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Abstract
Background: Epigenetic changes may result from the interplay of environmental ex-
posures and genetic influences and contribute to differences in age-related disease, 
disability,	 and	mortality	 risk.	 However,	 the	 etiologies	 contributing	 to	 stability	 and	
change	in	DNA	methylation	have	rarely	been	examined	longitudinally.
Methods: We	considered	DNA	methylation	in	whole	blood	leukocyte	DNA	across	a	10-year	
span	in	two	samples	of	same-sex	aging	twins:	(a)	Swedish	Adoption	Twin	Study	of	Aging	
(SATSA;	N =	53	pairs,	53%	female;	62.9	and	72.5	years,	SD =	7.2	years);	(b)	Longitudinal	
Study	of	Aging	Danish	Twins	 (LSADT;	N =	 43	pairs,	 72%	 female,	 76.2	 and	86.1	 years,	
SD=1.8	years).	Joint	biometrical	analyses	were	conducted	on	358,836	methylation	probes	
in	common.	Bivariate	twin	models	were	fitted,	adjusting	for	age,	sex,	and	country.
Results: Overall,	 results	 suggest	 genetic	 contributions	 to	DNA	methylation	 across	
358,836	 sites	 tended	 to	 be	 small	 and	 lessen	 across	 10	 years	 (broad	 heritability	
M =	 23.8%	 and	18.0%)	 but	 contributed	 to	 stability	 across	 time	while	 person-spe-
cific	 factors	explained	emergent	 influences	across	 the	decade.	Aging-specific	 sites	
identified	 from	prior	 EWAS	 and	methylation	 age	 clocks	were	more	 heritable	 than	
background	sites.	The	5037	sites	that	showed	the	greatest	heritable/familial–envi-
ronmental	influences	(p <	1E−07)	were	enriched	for	immune	and	inflammation	path-
ways while 2020 low stability sites showed enrichment in stress-related pathways.
Conclusions: Across	time,	stability	in	methylation	is	primarily	due	to	genetic	contribu-
tions, while novel experiences and exposures contribute to methylation differences. 
Elevated genetic contributions at age-related methylation sites suggest that adap-
tions	to	aging	and	senescence	may	be	differentially	impacted	by	genetic	background.
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1  | INTRODUC TION

The functional profiles of genes are not static and vary across time, 
and indeed across the lifespan, in part as a result of different envi-
ronmental	exposures	and	contexts	(van	Dongen	et	al.,	2016;	Jones,	
Goodman,	 &	 Kobor,	 2015;	 Lappe	 &	 Landecker,	 2015;	 McClearn,	
2006).	 Measurable	 gene–environment	 dynamics	 for	 behavioral	
traits are possible due to advances in biotechniques for global epi-
genetic profiling at, for example, specific methylation sites in the 
human genome. Epigenetic changes may be critical to the develop-
ment of complex diseases, accelerated aging, or steeper declines 
in	cognitive	and	physical	functioning	with	age	(Lappe	&	Landecker,	
2015).	Understanding	 epigenetic	 changes	 over	 time	 in	 the	 elderly	
may	identify	pathways	of	decline	or	plasticity	(e.g.,	maintenance	or	
even	boosts	in	functioning)	during	the	aging	process	and	help	with	
elucidating the biology of aging and survival.

