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Once a universally fatal disease, B-ALL of childhood is cur-
able in the majority of cases. An exception is B-ALL arising 
in children younger than one year of age (infant B-ALL), 

which remains fatal in more than 50% of children1,2. Most cases 
(70–80%) of infant B-ALL are associated with rearrangements of 
the KMT2A gene (encoding a histone methyltransferase), which 
confers an especially poor prognosis2. Various hypotheses have 
been proposed to account for the aggressive nature of infant B-ALL. 
In particular, it has been suggested that infant lymphoblasts retain 
myeloid features that confer resistance to treatment strategies 
aimed at ALL3. Disappointingly, although protocols incorporating 
strategies from acute myeloid leukemia (AML) therapy marginally 
increased survival, additional intensification has not improved this 
further1. Similarly, salvage treatments that have proven successful 
in high-risk lymphoblastic leukemias, such as allogeneic stem cell 
transplantation or chimeric antigen receptor T cells targeting B-cell 
antigens, produce disappointing outcomes in infant B-ALL4,5. It is 
noteworthy that infant B-ALL not associated with KMT2A fusion, 
especially those with NUTM1 gene rearrangements, confer a more 
favorable prognosis6,7 and that KMT2A rearrangements in the set-
ting of adult B-ALL are also considered high risk8. These observa-
tions raise the question whether the aggressive clinical behavior of 

KMT2A-rearranged infant B-ALL is underpinned by a distinct cel-
lular phenotype.

Leukemias are primarily classified by their morphological 
appearance or immunophenotype, as assessed by flow cytometric 
analyses of key hematopoietic markers and cytogenetic changes. 
Generally, this approach is likely to capture the differentiation state 
of most leukemias accurately. Occasionally, it may be erroneous 
when cancer cells use key hematopoietic genes aberrantly, particu-
larly in leukemias that are driven by mutations in genes that facili-
tate lineage plasticity, such as KMT2A. In this context, a quantitative 
molecular assessment of hematopoietic cell states that does not rely 
on any individual marker, but instead builds on entire cellular tran-
scriptomes, would provide an unbiased readout of cell states. Such 
high-resolution assessments are now feasible using single-cell mRNA 
sequencing to directly compare cancer cells to normal cells, includ-
ing to fetal and adult hematopoietic cells9–12. We set out to study the 
developmental phenotype of KMT2A-rearranged infant B-ALL by 
comparing cancer cells with normal human hematopoietic cells.

Results
Cell signal analysis of 1,665 leukemia transcriptomes. The start-
ing point of our investigation was a meta-analysis of 1,665 bulk 
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KMT2A-rearranged infant ALL is an aggressive childhood leukemia with poor prognosis. Here, we investigated the devel-
opmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia (B-ALL) using bulk messenger RNA 
(mRNA) meta-analysis and examination of single lymphoblast transcriptomes against a developing bone marrow reference. 
KMT2A-rearranged infant B-ALL was uniquely dominated by an early lymphocyte precursor (ELP) state, whereas less adverse 
NUTM1-rearranged infant ALL demonstrated signals of later developing B cells, in line with most other childhood B-ALLs. We 
compared infant lymphoblasts with ELP cells and revealed that the cancer harbored hybrid myeloid–lymphoid features, includ-
ing nonphysiological antigen combinations potentially targetable to achieve cancer specificity. We validated surface coexpres-
sion of exemplar combinations by flow cytometry. Through analysis of shared mutations in separate leukemias from a child with 
infant KMT2A-rearranged B-ALL relapsing as AML, we established that KMT2A rearrangement occurred in very early develop-
ment, before hematopoietic specification, emphasizing that cell of origin cannot be inferred from the transcriptional state.
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transcriptomes representing the entire spectrum of childhood ALL 
and AML across two cohorts, St. Jude Children’s Research Hospital 
(St Jude’s; n = 589) and TARGET (Therapeutically Applicable 
Research to Generate Effective Treatments; n = 1,076) (Fig. 1a and 
Supplementary Table 1). We determined the predominant hema-
topoietic cell signal within each bulk leukemia transcriptome by 
deconvolution. We chose a deconvolution method that uses entire 
transcriptomes to determine cell signals within bulk mRNA data and 
quantifies what proportion of the cancer bulk cannot be accounted 
for by normal reference cells13. As childhood leukemias, and infant 
ALL in particular, are generally thought to arise in utero14,15, we 
applied fetal hematopoietic cells as the reference in our analyses. 
To this end, we used recent single-cell mRNA data from ~60,000 
fetal bone marrow cells, which captured the greatest breadth of 
fetal hematopoietic cell types to date9 (Supplementary Table 2). We 
adopted the annotation of normal cell types directly from the fetal 
bone marrow data analysis9 and supplemented the hematopoietic 
reference with a control fetal cell type that should not be present in 
human leukemia samples, Schwann cell precursors (SCPs) derived 
from human fetal adrenal glands16.

A global overview of cell signals in bulk childhood leukemia 
transcriptomes showed expected patterns, namely myeloid signals 
in myeloid leukemias, T-cell signals in T-cell ALL and imprints 
of the various stages of B-cell development in B-ALL (Fig. 1b and 
Supplementary Fig. 1). Transcriptional signatures from the control 
SCP population did not contribute to leukemias (negative control 
analysis) and matched itself (i.e., SCPs) perfectly with no unex-
plained signal (positive control analysis). KMT2A-rearranged infant 
B-ALL exhibited distinct cell signals with a marked contribution of 
ELPs. ELPs are oligopotent lymphoid precursors that are capable of 
differentiating along different lymphocyte lineages and that retain 
minimal myeloid differentiation capacity in vitro17,18. Defined as 
CD34+CD127+CD10−CD19− cells, they sit upstream of pre-/pro-B 
and pro-B progenitors in the B lymphopoiesis hierarchy18.

