-
systems throughout Europe, North and South America, and more recently North Africa [43–
47]. Records indicate that C. fluminea was first detected outside its native range (Eastern Asia)
in 1924 in Vancouver Island, British Columbia [43,45]. By the 1970s it had spread throughout
North and South America [46] and reached Europe at least as early as the 1980s [44]. Britton
and Morton [48] suggested that C. fluminea was firstly introduced in the North American con-
tinent as a food source for humans. However, the introductions into Europe and South Amer-
ica are believed to have occurred via ballast water [7]. Consequently, C. fluminea dispersed
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within the continents by different dispersal vectors—commercial transportation and other
human activities but also by natural vectors such as birds and mammals—which promoted
their rapid spread [7,45,49,50]. In Portugal, C. fluminea was first detected in the Tejo River in
1980 [44] and a few years later was reported in the Douro [51], Minho [23], Lima [52], Mon-
dego [53] and Guadiana [54] Rivers. The history of introduction and further establishment of
the species in the Tâmega, Tua, Sabor and Sado Rivers and Pateira de Fermentelos Lake are
unknown.

The main objectives of this study were to assess the genetic variability and the phylogeogra-
phy of C. fluminea Portuguese populations employing molecular, morphometric and morpho-
logical sperm analysis. The obtained results were compared with other available worldwide
data of Corbicula spp. from native and invaded regions applying population genetics and phy-
logeographical inference methodologies.

Material and Methods

Ethics statement
The study did not involve any kind of endangered or protected species. No specific scientific
research permits were required for the sample collection of these highly invasive invertebrates.

Study area and sample collection
A total of 328 specimens of C. fluminea were randomly collected in 16 different sites belonging
to 13 distinct ecosystems: Minho (four different sites, N = 100), Lima (two sites, N = 40),
Tâmega (one site, N = 10), Tua (one site, N = 8), Sabor (one site, N = 10), Douro (one site,
N = 10), Paiva (one site, N = 7), Mondego (one site, N = 30), Tejo (one site, N = 30), Sado (one
site, N = 15), Mira (one site, N = 30), Guadiana (one site, N = 30) Rivers and Pateira de Fer-
mentelos Lake (one site, N = 8), using a scoop net or by handpicking (Fig 1). Clams were
immediately transported to the laboratory where all the soft body parts were isolated and indi-
vidually stored at -80°C prior to DNA extraction.

Genomic DNA extraction, PCR gene amplification and sequencing
Total genomic DNA was extracted from 328 samples of C. fluminea foot tissue employing the
salting-out method [57]. The mitochondrial genes COI (N = 328) and CYTb (N = 110) and the
nuclear gene 18S rDNA (N = 110), were amplified in a total volume of 40 μl per reaction con-
taining: 1x PCR buffer, 2.5 mMMgCl2, 250 μM of each dNTP, 0.5 U of DNA Taq polymerase
(Bioline, Luckenwalde, Germany), 10 pmol of a specific set of primers– LCO1490 and
HC02198 for the COI [58], the HOLLAND18S1 and HOLLAND18S2 for the 18S rDNA [59]
and CBF6 and CBR6 for the CYTb [60]. The following PCR cycling conditions were used for
the amplification of the mtDNA COI gene: 1 min at 94°C for initial denaturation, followed by
35 cycles of 1 min at 94°C, 30 s at 45°C, 1 min at 72°C and final extension of 10 min at 72°C
[58]. The 18S rDNA gene reactions were performed with the following PCR cycling parame-
ters: 5 min at 95°C for initial denaturation, followed by 25 cycles of 4 s at 94°C, 2 min at 50°C, 1
min at 72°C and final extension of 8 min at 72°C [59]. The CYTb amplifications were per-
formed with the following PCR cycling conditions: 2 min at 94°C for initial denaturation, fol-
lowed by 35 cycles of 3 min at 94°C, 45 s at 54°C, 2 min at 72°C and final extension of 5 min at
72°C [60]. All PCR products were purified using Diffinity Rapid Tip (Diffinity Genomics, Inc,
West Henrietta, NY) according to the manufacturer’s instructions. The final PCR amplifica-
tions were confirmed by electrophoresis in a 1.5% w/v agarose gel stained with ethidium bro-
mide (Bio-Rad Laboratories Inc., California, USA) and followed by direct sequencing
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(Macrogen Amsterdam, Netherlands). The NCBI-BLAST program was employed for sequence
identification and comparison [61,62].