Epigenetic modifications resulting in altered gene expression 
may occur due to a number of processes, including direct methyl-
ation	of	DNA	(Jones	&	Takai,	2001).	DNA	methylation	results	from	
intrinsic-programmed factors as well as non-genetic processes that 
may arise due to prenatal or early life exposures or at later points in 
development	(Gottesman	&	Hanson,	2005;	Kanherkar,	Bhatia-Dey,	
&	Csoka,	2014;	Torano,	Garcia,	Fernandez-Morera,	Nino-Garcia,	&	
Fernandez,	2016).	DNA	methylation	 is	characteristically	produced	
by	 the	 addition	of	 a	methyl	 group	 to	 the	DNA	molecule	 cytosine	
within	 cytosine–guanine	dinucleotides	 (CpGs),	 at	 an	 estimated	28	
million	sites	across	the	human	genome	(Lovkvist,	Dodd,	Sneppen,	&	
Haerter,	2016).	Dense	regions	of	CpGs	referred	to	as	“islands”	repre-
sent	about	5%	of	CpGs	occurring	in	the	genome	(about	20,000	total)	
and	often	reside	in	promotor	regions	(Vinson	&	Chatterjee,	2012);	
in	addition,	surrounding	“shores”	and	“shelves”	to	these	islands	are	
of interest and may be differentially methylated compared to islands 
(Jones	et	al.,	2015).	The	addition	of	methylation	tags	to	CpG	sites	
is associated with altered gene expression, typically by interfering 
with or silencing gene transcription although upregulation of gene 
expression	 has	 been	 documented	 (Wang,	 Chen,	 Yang,	 Zhang,	 &	
Wong,	2019),	 and	may	differentially	 occur	 in	 cells	 across	multiple	
tissue	 types	 including	 brain,	 muscle,	 and	 leukocytes	 (Fernandez	
et	 al.,	 2012).	Methylation	 tags	 can	be	 removed	 as	 a	 consequence	
of exposures as well, leading to dynamics in expression across time 
(Kanherkar	et	al.,	2014).

Although	 epigenetic	 variation	 is	 largely	 attributed	 to	 envi-
ronmental	factors	 (van	Dongen	et	al.,	2016;	Hannon	et	al.,	2018;	
Torano	et	al.,	2016),	there	is	evidence	for	genetic	contributions	to	
variation	in	methylation	across	the	epigenome	(van	Dongen	et	al.,	
2016;	Hannon	et	al.,	2018;	Torano	et	al.,	2016).	Average	heritabili-
ties	of	16.5%–19.0%	have	been	reported	across	sites	in	the	Illumina	
450	k	chip	array	from	whole	blood	and	common	environmental	in-
fluences	of	3.0%–12.6%	 (van	Dongen	et	al.,	2016;	Hannon	et	al.,	
2018).	 Stronger	 evidence	 of	 common	 environment	 has	 been	 re-
ported	 in	 young	 adulthood	 (18	 years)	 at	 12.6%	 (after	 correction	
for	 cell	 types;	 Hannon	 et	 al.,	 2018).	 Moreover,	 cross-sectional	
work	 suggests	 that	 there	 may	 be	 smaller	 heritable	 components	

by	mid-adulthood	(18%)	than	young	adulthood	(21%)	(van	Dongen	
et	al.,	2016).

Epigenetic changes may accelerate over time, whereby changes 
in gene expression due to exposures become more abundant and 
salient to phenotypic changes, hence potentiating the development 
of health and aging conditions earlier in life. Indeed, methylation 
is	 correlated	 with	 age	 (Ciccarone,	 Tagliatesta,	 Caiafa,	 &	 Zampieri,	
2018;	van	Dongen	et	al.,	2016),	 is	used	 to	define	biological	clocks	
that	may	more	closely	track	biological	aging	(Field	et	al.,	2018),	and	is	
associated	with	mortality	(Zhang	et	al.,	2017)	and	a	number	of	phys-
ical	and	neuropsychiatric	health	traits	(Kanherkar	et	al.,	2014;	Lappe	
&	Landecker,	2015).	Longitudinal	studies	of	twins	represent	a	valu-
able approach to evaluate genetic and environmental contributions 
to	stability	and	change	 in	methylation	across	 the	methylome	 (Tan,	
Christiansen,	 von	 Bornemann	 Hjelmborg,	 &	 Christensen,	 2015).	
Investigations of etiological contributions have relied primarily on 
cross-sectional	data	(van	Dongen	et	al.,	2016;	Hannon	et	al.,	2018)	
and	have	addressed	age-related	differences	(van	Dongen	et	al.,	2016)	
but	not	change.	We	evaluate	individual	differences	in	DNA	methyl-
ation	at	individual	CpG	sites	across	the	methylome	across	10	years	
in	 two	 Scandinavian	 samples	 of	 same-sex	 aging	 twins,	 estimating	
the genetic and environmental contributions to stability as well as 
to novel influences that emerge. Moreover, we examine whether 
surrounding	“shores”	and	“shelves”	are	differentially	heritable	com-
pared to islands and whether sites identified as associated with rate 
of	aging	in	epigenome-wide	association	study	(EWAS)	or	individual	
CpG	clock	sites	are	differentially	heritable.	In	a	combined	sample	of	
aging twins, assessed a decade apart in late-life, we test two compet-
ing	hypotheses	about	the	longitudinal	stability	and	change	in	DNA	
methylation	that	stem	from	prior	cross-sectional	work	(van	Dongen	
et	al.,	2016):	(a)	the	contribution	of	genetic	influences	changes	with	
age,	reflecting	diminishing	influence	across	time,	and	(b)	non-shared	
factors accumulate in importance, signaling an increasing diversity 
of response to environmental exposures.