An ELP signal in KMT2A-rearranged B-ALL. To further examine 
the ELP signal in KMT2A-driven infant B-ALL, we examined the 
ratio of the ELP signal over later stages of B-cell development in 
each leukemia subtype (Fig. 1c). This quantification demonstrated 
a significant shift toward the ELP state in KMT2A-rearranged infant 
ALL compared to other high (cytogenetic)-risk B-ALL subtypes 
(P < 10−19, Student’s two-tailed t test), standard (cytogenetic)-risk 
subtypes (P < 10−31) and currently unstratified subtypes of B-ALL 
(P < 10−13) (Fig. 1c). Among KMT2A-rearranged infant B-ALL, the 
ELP signal was present irrespective of fusion partners of KMT2A 
but strongest in cases harboring the most common KMT2A rear-
rangement19, the KMT2A-AFF1 (MLL-AF4) gene fusion (P < 0.01 
compared against other fusion partners; Mann–Whitney rank test) 
(Extended Data Fig. 1). The leukemias with the next highest relative 
ELP signals were PAX5 and MEF2D-mutated B-ALL, although the 
ELP signals there were accompanied by stronger signals from later 

B-cell stages. In contrast to KMT2A-rearranged B-ALL, differences 
between ELP signals and later B-cell signals were significant in 
PAX5- and MEF2D-mutated B-ALL (P < 0.01 and P < 0.05, respec-
tively; Wilcoxon signed-rank test). Although MEF2D mutation 
results in maturation arrest at the pre-B stage, its distinct immuno-
phenotype is recognized to overlap with both early and late B pro-
genitor stages20. The similarity of cell signals in PAX5 and KMT2A 
mutant B-ALL may represent the intimate relationship of KMT2A 
and PAX5 in regulating B lymphopoiesis21.

Studying the pattern of ELP signal across disease groups indi-
cated that the signal was specific to KMT2A rearrangements within 
a B-cell context but independent of age for three reasons. First, 
the ELP signal was not universally associated with KMT2A rear-
rangements; neither myeloid nor ambiguous lineage leukemias with 
KMT2A rearrangements harbored appreciable ELP signals. Second, 
the ELP signal was not driven by young age alone, as other infant 
leukemias (B-ALL, ambiguous lineage leukemia and AML) exhib-
ited no, or only minimal, ELP signal (Fig. 1c). In particular, infant 
B-ALL with NUTM1 rearrangement (which carries a favorable 
prognosis) exhibited cell signals more reminiscent of standard-risk 
childhood B-ALL, with a shift away from ELPs toward later B-cell 
stages. Third, KMT2A-rearranged B-ALL of older children did 
exhibit marked ELP signals akin to infant KMT2A-driven B-ALL. 
Overall, these findings led us to hypothesize that, relative to other 
B-ALL, KMT2A-rearranged B-ALL exhibits a distinct hematopoi-
etic phenotype primarily resembling ELP cells with limited signals 
of B-cell development.

Direct single cancer cell to normal cell comparison. To validate 
and further explore this proposition, we performed single-cell 
RNA-sequencing (scRNA-seq) analysis (10x Genomics) of diag-
nostic specimens from six infants with KMT2A-rearranged infant 
B-ALL, including a relapse presentation (case 3) and additional 
day 8 specimens from responding (case 1) and nonresponding 
(case 2) patients. We compared these to four other leukemias: 
NUTM1-rearranged infant B-ALL (n = 1), KMT2A-rearranged 
infant AML (n = 1), megakaryoblastic neonatal AML (n = 1) 
and childhood ETV6-RUNX1 B-ALL (a common subtype of 
standard-risk childhood B-ALL; n = 1) (Supplementary Table 3). 
From these 12 diagnostic leukemia samples, we obtained a total of 
30,242 cells, including 23,286 cancer cells that we identified based 
on gene expression matching patient-specific diagnostic flow cyto-
metric profiles (Supplementary Table 4 and Extended Data Fig. 2). 
Using a published cell-matching method based on logistic regres-
sion12,16, we directly compared leukemia transcriptomes with mRNA 
profiles of human fetal bone marrow cells to determine which 
normal cell type the cancer cells most closely matched. We found 
that KMT2A-rearranged infant B lymphoblasts overwhelmingly 
resembled ELP cells at diagnosis and relapse and in nonrespond-
ing disease (Fig. 2a–c). By contrast, non-ELP cell signals predomi-
nated in other types of leukemia, precisely as predicted from the 

Fig. 1 | Cell signal analysis of 1,665 leukemia transcriptomes reveals an ELP state in KMT2A-rearranged B-ALL. a, Schematic overview of the study 
approach. We assessed the differentiation state of KMT2A-rearranged infant ALL by measuring signals of human fetal bone marrow cell types across the 
entire spectrum of childhood leukemia in data derived from two different cohorts (St Jude’s and TARGET). We then validated cell signals by single-cell 
mRNA sequencing for direct comparison of cancer and normal cells. b, Heatmap showing mean cell signals of human fetal bone marrow cells (y axis) in 
human leukemia bulk transcriptomes subdivided by genetic subtype (see labels underneath, KMT2A rearrangements shown in red text), age (gray circle, 
infant; black circle, noninfant) and source (S, St Jude’s; T, TARGET). Numbers next to labels refer to case load per subtype. Subtypes with only one case 
were excluded from analysis. baso, basophil; CMP, common myeloid progenitor; Eo, eosinophil; LMPP, lymphoid-primed multipotent progenitor; MEM 
progen., ; MK, megakaryocyte; mono., monocyte; MOP, monocyte progenitor; MPP, multipotent progenitor; Neut., neutrophil; NK, natural killer; Promono., 
promonocyte. c, Top: box and whisker plots showing proportional contribution of signals (lymphomyeloid-primed progenitor, ELP and later B-cell stages 
combined (i.e., pre-/pro-B, pro-B, pre-B and naive B)) to the transcriptome of leukemias (see x axis labels). Bottom: box and whisker plots summarizing 
the ratio of ELP to later B-cell stage signals. Center lines represent the median, box limits represent 25%/75% quartiles and whiskers represent minimum/
maximum (top) and 1.5× interquartile range (bottom). n is the number of biologically independent variables, as listed below each group of plots. Risk 
refers to the clinical cytogenetic risk as defined in the protocol of the current European ALL trial ‘ALLTogether’ (EudraCT 2018-001795-38).
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initial deconvolution analysis (Fig. 1b). In particular, in the afore-
mentioned subtype of infant B-ALL with a favorable prognosis, 
NUTM1-rearranged infant B-ALL, single-cell analysis confirmed 

the shift toward pre-B-cell states and away from ELPs. To further 
explore the differences between KMT2A- and NUTM1-driven infant 
B-ALL, we performed independent differential gene expression 
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analysis of bulk transcriptomes and single-cell data, which yielded 
an overlapping list of 90 differentially expressed genes (Methods). 
Focusing on genes used in normal fetal bone marrow, we found 
that in KMT2A B-ALL, genes of early B-cell development were 
overexpressed, whereas in NUTM1 B-ALL genes of more differen-
tiated B cells predominated (Fig. 2d and Supplementary Table 5).  
These findings thus corroborate our proposition that the differen-
tiation state of NUTM1 blasts, similar to ETV6-RUNX1 blasts, is 
shifted toward later stages of B-cell development.