Phylogenetic analysis—mtDNA COI, CYTb and 18S rDNA genes
A total of 93 Corbicula spp. sequences of the mtDNA COI gene were retrieved from the NCBI-
GenBank [62,63] and Neocorbicula limosa was used as an outgroup for phylogenetic and phy-
logeographic analysis. The mtDNA, 18S rDNA and CYTb sequence alignments were per-
formed employing the default parameters of ClustalW in MEGA 6 software [64,65]. DnaSP
5.10 was used for haplotype inference [66]. Phylogenetic tree construction employed Bayesian
Inference (BI) using MrBayes 3.1.2 [67] and Maximum Likelihood (ML) using PhyML 3.0.1
[68]. Both BI and ML employed the GTR + γ + I nucleotide evolutionary model based on the
Akaike information criterion (with 95% confidence interval), using the jModelTest 2.1.1
[69,70]. The ML analysis used 1000 bootstrap replicates [68]. The BI analysis was performed
employing 5000000 generations, the trees were sampled every 1000th generation and a total of

Fig 1. Hydrological data of the studied Portuguese rivers. Location of the sampled sites and additional information about length and area of the river
and lake basins in Portuguese territory [55,56].

doi:10.1371/journal.pone.0158108.g001
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25% of the generated trees were discarded. The tree convergence was evaluated in MrBayes by
analysing the parameters set values of the Potential Scale Reduction factor (PSRF) and the Esti-
mated sample size (ESS). In addition, further visual and numeric convergence was assessed
using Tracer v1.6 software [71].

Morphometric analysis
The shells of 275 C. fluminea specimens—from the Minho, Lima, Mondego, Sado, Mira, Tejo
and Guadiana Rivers—were measured for length, height and width using a digital calliper
(±0.2 mm). A Principal Component Analysis (PCA) was carried out using the three morpho-
logical measurements and the determination of the PCA components was performed using the
correlation matrix in the “princomp” function of the R statistical software [72].

Spermmorphology
A sample of Corbicula fluminea (N = 10 from the Douro River) was collected to perform
sperm morphology analyses. The sperm was obtained by collecting one drop of the specimens
fresh gonadal tissue/fluid [73] in a glass slide and optical microscopy at 100x magnification
was employed to observe the spermatozoa.

Results

Mitochondrial DNA—COI gene
The obtained mtDNA COI sequences from all the 328 analysed individuals presented a unique
haplotype which was phylogenetically compared with 93 other sequences from worldwide Cor-
bicula spp. populations retrieved from GenBank [61–63]. Both BI and ML inferences imple-
mented to reconstruct phylogenetic relationships between haplotypes displayed similar
topologies (Fig 2).

The phylogenetic analysis demonstrated the existence of two well supported clades: the estu-
arine and the freshwater (1.0/80 and 0.97/79 support values, respectively). The latter clade
splits into five groups—I, II, III, IV and V—which includes Corbicula specimens from different
geographical ranges within Asia, Europe, North and South America, Africa and Oceania (0.97/
96 node support) and C.madagascariensis, which is an outgroup of the freshwater Corbicula
spp. lineages. For phylogenetic analysis purposes the classification “Group I-V” was employed
in this study and does not imply the existence of haplotype similarity.

The evaluation of Portuguese freshwater populations—Minho, Lima, Tâmega, Tua, Sabor,
Douro, Paiva, Tejo, Sado, Mira, Guadiana Rivers and Pateira de Fermentelos Lake—revealed
only one mtDNA COI haplotype (belonging to group IV with 0.90/85 node support), which is
identical to previously reported haplotypes from Europe (form R), North America (form A),
South America and the FW5 invasive lineage from Asia (Fig 2).