2  | METHODS

2.1 | Sample

We	considered	DNA	methylation	across	a	10-year	span	in	96	pairs	
of	same-sex	aging	twins	(40	monozygotic,	MZ	pairs;	56	dizygotic,	DZ	
pairs).	Across	two	samples,	the	average	age	at	time	1	was	68.89	years	
(SD =	8.58)	and	at	time	2	was	78.59	years	(SD =	8.70).	Specifically,	
the	 Swedish	 Adoption	 Twin	 Study	 of	 Aging	 (SATSA)	 included	 53	
pairs	(22	MZ,	and	31	DZ	pairs;	53%	female),	selected	with	measure-
ments	about	10	years	apart	 (range	=	8.00	 to	11.82	years)	 at	 ages	
62.9	and	72.5	years	at	time	1	and	time	2,	respectively	(SD =	7.2).	In	4	
of	53	SATSA	pairs,	one	twin	partner	had	methylation	data	from	one	
timepoint instead of both timepoints, but all data were included for 
these	pairs.	The	Longitudinal	Study	of	Aging	Danish	Twins	(LSADT)	
included	43	pairs	(18	MZ,	and	25	DZ	pairs;	72%	female)	at	ages	76.2	
and	86.1	years	at	time	1	and	time	2	(SD =	1.8).
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2.2 | Materials

Methylation	measurements	from	the	Illumina	HumanMethylation450	
array	(Illumina)	were	preprocessed	and	normalized	with	adjustments	
for	cell	counts	and	batch	effects.	Processing	of	the	SATSA	sample	
probes	 has	 been	 described	 previously	 (Jylhävä	 et	 al.,	 2019;	Wang	
et	 al.,	 2018)	 and	 in	 brief	 included	 the	 following:	 (a)	 preprocessing	
with	 the	 R	 package	 RnBeads	 (Assenov	 et	 al.,	 2014)	 where	 filter-
ing of samples and probes proceeded with a greedy-cut algorithm 
maximizing false-positive rate versus sensitivity at a detection p-
value	of	0.05;	 (b)	 removal	of	 sites	 that	overlap	with	a	known	SNP	
site	or	reside	on	sex	chromosomes;	 (c)	normalization	of	data	using	
dasen	(Pidsley	et	al.,	2013);	(d)	applying	a	Sammon	mapping	method	
(Sammon,	 1969)	 to	 remove	 technical	 variance;	 (e)	 adjustment	 for	
cell	 counts	 (Jones,	 Islam,	 Edgar,	&	Kobor,	 2017);	 (f)	 correction	 for	
batch	effects	using	the	ComBat	approach	in	the	sva	package	(Leek,	
Johnson,	Parker,	Jaffe,	&	Storey,	2012).