To determine the heterogeneity of B-cell states within patients, 
we performed logistic regression on a per-cell basis (Fig. 2c). This 
revealed in every case of KMT2A-rearranged ALL that the great-
est proportion of blasts with a close match to a specific developing 
B-cell type resembled ELP cells. Similarly, very few infant KMT2A 
lymphoblasts were dissimilar to ELP cells. By contrast, the devel-
opmental phenotype of NUTM1 and ETV6-RUNX1 lymphoblasts 
was shifted toward later B-cell stages, peaking at the pro-B-cell stage 
in terms of the similarity and dissimilarity of individuals blasts to 
fetal cells. Finally, we assessed by flow cytometry a set of six KMT2A 
infant B-ALL samples, including four primary samples (three inde-
pendent of the single-cell scRNA-seq cohort) and two xenografts 
derived from these patients. We demonstrated an ELP-like immu-
nophenotype in 80–90% of cells (Extended Data Fig. 3). Together, 
these findings confirm that an ELP-like developmental state pre-
dominates in KMT2A infant B-ALL at diagnosis and relapse in 
resistance and after xenotransplantation.

Phylogenetic timing of the origin of infant ALL. A key question 
raised by our findings is whether ELPs are the cells of origin of 
KMT2A-rearranged infant B-ALL or whether leukemia cells arise 
from another precursor and differentiate/dedifferentiate into an 
ELP-like state at which they arrest. A rare case of lineage switch-
ing from KMT2A-rearranged infant B-ALL to KMT2A-rearranged 
AML provided the opportunity to directly determine the cell of 
origin in phylogenetic temporal terms (Fig. 3a). We first assessed 
cell signals in bulk transcriptomes (in replicates) derived from a 
child with KMT2A-rearranged B-ALL and AML. Once again, we 
observed that ALL, but not AML transcriptomes, exhibited an 
ELP signal (Fig. 3b). To determine the phylogeny of the cancers, 
we performed whole-genome DNA sequencing of AML, ALL and 
remission bone marrow and called all classes of variants using an 
extensively validated mutation-calling pipeline22 (variant list in 
Supplementary Table 6). We determined the phylogeny of each 
leukemia and remission bone marrow. The remission sample and 
leukemias shared two mosaic (early embryonic) base substitutions, 
representing the first cell divisions of the zygote23,24. Thereafter, 
normal blood and leukemia lineages diverged. The common leu-
kemia lineage (that is mutations shared between ALL and AML, 
but not the remission sample) composed only six base substitu-
tions along with the KMT2A rearrangement (Fig. 3c,d), defining 
an early developmental window during which the translocation 
formed. Assuming a mutation rate of at least 0.9 substitutions per 

cell division, as recently established in human fetal hematopoietic 
cells25, six substitutions would place the emergence of the KMT2A 
rearrangement in early embryonic development, before hematopoi-
etic cell specification. After acquisition of the KMT2A fusion, the 
leukemia lineages diverged and gave rise to independent cancers, 
each exhibiting distinct phenotypes and somatic changes (including 
point mutations, copy-number profiles and mutational signatures) 
(Fig. 3c–e). Although this single case may not be representative 
of infant ALL generally or lineage-switch leukemias specifically, it 
demonstrates that the transcriptional state of cancer cells cannot 
unambiguously be used to infer its cell of origin.

Therapeutic hypotheses based on the ELP state of infant ALL. 
To distill the oncogenic features of the KMT2A-rearranged infant 
B-ALL transcriptome, we directly compared leukemia with ELP 
transcriptomes. We determined in independent analyses the 
differential gene expression between bulk KMT2A-rearranged 
infant B-ALL and published bulk ELP transcriptomes18 and 
between single lymphoblast and single ELP cell transcrip-
tomes (Fig. 4a). The overlap of these two independent analyses 
(Supplementary Table 7, N = 455) provided a cross-validated 
gene set, hereafter referred to as the cancer core transcriptome, 
that differentiates KMT2A-rearranged B lymphoblasts from their 
closest normal cell correlate (i.e., ELPs), which we annotated in 
five ways. First, we queried whether the cancer core transcrip-
tome contained known target genes of the KMT2A-AFF1 fusion26, 
the most common KMT2A rearrangement in B-ALL. We found 
63 of 455 genes to be targets of the KMT2A-AFF1 fusion, which 
represents a significant enrichment (P < 10−107, as assessed in a 
Monte Carlo simulation; Methods and Supplementary Table 7). 
Second, we discerned the lineage-independent effects of KMT2A 
translocation by overlapping the KTM2A-rearranged B-ALL 
cancer core transcriptome with genes differentially expressed 
in KMT2A-driven AML (relative to its normal cell correlate, 
monocyte progenitors (MOPs); case 10, Fig. 2a). We identified 
an overlapping gene set of 67 genes that, according to gene ontol-
ogy annotations, disrupted key regulatory processes such as cell 
communication, proliferation and development and promoted 
expression of genes maintaining a primitive state (HOXA6, 
BMI1 and MEIS1) (Supplementary Tables 7 and 8). Third, we 
asked whether the cancer core transcriptome encompassed 
lineage-specific genes by interrogating normal fetal bone marrow 
cells. We found that a subset of genes (n = 51) was lineage spe-
cific, representing either lymphoid or myeloid cell types (Fig. 4b).  
Fourthly, we annotated the cancer core transcriptome by gene 
ontology analysis. The top two disease annotations were lympho-
blastic and myeloid leukemia, further suggesting that the cancer 
core transcriptome encoded a hybrid myeloid–lymphoid pheno-
type (Supplementary Table 7). Finally, we identified cell surface 
antigens among differentially expressed genes, as many novel treat-
ments in childhood leukemias center on targeting blast markers  
through antibodies or genetically modified T cells. A total of 41 