Group I (0.97/96 node support) encompasses two invasive lineages, the FW1 (form B) from
Asia and North America and the FW4 (form Rlc) present in Asia and Europe, whereas group
IV (0.90/85 node support) represents the invasive lineage FW5 (form A/R) from Asia, Europe
and North America. Both of these groups include COI haplotypes from both the native and
non-native range. Groups II and V (1.0/95 and 0.86/91 node support, respectively) are strictly
confined to Eastern Asia. Group III (0.69/55 node support) is the only group that includes
most of the genus Corbicula haplotypes from the non-Asian range, namely from: Europe,
South America, Africa and Oceania (with the exception of Israel which is a Western Asian
country), as well as the FW17 (C/S form), detected exclusively in non-native regions, namely
Europe, Africa and South America.
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Fig 2. Bayesian phylogenetic tree of the mtDNACOI gene fromCorbicula genus. Both Bayesian Inference
posterior probabilities (BI) andMaximum Likelihood bootstrap values (ML) are indicated at the nodes.* Indicates
the presence of monoflagellate sperm, ** indicates the presence of biflagellate sperm, α represents androgenetic
lineages confirmed by cytological studies [25,32,73,74].

doi:10.1371/journal.pone.0158108.g002
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CYTb and 18S rDNA genes
A subsample comprising a total of 110 specimens was used to evaluate the genetic variability of
the mitochondrial CYTb and the nuclear 18S rDNA genes. The analysis revealed that only two
haplotypes—one for the 18S rDNA (accession no. KT878642) and one for CTYb (accession no.
KT878643)–were detected in Portuguese C. fluminea populations. This finding, suggests that
Portuguese C. fluminea populations present a low genetic variability for these two markers.
Further analyses employing these two markers were not carried out due to insufficient data
available in the Genbank database.

Morphometric analysis
The two PCA components explaining most variation (in total 99.4%) were jointly plotted to
seek clusters related to the river/region location of each specimen (Fig 3). The PC1 and PC2
components suggest the existence of two clusters: north cluster (N), which includes C. fluminea
specimens from the Minho River; and centre/south cluster (C/S) comprising specimens from
Mondego, Tejo, Sado, Mira, Guadiana Rivers. However, the majority (31) of the specimens
from the Lima River (N = 40), located in the North of Portugal, grouped within the C/S cluster.
Therefore, morphologically they present more similarities with the C. fluminea populations
from the centre and south.

Spermmorphology
The sperm morphology analysis of the subset C. fluminea inhabiting the Douro River clearly
revealed the presence of biflagellate spermatozoa (Fig 4), a distinctive character of androgenetic
lineages of the genus Corbicula, which are associated with high invasive potential but low
genetic variability [35,40–42,74].

Discussion

Genetic and morphological analysis of the Portuguese Corbicula
fluminea populations
The database sequence comparisons and the phylogenetic inference revealed the existence of a
unique mtDNA COI haplotype in the studied Portuguese C. fluminea populations belonging to
group IV. This haplotype is identical to the European haplotype I [20], the North American
haplotype form A [21] and the Asian FW5 haplotype [33]. In addition, the FW5 haplotype
comprehends the majority of Corbicula spp. with biflagellate sperm which is indicative this
lineage reproduces through androgenesis, a rare form of asexual reproduction [40,42].

A previous study also reported the existence of this mtDNA COI haplotype in C. fluminea
populations of the Minho and Lima Rivers (38 out of 41 individuals analysed in six different
sampling sites) and three other rare haplotypes (each represented by only one specimen) in the
Minho River [16]. However, in the present study, those rare haplotypes were not observed
despite analysis of an eight times larger sample size (N = 328). The absence of the rare haplo-
type most probably resulted from the erosion of the genetic variability due to C. flumineamas-
sive mortality events that occur recurrently in the Minho River [75,76] potentially leading to
the loss of these rare alleles by genetic drift after a reduction in the population size [77]. Even
though the C. fluminea population recovered rapidly from these die-offs and attained its previ-
ous biomass and density [75], our data shows the lack of variation of the mtDNA COI in a con-
siderable large number of individuals from the Minho River (N = 100).