Processing	 of	 the	 LSADT	 data	 has	 been	 described	 previously	
(Svane	et	al.,	2018)	and	 in	brief	 included	the	following:	 (a)	prepro-
cessing	with	the	R	package	MethylAid	(van	Iterson	et	al.,	2014)	where	
samples below quality requirements were excluded and probes with 
detection p-value>0.01, no signal, or bead count <3 were filtered 
out;	(b)	removal	of	probes	with	>5%	missing	values,	removal	of	sites	
that	 reside	on	 sex	 chromosomes	or	 cross-reactive	probes;	 (c)	 nor-
malization	and	batch	correction	using	functional	normalization(For-
tin	et	al.,	2014)	with	four	principal	components.

Although	Beta-values	are	preferred	for	interpretation	of	methyl-
ation,	Beta-value	units	were	translated	into	M-values via a log2 ratio 
for improved distributional properties for the analysis of individual 
differences	 (Du	 et	 al.,	 2010).	 After	 performing	 the	 preprocessing	
steps,	390,894	probes	remained	for	SATSA	and	452,920	CpG	sites	
remained	for	LSADT.

Altogether	 368,391	 sites	were	 in	 common	 across	 the	 Swedish	
and	Danish	samples.	After	the	described	QC	preprocessing	in	SATSA,	
49	of	53	pairs	had	methylation	data	available	for	both	members	of	

each pair at both timepoints, while in 4 pairs one cotwin member 
had data at both timepoints while their twin partner had data at one 
timepoint	 but	 not	 both.	 After	 preprocessing,	 LSADT	 sample	 had	
methylation data represented for both cotwins at both timepoints 
among the 43 pairs.

2.3 | Filtering of sites post-analysis

We	 conducted	 additional	 filtering	 of	 probes	 where	 model-fitting	
results evidenced means or variances outside of expected values. 
Specifically,	we	filtered	based	on	the	typical	range	of	M-values	(c.f.,	
Du	et	al.,	2010),	with	expected	mean	values	falling	outside	the	range	
−6.25	 to	 6.25	 for	 1812	 sites	 under	 either	ACE	 or	ADE	models	 at	
either	 timepoint.	 Likewise,	 we	 filtered	 based	 on	 expected	 stand-
ard	deviations	exceeding	1.5	under	either	ACE	or	ADE	models	(Du	
et	al.,	2010)	resulting	in	9554	sites	out	of	range	under	either	ACE	or	
ADE	models	at	either	timepoint.	The	effective	reduction	in	sites	was	
from	368,391	to	358,836	after	dropping	9555	unique	sites	from	the	
analysis set.

2.4 | Analysis

Bivariate	 biometrical	 twin	models	 of	M-values were fitted to all 
available data across the pairs using full-information maximum 
likelihood	(FIML),	adjusting	for	centered	age	(centered	at	the	aver-
age age across time =	age	-	74	years),	sex	(0	= males, 1 =	females),	
and	country	(0	=	Sweden,	1	=	Denmark).	Bivariate	ACE	and	ADE	
Cholesky	models	evaluated	the	degree	to	which	additive	genetic	
(A),	 dominance	 or	 non-additive	 genetic	 (D),	 common	 environ-
mental	(C),	and	non-shared	factors	(E),	encompassing	non-shared	
environmental influences, measurement error, and stochastic fac-
tors, contributed to variation and covariation in M-values within 
and	across	 time	 (see	Figure	1).The	 resolution	of	 the	genetic	 and	

F I G U R E  1  Bivariate	Cholesky	model.	
Note.	ACE	and	ADE	models	were	
separately fitted to M-values at two waves 
10 years apart
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environmental effects are done by comparing the relative similar-
ity	of	monozygotic	(MZ)	twins	who	share	100%	of	their	genes	in	
common, including all additive effects and dominance deviations, 
versus	dizygotic	 (DZ)	twins	who	share	on	average	50%	of	segre-
gating	genes	in	common	leading	to	expectations	of	50%	for	addi-
tive	effects	and	25%	for	dominance	deviations.	Both	 twin	 types	
are presumed to have the same contribution of common environ-
mental	 effects	 that	 contribute	 to	 similarity.	We	 fitted	 ADE	 and	
ACE	models	as	dominance	(D),	and	common	environment	(C)	could	
not	be	simultaneously	estimated	(see	Figure	1).