Fig. 2 | Validation of ELP signals by direct single cancer cell to normal cell comparison. a, Heatmap comparing cell clusters from diagnostic specimens 
(y axis) to normal human fetal bone marrow cell types (x axis; bold labels highlight cell types shown in C). Cell clusters represent cancer (as defined 
by clinical diagnostic flow cytometric profiles, see Extended Data Fig. 2) and normal cells of individual patient samples (as per case ID number; see 
Supplementary Table 3 for an overview of patients). All are diagnostic samples at presentation, except case 3 (relapse presentation). Heat colors represent 
the mean probability (across the cell cluster) of a match as determined by logistic regression (red, similar; blue, different). DC, dendritic cell; GMP, 
granulocyte–monocyte progenitor; HSC, hematopoietic stem cell; ILC, innate lymphoid cell; Imm., immature; lin., lineage; pDC, plasmacytoid dendritic cell. 
b, Uniform manifold approximation and projection of B-ALL scRNA-seq data divided by genetic subtype. KMT2A-rearranged B-ALL at diagnosis and day 8 
of treatment are presented separately. Within each heatmap, black dots represent cancer and gray dots noncancer. c, Per cancer cell (normal cells for day 
8 remission samples of patient 1) logistic regression score against reference B-lineage cell states, with thresholds of >0.8 indicating similarity (red) and 
<0.2 indicating dissimilarity (blue). d, Subset of differentially expressed genes between infant KMT2A-rearranged B-ALL and NUTM1-rearranged B-ALL. x 
axis, gene name; y axis, fetal bone marrow cell type. Heatmap shows the average gene expression per reference cell type for genes up-regulated in NUTM1 
B-ALL (left) and KMT2A B-ALL (right).
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of 455 genes encoded surface markers, some of which were rela-
tively specific to myeloid (n = 18) or lymphoid (n = 4) lineages, 
generating 72 potential nonphysiological marker combinations  

(Supplementary Table 7). Examples of nonphysiological coex-
pression patterns that were particularly specific to infant B-ALL 
are shown in Fig. 4c. Interestingly, these were centered on the 
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lymphoid marker CD72, which a proteomic screen recently 
implicated as a target in infant ALL27. Coexpression of nonphysi-
ological combinations was measured by flow cytometry, where 
commercial antibodies existed, confirming that dual-targeting 
would encompass >90% of leukemic cells (Fig. 4d). Now that 
surface marker therapies targeting two antigens simultaneously 
are already in use, nonphysiological coexpression of markers may 
represent an attractive therapeutic avenue in infant B-ALL.

Discussion
In clinical diagnostic and therapeutic terms, KMT2A-rearranged 
infant B-ALL is considered to be a B-precursor leukemia. Based 
on independent data and analytical techniques, we arrived at the 

conclusion that infant lymphoblasts most closely resemble human 
fetal ELPs. This ELP-like transcriptional phenotype distinguishes 
KMT2A-rearranged infant B-ALL from other childhood B-ALLs.

A key question that our findings raise is whether the ELP-like 
state accounts for the poor prognosis of KMT2A-rearranged 
infant B-ALL. Three observations lend credence to this propo-
sition. First, in both bulk mRNA and single-cell analyses, 
NUTM1-rearranged infant B-ALL, recently identified to carry 
a favorable prognosis6, exhibited cell signals away from the ELP 
state and more reminiscent of standard-risk B-ALL. Second,  
we observed an ELP-like state in older children with B-ALL 
KMT2A rearrangements, in whom KMT2A fusions are consid-
ered a high-risk cytogenetic change that mandates treatment 
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intensification28. Third, B-ALLs with the next highest relative 
ELP signals (PAX5 alterations and MEF2D mutations) are also 
considered high risk20,29. These observations raise the possibility 

that ELP features confer a high-risk clinical phenotype in B-ALL 
while recognizing the challenge of separating this signal from the 
prognostic significance of cytogenetic changes.
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Considerable efforts to identify the cell of origin in leuke-
mias have arisen from the promise that targeted clearance will 
result in durable remission. Focusing in on the cell of origin in 
KMT2A-rearranged infant B-ALL, key pieces of evidence are 
(1) rearrangement is prenatal event, as demonstrated by Guthrie 
card examinations and concordance in monozygotic twins14;  
(2) rearrangement in the hematopoietic compartment is observed 
in CD34+CD19− cells30, before VDJ recombination in most  
cases, resulting in low frequency of clonal immunoglobulin rear-
rangements31,32; and (3) rearrangement may also be seen in bone 
marrow mesenchymal cells, suggesting a prehematopoietic ori-
gin in some33. We directly determined the phylogenetic origin 
of an infant leukemia in a rare case of a child in whom infant 
B-ALL and childhood AML developed, both harboring KMT2A 
rearrangements. The number of shared mutations between  
these leukemias suggests that the KMT2A rearrangement 
arose before gastrulation and specification of hematopoiesis. 
With the important caveat that this case will not represent all 
KMT2A-rearranged B-ALL, it demonstrates that the cell of origin 
cannot be inferred from the transcriptional phenotype of leuke-
mia cells. Although our results demonstrate the consistency of an 
ELP transcriptional state in KMT2A B-ALL cells at diagnosis, in 
resistant disease, at relapse and in xenografts, further studies are 
required to establish whether an ELP signal can be traced back to 
disease-initiating cells.

The benefit of accurately defining the transcriptional state of 
KMT2A-rearranged infant B-ALL is the ability to devise novel strat-
egies for targeted therapy. We compared leukemic blasts with fetal 
bone marrow ELPs from independent data sets to yield a core can-
cer transcriptome, which was characterized by fusion gene targets 
and a mixture of lymphoid and myeloid lineage genes. We identified 
nonphysiological combinations of surface antigen genes and dem-
onstrated that these combinations are coexpressed as surface pro-
teins, potentially allowing >90% of leukemic blasts to be destroyed 
by dual-targeting tandem-chimeric antigen receptor T-cell or bispe-
cific antibody therapies. Targeting combinations of antigens from 
different lineages simultaneously may afford exquisite specificity for 
cancer cells.

The quantitative molecular approach we deployed here, lever-
aging large archives of bulk mRNAs, emerging reference catalogs 
of normal human cells and direct examination of single blast tran-
scriptomes, lends itself for reappraising the phenotype of human 
leukemias to derive novel biological and therapeutic hypotheses. 
As leukemias are primarily classified by their hematopoietic pheno-
type, we propose that KMT2A-rearranged infant B-ALL be consid-
ered an ELP-like leukemia.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 

data and code availability are available at https://doi.org/10.1038/
s41591-022-01720-7.

Received: 3 August 2021; Accepted: 27 January 2022;  
Published online: 14 March 2022

References
 1. Pieters, R. et al. Outcome of infants younger than 1 year with acute 

lymphoblastic leukemia treated with the Interfant-06 protocol: results  
from an international phase III randomized study. J. Clin. Oncol. 37, 
2246–2256 (2019).

 2. Pieters, R. et al. A treatment protocol for infants younger than 1 year with 
acute lymphoblastic leukaemia (Interfant-99): an observational study and a 
multicentre randomised trial. Lancet 370, 240–250 (2007).

 3. Ramakers-van Woerden, N. L. et al. In vitro drug-resistance profile in infant 
acute lymphoblastic leukemia in relation to age, MLL rearrangements and 
immunophenotype. Leukemia 18, 521–529 (2004).

 4. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows 
immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. 
Blood 127, 2406–2410 (2016).