The genetic analysis of the mtDNA CYTb and 18S rDNA also yielded only one sequence for
each marker in the studied C. fluminea populations. The mtDNA CYTb haplotype has also
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been reported in Japanese populations [60]. The 18S rDNA sequence corresponds to the same
previously found in other European and North American populations namely, Spain [78], the
United Kingdom [79] and the USA [80,81]. Therefore, the present study indicates a low genetic
variability within the both mitochondrial (COI) and the nuclear markers (18S) in C. fluminea
populations from the main Portuguese basins. Thus, this seems to be a general pattern in C. flu-
minea Portuguese populations. In addition, the sperm morphology revealed that at least one
sample of the Portuguese C. fluminea lineage is biflagellate, a distinctive character of the asex-
ual androgenetic lineages [28,31]. Given the lack of genetic variability detected in the studied
populations with the employed genetic markers, we hypothesize that the Portuguese C. flumi-
nea has derived from an androgenetic invasive asexual lineage with low mitochondrial genetic

Fig 3. Principal Component Analysis. The PCA showing the relationship of the PC1 and PC2 components of Corbicula fluminea
populations from rivers of the North, Centre and South of Portugal, and the Lima River (North Portugal). Each circle represents one
specimen corresponding to a specific river. The N cluster in the light red oval circle representsC. fluminea populations from the northern
rivers and C/S in light green oval represents the centre and southern rivers cluster.

doi:10.1371/journal.pone.0158108.g003

Low Genetic Diversity and High Invasion Success of Corbicula fluminea in Portugal

PLOS ONE | DOI:10.1371/journal.pone.0158108 July 8, 2016 8 / 16



variability. In fact, some case-studies have reported successful invasions with low or no genetic
variation in animals and plants regardless of their reproduction mode—in Africa diverse geno-
types of the water flea Daphnia pulex have been replaced by a single non-native clone from the
American continent [82], introduced populations of invasive Argentine ant Linepithema
humile in California present a loss of genetic diversity which is associated with reduced intra-
specific aggression and form interspecific dominant supercolonies [83], the Meditterranean
bluespotted cornetfish Fistularia commersonii exhibits low genetic variability in comparison to
the Indo-pacific native range [84] and the invasive water hyacinth Eichhornia crassipes from
the Amazon basin presents one main clonal genotype in China [85,86]. In this case, C. fluminea
asexual reproductive mode may assist these populations to become highly invasive despite
their observed low genetic diversity [87,88]. However, further studies using other nuclear
markers are required to confirm the low genetic variability at the nuclear level. Despite the low
genetic variation in the mtDNA (COI and CYTb) and rDNA (18S) in C. fluminea populations
found in the present study, we hypothesize that an asexual reproduction strategy might seem
to increase their reproductive potential, thus contributing to their high invasive success [35,40–
42,74]. Therefore, considering the invasive history of C. fluminea in Portugal, we hypothesize
that the low genetic variability found in populations from main rivers all over the country, is a
result of the introduction of an asexual lineage with a reduced genetic pool in Tagus River—
where this species was first reported –that rapidly spread to other Portuguese freshwater eco-
systems. This spread may have occurred through different dispersal mechanisms that may
include human activities or natural dispersion by birds, mammals and fish as previously
reported [4,7,49,89]. While the Portuguese C. fluminea populations exhibited low genetic vari-
ability, morphological differences have been detected in the present study (Fig 3). Two mor-
photypes were observed, one corresponding to C. fluminea populations from the northern
rivers and, the other, corresponding to populations from centre/southern rivers. The exception
is the population of the Lima River—located in the north of Portugal—that is morphologically
more similar to Centre/South populations than to other northern populations. The observed
morphological differences may be attributed to biotic or abiotic factors that influence shell
morphology that may include avoidance of predation and parasitism, different current flow

Fig 4. Spermmorphology of Corbicula fluminea from Portugal. Biflagellate sperm of a specimen of C.
fluminea from the Douro River (Microscopy photograph acquired by Olympus SZX10 microscope with an
integrated Olympus D72 camera).

doi:10.1371/journal.pone.0158108.g004
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conditions, type of substratum, conductivity and calcium availability, among other factors [90–
94]. The morphometric analysis of the studied C. fluminea populations may provide some eco-
logic insight, but further studies employing a hierarchal experimental design—composed of a
robust C. fluminea sampling, evaluation of densities and the evaluation of both biotic and abi-
otic factors in these ecosystems—would be necessary to acquire a deeper ecological knowledge
of the spatial variability of this species.