Fit	 comparison	between	 the	ACE	and	ADE	models	was	done	
via	Akaike	 information	 criterion	 (AIC;	Akaike,	 1974).	 If	 the	 fit	 of	
the	ADE	model	was	as	good	or	better	than	the	ACE	model,	it	was	
retained	as	“best”	 fitting,	and	otherwise,	 the	ACE	model	was	re-
tained	as	best.	We	evaluated	submodels	 including	AE,	CE,	and	E	
models.	Differences	 in	nested	model	deviance	statistics	 [−2ln(L)]	
are	distributed	as	chi-square	(χ2)	with	the	difference	in	the	num-
ber of parameters between the full and constrained models as the 
degrees-of-freedom	 (df ).	 LSADT	 samples	 tended	 to	 show	 lower	
variability	in	methylation	at	any	given	probe	compared	to	SATSA;	
hence,	we	allowed	for	scalar	differences	at	each	timepoint	(k1, k2)	
in	 standard	 deviations	 between	 the	 two	 samples	 (see	 Figure	 1).	
Thus,	the	relative	contributions	of	A,	C	or	D,	and	E	were	equated	
across	LSADT	and	SATSA,	but	the	scalar	allowed	for	the	variance	
components	 to	 differ	 by	 a	 constant	 at	 each	 assessment.	 Scalar	
differences in standard deviations were on average k1 = 0.90 
(SD =	0.93)	and	k2 =	0.88	(SD =	0.89).

Annotation	of	CpG	 sites	with	 respect	 to	UCSC	CpG	 Island	 in-
formation	(Gardiner-Garden	&	Frommer,	1987)	was	done	by	merg-
ing analysis results to the manifest file available for the Infinium 
HumanMethylation450	 v1.2	 BeadChip	 (Illumina).	 Annotations	 in-
cluded	 ‘Island’,	 ‘North	 Shore’,	 ‘South	 Shore’,	 ‘North	 Shelf’,	 ‘South	
Shelf’,	and	a	blank	annotation	field	was	treated	as	‘Open	Seas’.

In comparing relative heritabilities across sites by location, as 
well	as	aging/clock	CPGs	sets	to	remaining	CpGs,	we	fitted	random	

effects	regression	models	to	ages	69	and	79	biometrical	estimates	
using lme	 (version	1.1-21;	Bates,	Mächler,	Bolker,	&	Walker,	2015).	
We	allowed	for	random	effects	between	and	within	sites,	reflecting	
consistency	of	effects	by	CpG	sites	across	time	and	non-systematic	
variation within time.

To compare time1-time2 correlations from the biometrical esti-
mates, we rescaled the a12, d12 or c12, and e12 paths into correlations 
(rA, rD or rC, and rE)	and	performed	Fisher	Z-transformations	before	
submitting	each	to	a	skew-normal	regression	analysis	using	the	sn 
package	(Azzalini,	2020).	Regression	analyses	compared	low	stabil-
ity	 sites	 to	 remaining	CpGs,	 after	which	 regression	weights	were	
inverse-transformed into correlation units for interpretation.

Enrichment	analyses	were	conducted	using	the	GREAT	4.0.4	tool	
(McLean	 et	 al.,	 2010).	 Selected	 sites	were	mapped	 to	 the	Human	
GRCh37	build	and	default	settings	were	used	for	association	rules	
(i.e.,	 basal	+	 extension:	 5000	bp	upstream,	1000	bp	downstream,	
1,000,000	bp	max	extension,	curated	regulatory	domains	included).	
We	present	results	of	both	biomial	and	hypergeometric	tests	where	
the	false	discovery	rate	(FDR)	achieved	p <	.05	and	where	fold	en-
richment	 (FE)	 tests	exceeded	2.0.	We	followed	up	the	enrichment	
analyses	using	the	mQTL	Database	(Gaunt	et	al.,	2016)	to	annotate	
associations with methylation quantitative trait loci, noting the num-
ber of cis or trans variants.