 5. Sison, E. A. R. & Brown, P. Does hematopoietic stem cell transplantation 
benefit infants with acute leukemia? Hematology 2013, 601–604 (2013).

 6. Boer, J. M. et al. Favorable outcome of NUTM1-rearranged infant and 
pediatric B cell precursor acute lymphoblastic leukemia in a collaborative 
international study. Leukemia 35, 2978–2982 (2021).

 7. Pincez, T. et al. Cryptic recurrent ACIN1-NUTM1 fusions in 
non-KMT2A-rearranged infant acute lymphoblastic leukemia. Genes 
Chromosomes Cancer 59, 125–130 (2020).

 8. Bassan, R. et al. Updated risk-oriented strategy for acute lymphoblastic 
leukemia in adult patients 18-65 years: NILG ALL 10/07. Blood Cancer J. 10, 
119 (2020).

 9. Jardine, L. et al. Blood and immune development in human fetal bone 
marrow and Down syndrome. Nature 598, 327–331 (2021).

 10. Pellin, D. et al. A comprehensive single cell transcriptional landscape of 
human hematopoietic progenitors. Nat. Commun. 10, 2395 (2019).

 11. Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 
365–371 (2019).

 12. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the 
cellular identity of renal tumors. Science 361, 594–599 (2018).

 13. Young, M. D. et al. Single cell derived mRNA signals across human kidney 
tumors. Nat. Commun. 12, 3896 (2021).

 14. Gale, K. B. et al. Backtracking leukemia to birth: identification of clonotypic 
gene fusion sequences in neonatal blood spots. Proc. Natl Acad. Sci. USA 94, 
13950–13954 (1997).

 15. Ford, A. M. et al. In utero rearrangements in the trithorax-related oncogene 
in infant leukaemias. Nature 363, 358–360 (1993).

 16. Kildisiute, G. et al. Tumor to normal single-cell mRNA comparisons reveal a 
pan-neuroblastoma cancer cell. Sci. Adv. 7, eabd3311 (2021).

 17. Alhaj Hussen, K. et al. Molecular and functional characterization of lymphoid 
progenitor subsets reveals a bipartite architecture of human lymphopoiesis. 
Immunity 47, 680–696.e8 (2017).

 18. O’Byrne, S. et al. Discovery of a CD10-negative B-progenitor in human fetal 
life identifies unique ontogeny-related developmental programs. Blood 134, 
1059–1071 (2019).

 19. Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia 
32, 273–284 (2018).

 20. Gu, Z. et al. Genomic analyses identify recurrent MEF2D fusions in acute 
lymphoblastic leukaemia. Nat. Commun. 7, 13331 (2016).

 21. Bullerwell, C. E. et al. EBF1 drives hallmark B cell gene expression by 
enabling the interaction of PAX5 with the MLL H3K4 methyltransferase 
complex.Sci. Rep. 11, 1537 (2021).

Fig. 4 | Therapeutic hypotheses based on the ELP state of infant ALL. a, Distilling the core cancer transcriptome (i.e., differential gene expression 
between infant ALL and ELP cells from bulk and single-cell data) to generate a cross-validated gene list that we annotated in three ways (right). b, The 
core cancer transcriptome encodes a mixed myeloid–lymphoid phenotype. Shown is the log normalized expression (heat color) of genes (x axis) that have 
relative lineage specificity in normal fetal bone marrow cell types (y axis). Eosin, eosinophil. c, Examples of nonphysiological combinations of cell surface 
markers that the core cancer transcriptome encompasses. x axis, fetal bone marrow cell type or infant B-ALL lymphoblasts; y axis, marker combinations. 
Dots represent coexpression of the markers (average of the product of gene expression). Dot size represents the percentage of cells in the cluster that 
express both markers, and heat color represents the normalized coexpression level. d, Left: dotplots showing coexpression of antigen combinations in a 
representative primary KMT2A-rearranged infant B-ALL sample, as measured by flow cytometry on live, single CD34+CD19+ blasts. Adjunct histograms 
show fluorescence-minus-one (FMO) negative controls (gray) and antigen expression in the representative sample (red) compared with n = 2 xenograft 
samples and n = 3 further primary infant B-ALL samples (orange). APC, allophycocyanin; PE, phycoerythrin. Right: scatterplot demonstrating the 
percentage of cells in each sample with expression of antigen pair higher than the fluorescence-minus-one control (line represents median).

Articles | FOCUS NATuRE MEDiciNE

NATuRE MEDICINE | VOL 28 | APRIL 2022 | 743–751 | www.nature.com/naturemedicine750

https://doi.org/10.1038/s41591-022-01720-7
https://doi.org/10.1038/s41591-022-01720-7
http://www.nature.com/naturemedicine


FOCUS | ArticlesNATuRE MEDiciNE

 22. Alexandrov, L. B. et al. The repertoire of mutational signatures in human 
cancer.Nature 578, 94–101 (2020).

 23. Behjati, S. et al. Genome sequencing of normal cells reveals developmental 
lineages and mutational processes. Nature 513, 422–425 (2014).

 24. Park, S. et al. Clonal dynamics in early human embryogenesis inferred from 
somatic mutation. Nature 597, 393–397 (2021).

 25. Spencer Chapman, M. et al. Lineage tracing of human development through 
somatic mutations. Nature 595, 85–90 (2021).

 26. Kerry, J. et al. MLL-AF4 spreading identifies binding sites that are distinct 
from super-enhancers and that govern sensitivity to DOT1L inhibition in 
leukemia. Cell Rep. 18, 482–495 (2017).

 27. Nix, M. A. et al. Surface proteomics reveals CD72 as a target for in 
vitro–evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged 
B-ALL.Cancer Discov. 11, 2032–2049 (2021).

 28. Goulden, N. et al. United Kingdom National Randomised Trial For Children 
and Young Adults with Acute Lymphoblastic Leukaemia and Lymphoma 
2011. https://www.northerncanceralliance.nhs.uk/wp-content/
uploads/2019/01/UKALL2011-Protocol-v3.0-01-Oct-2013.pdf (University of 
Birmingham, 2013).

 29. Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic 
leukemia. Nat. Genet. 51, 296–307 (2019).

 30. Hotfilder, M. et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) 
and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. 
Cancer Res. 65, 1442–1449 (2005).

 31. Agraz-Doblas, A. et al. Unraveling the cellular origin and clinical prognostic 
markers of infant B-cell acute lymphoblastic leukemia using genome-wide 
analysis. Haematologica 104, 1176–1188 (2019).