Global haplotype diversity and distribution of the genus Corbicula
Most of the groups resolved in the phylogenetic inference present polytomies (Fig 2), indicat-
ing that Corbicula spp. dispersal occurred in a short temporal scale [95]. From a global perspec-
tive, we can observe that the native range presents higher Corbicula spp. haplotype diversity–
40 out of 47 haplotypes—in comparison to the invaded regions (Fig 5). However, the confine-
ment or the absence from the species’ native range of some Corbicula spp. (groups II, V and
III, respectively) still remains to be explained [74]. Perhaps physiological and environmental
constraints and/or Corbicula spp. habitats that are less subjected to human mediated activities
may in fact be inhibiting the spread of these haplotypes that derive from well-established popu-
lations [4]. Further studies should be performed to address these questions.

Fig 5. Worldwide map representing theCorbicula spp. distribution from the native and the non-native range.N indicates the number of haplotypes.
Exclusively from the native-range two groups II and V (N = 10 haplotypes and N = 14 haplotypes, respectively). Group I is represented by 9 haplotypes and
group IV by 7. The non-native range group I represents 4 haplotypes (North America, N = 1; South America, N = 2 and Europe N = 1). Group III englobes a
total of 6 haplotypes; (Africa, N = 1; South America, N = 1; Europe N = 3 and Oceania, N = 1). Group IV presents a total of 3 haplotypes (North America
N = 1, Europe N = 1 and Africa N = 1).

doi:10.1371/journal.pone.0158108.g005
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The dispersal trajectory of the Corbicula spp. invasive lineages
It is generally accepted that the Corbicula spp. invasion in Europe was exclusively by water bal-
last transport from America [96]. However, recent genetic studies are not able to confirm
whether the primary introduction of the invasive lineage FW5 (form A/R) in Europe was via
North and/or South America [74]. However, we cannot exclude the hypothesis that the Corbic-
ula spp. may have also been introduced into the European continent directly from the Asian
populations (Fig 6). The FW1 (form B) and the FW4 (form Rlc) invasive lineages (Figs 4 and
6) both clustered in group I. It has been proposed that both lineages may possess the same
mitochondrial ancestor due to the detection of only one nucleotide difference in the mtDNA
COI gene [74]. Interestingly, the FW17 (form C/S) invasive lineage has not been detected in
the eastern native range Corbicula sp. (Figs 4 and 5). In fact, a recent population genetic study
[74] corroborates this result and hypothesizes an introduction of the FW17 invasive lineage
from the African continent and subsequent spread to the South America and subsequently into
Europe. Nevertheless, inferring introductions routes for the Corbicula species is indeed an
arduous task, especially when considering the existent taxonomic controversy in this genus.
Perhaps an integrative approach employing ecology, morphology and genetic techniques may
provide further insights regarding the invasive dispersal trajectory of this IAS.

Fig 6. Dispersal routes ofCorbicula spp. invasive lineages. EstablishedCorbicula spp. dispersal routes are represented by continuous lines and dash
lines correspond to other possible spread routes.

doi:10.1371/journal.pone.0158108.g006
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Conclusions
C. fluminea populations from the main Rivers in Portugal revealed a low genetic variability
with the employed genetic markers—COI, CYTb and 18S –despite the large number of individ-
uals detected in the studied ecosystems. The mtDNA COI and the presence of biflagellate
sperm indicate that Portuguese C. fluminea populations belong to the FW5 androgenetic inva-
sive lineage. Thus, we suggest that a reduced genetic pool was probably recently introduced
first in the Tagus River and afterwards spread quickly to other Portuguese freshwater ecosys-
tems. At the moment is not possible to unambiguously infer neither the C. fluminea primary
introductory route(s) within Portugal nor the main population source (North America and/or
South America or directly from Asia).
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