3  | RESULTS

We	first	evaluated	the	extent	to	which	heritable	and	environmental	
influences	contributed	to	each	CpG	site.	Bivariate	biometrical	twin	
model	 results,	 comparing	MZ	 twin	 similarity	 to	DZ	 twin	 similarity	
within	 and	 across	 time,	 suggest	 under	 an	ADE	model	 that	 broad-
sense	heritable	contributions	 (A	+ D, N =	358,836)	were	on	aver-
age	small	 at	 age	69	years	 (M =	0.238	*	100	=	23.8%,	 time	1)	 and	
decreased	across	10	years	(M =	0.180	*	100	=	18.0%,	time	2)	(see	
Table	1,	Variance	Components).	The	decrease	 in	broad	heritability	

TA B L E  1  Variance	components	and	absolute	variances	at	time	1	(69	years)	and	time	2	(79	years)

Variance

N sites

A1 D1/C1 E1 A2 D2/C2 E2

Components M SD M SD M SD M SD M SD M SD

ADE 358,836 0.111 0.142 0.127 0.160 0.762 0.175 0.091 0.125 0.089 0.130 0.820 0.158

ADE	best 187,535 0.057 0.106 0.217 0.168 0.725 0.182 0.048 0.092 0.152 0.148 0.800 0.168

ACE 358,836 0.150 0.166 0.057 0.083 0.793 0.163 0.109 0.142 0.054 0.080 0.837 0.147

ACE	best 171,301 0.076 0.122 0.106 0.093 0.817 0.150 0.055 0.103 0.098 0.091 0.846 0.137

Absolute

N sites

A1 D1/C1 E1 A2 D2/C2 E2

Variances M SD M SD M SD M SD M SD M SD

ADE 358,836 0.029 0.079 0.038 0.088 0.162 0.144 0.028 0.079 0.032 0.086 0.214 0.195

ADE	best 187,535 0.019 0.063 0.067 0.112 0.174 0.151 0.018 0.063 0.057 0.111 0.235 0.206

ACE 358,836 0.047 0.109 0.012 0.034 0.170 0.152 0.042 0.109 0.014 0.038 0.220 0.200

ACE	best 171,301 0.021 0.074 0.023 0.045 0.152 0.137 0.019 0.072 0.025 0.050 0.193 0.180

Note: A	= additive genetic, D =	non-additive	genetic	(dominance),	C	= common environment, E = non-shared factors.
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across time is significant within site, Mt2-t1 =	 −.058	 (t =	 −232.0,	
df =	358,835,	CI95 =	−0.058,	−0.057).	The	decrease	 in	heritability	
is	due	to	an	absolute	increase	in	non-shared	factors	(E)	compared	to	
genetic	influences	(A,	D)	(see	Table	1,	Absolute	Variances).	Patterns	
of	decline	were	observed	for	heritabilities	(A)	under	the	ACE	model	
(0.150	and	0.109,	respectively),	and	under	best-fitting	ADE	or	ACE	
models	(see	Table	1,	Variance	Components).	Common	environmen-
tal	influences	were	generally	stable	in	overall	ACE	results	at	over	5%	
(0.057,	0.054)	and	in	best-fitting	ACE	results	at	10%	(0.106,	0.098)	
(see	Table	1,	Variance	Components).