 32. Peham, M. et al. Low frequency of clonotypic Ig and T-cell receptor gene 
rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its 
implication for the detection of minimal residual disease. Br. J. Haematol. 
117, 315–321 (2002).

 33. Menendez, P. et al. Bone marrow mesenchymal stem cells from infants with 
MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene.  
J. Exp. Med. 206, 3131–3141 (2009).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as 

you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not included in the article’s 
Creative Commons license and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022

FOCUS | ArticlesNATuRE MEDiciNE

NATuRE MEDICINE | VOL 28 | APRIL 2022 | 743–751 | www.nature.com/naturemedicine 751

https://www.northerncanceralliance.nhs.uk/wp-content/uploads/2019/01/UKALL2011-Protocol-v3.0-01-Oct-2013.pdf
https://www.northerncanceralliance.nhs.uk/wp-content/uploads/2019/01/UKALL2011-Protocol-v3.0-01-Oct-2013.pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemedicine


Articles | FOCUS NATuRE MEDiciNEArticles NATuRE MEDiciNE

Methods
Ethics statement. Patient blood and bone marrow samples were obtained from 
the Newcastle Biobank (as approved by Newcastle and North Tyneside 1 Research 
Ethics Committee, reference 17/NE/0361) or Great Ormond Street Hospital for 
Children diagnostic archives (as approved by the National Research Ethics Service 
Committee London Brent, reference 16/LO/0960). Informed consent was obtained 
from all participants. Patient-derived xenograft (PDX) samples were generated in 
accordance with the UK Animals (Scientific Procedures) Act 1986 under project 
licenses PPL60/4552 and PPL60/4222 following institutional ethical review.

Sample preparation. Peripheral blood mononuclear cells were prepared from 
blood, bone marrow or PDX samples by density centrifugation using Lymphoprep 
(Stemcell) according to manufacturer’s instructions. Samples were cryopreserved 
in fetal bovine serum (FBS) with 10% dimethyl sulfoxide and stored in liquid 
nitrogen. PDXs were generated by intrafemoral transplant (under isoflurane 
anesthesia) of 106 patient blood or bone marrow cells into NOD.Cg-Prkdcscid 
Il2rgtm1Wjl/SzJ mice (Charles River Laboratories and bred in-house) aged 8–10 
weeks old34. PDX cells were harvested from engrafted bone marrow or spleen.

Flow cytometry. Cryopreserved ALL samples (n = 4 primary samples, n = 2 
PDXs; Supplementary Table 3) were thawed in RF-10 (RPMI, Sigma-Aldrich) 
supplemented with 10% (v/v) heat-inactivated FBS (Gibco), 100 U ml−1 
penicillin (Sigma-Aldrich), 0.1 mg ml−1 streptomycin (Sigma-Aldrich) and 2 
mM l-glutamine (Sigma-Aldrich). Up to one million cells were stained with 
antibody cocktail, incubated for 30 min on ice, washed with flow buffer (PBS 
containing 5% (v/v) FBS and 2 mM EDTA), and resuspended in flow buffer 
with DAPI (Sigma-Aldrich) added to a final concentration of 3 μM. Antibodies 
for immunophenotyping (Extended Data Fig. 3) were (clone, supplier) NG2 
PE (9.2.27, BD Biosciences), FLT3 PEDazzle (BV10A4H2, Biolegend), CD10 
PECy7 (HI10a, Biolegend), CD2 fluorescein isothiocyanate (FITC) (S5.2, 
BD Biosciences), CD3 FITC (SK7, BD Biosciences), CD14 FITC (MφP9, BD 
Biosciences), CD16 FITC (NKP15, BD Biosciences), CD56 FITC (NCAM16.2, 
BD Biosciences), CD235a FITC (GA-R2, BD Biosciences), CD38 PERCPCy5.5 
(HB-7, Biolegend), CD45RA BV510 (HI100, BD Biosciences), CD7 BV650 
M-T701, BD Biosciences), CD127 BUV737 (HIL-7R-M21, BD Biosciences), 
CD90 APC (5E10, Biolegend), CD19 AF700 (HIB19, Biolegend) and CD34 
APCCy7 (581, Biolegend). Antibodies for nonphysiological antigen coexpression 
profiling (Fig. 4) were SEMA4A PE (T9-10, BD Biosciences) or LILRB1 PE 
(GHI/75, Biolegend); FLT3 PE Dazzle (as above); CD10 PECy7 (as above); CD19 
FITC (4G7, BD Biosciences), ICOSLG BV510 (2D3/B7-H2l, BD Biosciences), 
CD127 BUV737 (as above), CD72 APC (SF3, Biolegend) and CD34 APCCy7  
(as above). All antibodies were used at 1:25 dilution, except for CD10 PECy7 and 
CD127 BV650, which were used at 1:50 dilution. For fluorescence-minus-one 
controls, cells and antibody cocktails were prepared identically but without the 
antibody of interest. FACS was performed on a BD FACSAria running DIVA v.8, 
and data were analyzed using FlowJo (v.10.6.2, BD Biosciences). Thresholds for 
negative expression were set using fluorescence-minus-one controls for  
Fig. 4 analysis and using negative cells in PDX samples (mouse splenocytes) for 
Extended Data Fig. 3 analysis.

Bulk RNA sequencing. Total RNA from the lineage-switch case (Fig. 3) was 
extracted from peripheral blood mononuclear cells using RNeasy Mini Kit 
(Qiagen, 74106) and mRNA captured using NEBNext Ultra Directional RNA Kit 
with NEBNext poly(A) mRNA Magnetic Isolation Module. Paired-end 150-bp 
sequencing was performed on HiSeq 4000 (Illumina), with transcript abundance 
quantified from raw reads via Salmon v.0.8.2 and alignment performed against the 
hg38 reference human transcriptome (GENCODE release 27).

scRNA-seq. Thawed cells were manually counted and 7,000 cells added to each 
channel of a Single Cell Chip before loading onto the 10x Chromium Controller 
(10x Genomics). Reverse transcription, cDNA amplification and sequencing 
libraries were generated using the Single Cell 3’v2 (P1_iALL, P2_iALL, P9_iAML), 
Single Cell 3’v3 (P3_iALL, P4_iALL, P10_iAML) and Single Cell 5’ v1 (P5_iALL, 
P6_iALL, P7_iALL_NUTM1 and P8_iALL_ETV6) Reagent kit (10x Genomics) 
according to the manufacturer’s instructions. Libraries were sequenced using 
an Illumina HiSeq 4000 with v.4 SBS chemistry. All libraries were sequenced to 
achieve a minimum of 50,000 reads per cell.