Across	 time,	 heritabilities	 showed	 divergence	 by	 location	
[ADE	best	 (A	+	D):	χ2	 (5)	=	618.3,	p =	2.25E−131;	ACE	best	 (A):	
χ2	(5)	=	339.5,	p =	3.19E−71]	(see	Table	S1,	Figure	2).	In	ADE	best	
results,	 islands	and	shelves	 showed	 lower	broad	 (A	+	D)	herita-
bilities	than	open	seas	by	−0.01	or	−1%	(p	≤	1.55E−07),	whereas	
shores	were	higher	by	0.01	or	1%	than	open	seas	(p	≤	3.79E−15).	
In	ACE	best	results,	comparably	lower	heritabilities	(A)	were	ob-
served	for	islands	versus	open	seas	(p =	3.54E−58).

Next,	 we	 evaluated	 the	 number	 of	 CpG	 sites	 that	 achieved	
significant	 heritable	 or	 familial–environmental	 effects.	 At	 epig-
enome-wide	significance	(p <	1E−07),	5037	CpG	sites	(1.4%)	showed	
broad	genetic	(A,	D)	or	familial–environmental	effects	(A,	C)	within	
or	 across	 time	 (df =	 6),	 and	 35,762	 sites	 (10.0%)	met	 p <	 1E−02.	
Among	 the	 358,836	 sites,	 52%	 of	 sites	 showed	 the	 better-fitting	
model	was	ADE	(N =	187,535)	while	48%	showed	ACE	as	better-fit-
ting	 (N =	 171,301)	 (see	 Table	 1,	 Figure	 3).	 A	 total	 of	 58,676	 sites	
(16.4%)	 achieved	nominal	 significance	 comparing	 the	ADE	or	ACE	
versus	an	E	model	(p <	.05,	6	df; N =	32,685	ADE	best,	N =	25,991	
ACE	best),	and	91,380	sites	 (25.5%)	achieved	nominal	significance	
of	an	AE	model	over	an	E	model	(p <	.05,	df =	3).	Given	that	power	
is	low	for	C	even	in	large	samples,	as	well	as	to	distinguish	D	from	A,	
we	present	full	model	estimates	(Visscher,	Gordon,	&	Neale,	2008).

In terms of contributions to stability and change in methylation 
due	 to	 genetic	 or	 environmental	 influences,	 across	 358,836	 sites,	
58.5%	 showed	 cross-time	 associations	 at	 p <	 .05	 (df = 3, where 
a12 = [d12 or c12]	= e12 =	0)	 indicative	of	stability	over	time	due	to	

either	 genetic	 and/or	 environmental	 mechanisms.	 As	 shown	 in	
Figure	3,	the	cross-time	stability	was	largely	due	to	genetic	effects	
in	both	the	ADE	best	and	ACE	best	models	which	were	most	often	
perfect in correlation.

As	 cross-sectional	 twin	 studies	 have	 reported	 that	 heritabil-
ity	may	be	higher	for	variable	methylated	sites	(e.g.,	Hannon	et	al.,	
2018),	we	report	the	correlation	between	the	estimated	standard	de-
viations of M-values and the extent to which heritable effects were 
observed	at	 time	1	and	2,	 respectively:	 (a)	 rSD,A+D = 0.33 and 0.27 
(187,535	sites)	for	ADE	best,	and	(b)	rSD,A =	0.25	and	0.20	(171,301	
sites)	for	ACE	best.	Sites	in	which	non-shared	factors,	E,	explained	
all of the variability of M-values	(>99%)	at	both	timepoints	included	
8268	total	sites	(5520	ADE	best,	2748	ACE	best).	In	all	these	cases,	
we	observed	that	either	the	MZ	twin	correlations	of	M-values were 
negative	 (<0),	 or	 the	 DZ	 correlations	 were	 sufficiently	 negative	
(<−0.05),	or	the	difference	between	MZ	and	DZ	correlations	at	each	
timepoint	were	sufficiently	negative	(<−0.1).