Alignment, quantification and quality control. Raw fastq files for scRNA-seq 
data for P1_iALL,P2_iALL, P9_iAML (single-cell 3’ v2 kit) were processed 
with the Cell Ranger v2.0.2 (ref. 35) pipeline, and the rest of the samples were 
processed at a later time point with the Cell Ranger v3.0.2 pipeline, which 
aligned the reads to the reference human genome (GRCh38 v1.2.0) and 
produced a matrix of gene expression per cell. Ambient mRNA contamination 
was removed with SoupX package v1.4.8 in R with default parameters. 
Demultiplexing of P1_iALL/P2_iALL, P3_iALL/P10_iAML and P5_iALL/
InfALL_classSwitch was performed with souporcell package v2.0 (ref. 36) with 
default parameters and setting number of clusters -k to 2 and–min_ref to 4 
--min_alt to 4. Souporcell inferred the cluster assignment (either 0 or 1) for 

each cell, and given gender information (Supplementary Table 3), we were able 
to demultiplex the data by checking the sex-specific gene expression in each 
souporcell cluster (XIST for female and RPS4Y1, ZFY and a couple of others 
for male). Resulting gene expression matrices were further processed in python 
with scanpy package v1.4.4.post1 (ref. 37), and single cells were filtered to retain 
cells expressing >200 genes and having mitochondrial content <20%. The code 
used for demultiplexing and filtering is included as a Jupyter Notebook in the 
Code availability section.

Dimensional reduction, clustering and annotation. After filtering for low-quality 
genes, single-cell data were processed in a scanpy package in python, and the 
total number of counts per cell were normalized to 10.000 in order to correct 
for library size differences; normalized data were further log-transformed. 
Principal-component analysis was performed on log-transformed data using 
default parameters (N = 50), followed by computation of neighborhood graph 
with default parameters (N neighbors = 15) and embedding the graph in two 
dimensions using uniform manifold approximation and projection. Clustering 
of single-cell data has been performed by Louvain community detection on 
neighborhood graph with default resolution set to 1. Clusters were assigned as 
cancer or noncancer, based on expression of B-ALL or AML immunophenotype 
genes (derived from expression profiles in clinical diagnostic panels and 
lineage-defining genes of monocytes, B cells, T cells, natural killer cells or 
progenitors; Extended Data Fig. 2 and Supplementary Table 4).

Logistic regression analysis. To test the probability that cancer cell 
transcriptomes are similar normal reference transcriptomes (single-cell fetal 
bone marrow dataset), we used logistic regression as described previously12,16. 
Briefly, a logistic regression model was trained in R using cv.glmnet function 
on a fetal bone marrow dataset combined with SCP single cells from the fetal 
adrenal reference map16, setting the elastic mixing parameter alpha to 0.99, 
thus ensuring strong regularization. This model was then used to predict the 
probabilistic score of similarity of single cells in infant leukemia dataset to cell 
type in the fetal bone marrow dataset.

Published bulk RNA-sequencing data. Pediatric tumor bulk RNA-sequencing 
data for childhood leukemia was obtained from the St. Jude Cloud and TARGET, 
together with associated metadata. Bulk RNA-sequencing data of human fetal bone 
marrow ELPs18 were extracted from the Gene Expression Omnibus with accession 
number GSE122982. Data were quantified and mapped with Salmon v. 0.13.1 (ref. 38)  
with default parameters, and transcript-level estimates were summarized with 
tximport package v1.14.2 in R.

Deconvolution of bulk RNA-sequencing data. The fetal BM scRNA-seq dataset 
was used as a reference to infer the cell type composition in bulk RNA-sequencing 
data using a previously published method of deconvolution called cellular 
signal analysis13. Briefly, this method aims to predict the contribution of the 
normal mRNA signal to each of the bulk transcriptomes. The advantage of using 
cellular signal analysis over other deconvolution methods is the reporting of the 
‘unexplained signal’ when the bulk transcriptome differs from all the signals in 
the normal reference dataset and represented as an ‘Intercept’ term. The model 
fit is based on tensorflow framework v1.14.0 and was run specifying gene weights 
using the geneWeights.tsv file that was supplied with the package and using default 
parameters for other arguments.

Differential gene expression analysis. Differential gene expression analysis 
was performed using DESeq2 package v1.26.0 (ref. 39) in R. For bulk 
RNA-sequencing data (childhood leukemia data and ELP data) a DESeq dataset 
was constructed from tximport object (from Salmon quant.sf files for both 
childhood leukemia and ELP and creating metadata table with ‘group’ column 
variables set to either ‘cancer’ or ‘ELP’). For the single-cell leukemia dataset, 
pseudobulk was created from single cells by summarizing counts for each 
patient. For the single-cell ELP, MOP or NUTM1 dataset, a matrix of counts 
was imported in Seurat and data were subsequently clustered using default 
parameters. Pseudobulk was created for each ELP cluster (five in total), MOP 
cluster (four in total) and NUTM1 cluster (eight in total) by summarizing raw 
counts. Standard differential expression analysis was run using the DESeq 
function, and the result was filtered to only include genes with adjusted P value 
less than 0.05 and log2 fold changes greater than 1.

Gene ontology analysis. Gene ontology analysis was performed using WebGestalt 
(WEB-based Gene SeT AnaLysis Toolkit)40. The gene list was defined as the overlap 
of differentially expressed genes between bulk KMT2A-rearranged infant B-ALL 
and bulk ELP transcriptomes and between single lymphoblast and single ELP cell 
transcriptomes (N = 455). Overrepresentation analysis was run using the human 
genome as a reference gene set and setting the disease phenotype database OMIM 
as a functional database.

Analysis of enrichment of KMT2A-AFF1 targets. Gene targets for the 
KMT2A-AFF1 fusion (N = 1,052) were extracted from Kerry et al.26. Enrichment 
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of these 1,052 gene targets within the core leukemia transcriptome (N = 455) was 
assessed using a Monte Carlo approach by randomly drawing 455 genes from the 
possible transcriptome of 33,660 genes. This step of randomly drawing the list of 
genes was repeated 1,000 times, and P values were estimated by Student’s t test.

DNA sequencing and variant calling (lineage-switch case). DNA sequencing 
and alignment. Short-insert (500-bp) genomic libraries were constructed, and 
150-bp paired-end sequencing clusters were generated on the Illumina HiSeq 
XTen platform using no-PCR library protocols. DNA sequences were aligned to 
the GRCh37d5 reference genome by the Burrows–Wheeler algorithm (BWA-MEM 
v0.7.16a)41.

Variant calling. All classes variants were called using the extensively validated 
pipeline of the Wellcome Sanger Institute, built on the following algorithms: 
CaVEMan v1.13.14 (ref. 42) for base substitutions, PINDEL v2.2.4 for insertions/
deletions43, ASCAT v4.0.1 (ref. 44) and Battenberg v3.2.2 (ref. 45) for copy-number 
changes and BRASS v6.0.5 for structural variants46.

Phylogenetic analyses from substitutions. We applied a previously developed 
framework47–49. In brief, beyond the standard postprocessing flags used in 
CaVEMan, we filtered out substitutions affected by mapping artefacts by setting 
the median alignment score of reads supporting a mutation ≥140 and requiring 
that fewer than half of the reads were clipped (CLPM = 0, CLPM, median number 
of soft clipped bases in variant supporting reads). Across all samples from 
PD38257, we recounted substitutions that were called in either blood or tumor 
from the patient using a cutoff for read mapping quality (28) and base quality 
(25). Germline variants were removed using one-sided exact binomial test on the 
number of variant reads and depth present (in diploid samples) to test whether the 
observed counts were consistent with a true variant allele frequency of 0.5 (or 0.95 
for XY chromosomes). Resulting P values were corrected for multiple testing using 
the Benjamini-Hochberg method and a cutoff was set at q < 10-−5. Variants were 
also filtered out if they were called in a region of consistently low or high depth in 
diploid regions. Variants were kept if their corresponding site had a mean depth of 
between 20 and 60 for autosomes and a mean depth of between 10 and 30 for the 
X and Y chromosome. Using a beta-binomial model of site-specific error rates as 
previously described47–49, we distinguished true presence of somatic variants from 
support due to noise. All shared substitutions were further visually inspected in the 
genome browser Jbrowse50. The final list substitutions included in our analyses can 
be found in Supplementary Table 6.

Classification of single-nucleotide variants. To distinguish subclonal from 
clonal mutations in the tumor samples, we used a binomial mixture model to 
deconvolve the mutation counts into separate components. For each component, 
the optimal binomial probability and mixing proportion was estimated using an 
expectation-maximization algorithm. The optimal number of components was 
determined by the Bayesian information criterion. If the binomial probability of 
a component approximated the expected variant allele frequency (0.5 for diploid 
regions) adjusted for tumor purity, then the mutations assigned to that cluster 
were classified as clonal. If the estimated binomial probability for a component was 
lower, it was classified as subclonal.

Mutational signature analysis. Mutation signatures were fitted to the trinucleotide 
counts of single-nucleotide variants in the main clone and subclone of ALL 
(PD38257a) and AML (PD38257c) using the SigFit algorithm51 and the COSMIC 
reference database of mutational signatures (https://cancer.sanger.ac.uk/signatures/
sbs/, v3.2), as used previously52. Initially, all reference signatures were fitted to the 
mutation counts. Only signatures that contributed at least 2% were retained during 
the subsequent fitting. Where mutation counts were low (<100), erroneous C>T 
signatures, such as those from ultraviolet light exposure (SBS7a) or mismatch 
repair deficiency (SBS6), were attributed to the samples. Because of their biological 
implausibility, these signatures were removed from the final set of fitted signatures.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Single-cell RNA sequences have been deposited in the European Nucleotide 
Archive (accession number ERP125305) and the European Genome-phenome 
Archive (accession number EGAD00001007854) (Figs. 2 and 4). DNA sequences 
of the lineage-switch case (PD38257a, PD38257b, PD38257c) have been deposited 
in the European Genome-phenome Archive under study ID EGAD00001007853 
and RNA sequences in the NCBI Sequence Read Archive under project IDs 
PRJNA547947 and PRJNA547815 (Fig. 3).
We used scRNA-seq data from developing bone marrow9, which are accessible 
through EMBL-European Bioinformatics Institute ArrayExpress and European 
Nucleotide Archive with accession codes E-MTAB-9389 and ERP125305. Scanpy 
h5ad objects with transformed counts are also available at https://fbm.cellatlas.io/. 
Bulk RNA-sequencing data on ELPs18 is available at GEO (GSE122982). TARGET 
leukemia RNA-sequencing data are available at dbGaP (phs000463, phs000464 and 

phs000465). St. Jude’s leukemia RNA-sequencing data were accessed via the  
St. Jude Cloud (https://stjudecloud.github.io/docs/citing-stjude-cloud/).

Code availability
Jupyter Notebook (v6.4.0) for processing single-cell data, including Cell 
Ranger-filtered count data and steps to reproduce Figs. 1 and 2, is available  
at https://github.com/kheleon/leukemia-paper.
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Extended Data Fig. 1 | ELP signal is common to KMT2A-rearranged B-ALL, independent of fusion partner. Box and whisker plots showing contributions 
of cell signals – LMPP, ELP and latter B-cell stages (that is pre-pro-B, pro-B, pre-B and naive B combined) to the transcriptome of KMT2A-rearranged 
leukemias grouped by KMT2A fusion partner (see x axis labels). Centre lines=median, box limits=25%/75% quartiles, whiskers=min/max (top) and 
1.5*interquartile range (bottom). n= biologically independent variables, as listed below each group of plots.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Identification of cancer cells in leukemia scRNA-seq data using immunophenotype gene expression. UMAP projections of 
leukaemia scRNA-seq data sets, coloured by Louvain cluster. Accompanying dotplots show per-cluster expression of B-ALL immunophenotype genes or 
AML immunophenotype genes and lineage-defining genes of monocytes (Mo.), T cells (T), NK cells (NK), B cells (B) and progenitors (Pro.). Dot colour 
denotes log-transformed, normalised and scaled gene expression value, while dot size indicates percentage of cells in each cluster expressing the stated 
gene. Immunophenotypes are provided in Supplementary Table 4.

FOCUS | ArticlesNATuRE MEDiciNE

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles | FOCUS NATuRE MEDiciNEArticles NATuRE MEDiciNE

Extended Data Fig. 3 | Immunophenotype of KMT2A-rearranged infant B-ALL. Left: Histograms showing surface antigen expression in a representative 
primary KMT2A-rearranged infant B-ALL sample relative to negative control. Right: Scatterplot showing percentage of cells in each sample expressing 
ELP-characteristic antigens > negative control (n = 2 xenograft, n = 4 primary KMT2A-rearranged infant B-ALL). Line= mean; 82% CD7+, 93% CD127+ and 
82% FLT3+).
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Extended Data Fig. 4 | Annotation of genes shared by KMT2A-rearranged myeloid and lymphoid leukemias. Barplot showing biological categories of 
genes shared between the KMT2A-rearranged B-ALL and KMT2A-rearranged AML core cancer transcriptomes.
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