3.1 | Age-related sites

We	evaluated	 the	 best-fitting	ADE	 and	ACE	 results	 of	 two	 pub-
lished	CpG	sets	that	were	identified	in	EWAS	as	related	to	age	that	
overlap	with	the	samples	used	 in	 the	presented	analysis:	 (I)	1217	
sites	from	Wang	et	al.	(2018);	(II)	1934	sites	from	Tan	et	al.	(2016).	
Multilevel regression models compared heritabilities by location 
from	the	ADE	best	or	ACE	best	model,	fitted	to	both	ages	69	and	
79	estimates	in	set	I	[ADE	best	(A	+	D):	χ2	(5)	=43.7, p =	2.66E−08;	
ACE	 best	 (A):	 χ2	 (5)	 = 27.9, p =	 3.81E−05],	 with	 Islands	 under	
ADE	or	ACE	models	showing	 lower	heritabilities	by	0.09–0.10	or	
up	 to	 a	 10%	 difference	 than	 open	 seas	 (both	 p	 ≤	 5.13E−07;	 see	
Figure	4,	Table	S1).	In	set	II,	ages	69	and	79	heritability	estimates	
also	showed	divergence	by	location	[ADE	best	(A	+	D):	χ2	(5)	=	16.8,	
p =	4.90E−03;	ACE	best	(A):	χ2(5)	= 19.4, p =	1.62E−03],	with	Shores	
showing	higher	heritabilities	by	about	0.04	or	4%	than	open	seas	
under	ADE	or	ACE	models	(all	p	≤	2.56E−02;	see	Figure	4,	Table	S1).

F I G U R E  2  Broad-sense	heritability	
by	location	across	10	years	(ADE	results,	
358,836	CpGs).	Note.	Site	differences	
shown are significant across time: 
χ2(5)	=	995.48,	p =	5.72E−213
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Multilevel	 regression	models	were	 fitted	 to	 ages	 69	 and	 79	
biometrical	 estimates	 to	 compare	 the	 Aging	 sets’	 CpG	 sites	 to	
the	 remaining	 background	 CpGs.	 Stronger	 heritable	 influences	

were	apparent	 for	Aging	Set	 I	 (1217	sites)	 compared	 to	 remain-
ing	CpGs	with	0.16	higher	broad	heritability	(0.39	vs.	0.24,	ADE	
best; p =	5.43E−162)	and	0.12	higher	narrow	heritability	(0.18	vs.	

F I G U R E  3  Best-fitting	models:	ADE	(52%)	or	ACE	(48%)
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0.06,	ACE	best;	p =	3.87E−146)	and	0.05	higher	common	environ-
mentality	 (0.15	 vs.	 0.10;	p =	 1.88E−40)	 (see	Table	 S2,	Variance	
Components).	 Patterns	 in	 the	 absolute	 variances	 suggested	 the	
greater heritability was due primarily to lower non-shared factors 
(p	≤	1.35E−07)	and	for	ACE	models	coupled	with	higher	additive	
genetic	 and	 common	 environmental	 influences	 (p	 ≤	 2.03E−04;	
see	Table	S2,	Absolute	Variances).	Significantly	higher	heritabil-
ities	and	common	environmentality	were	also	observed	for	Aging	
Set	 II	 (1934	 sites)	 where	 the	 increased	 heritable	 and	 common	
environmental	 influences	 (all	p	 ≤	 1.55E−31)	were	 driven	mainly	
by amplified genetic and common environmental influences 
(p	≤	1.01E−11)	and	otherwise	comparable	non-shared	factors	be-
tween	the	Aging	II	set	and	remaining	background	CpGs	(see	Table	
S2).	Thus,	the	age-related	sites	showed	a	significantly	higher	pro-
portion of variance attributed to heritable and shared environ-
mental	influences	due	to	lower	non-shared	factors	in	Aging	set	I	
and due to higher genetic and common environmental influences 
in	Aging	set	II.

3.2 | Methylation clock sites

Available	CpG	sites	from	four	epigenetic	clocks	were	evaluated	in	
similar fashion using multilevel regression models fitted to ages 
69	and	79	biometrical	estimates:	 (a)	59	of	71	sites	Hannum	clock	
(Hannum	et	al.,	2013),	(b)	312	of	353	sites	Horvath	clock	(Horvath,	
2013),	(c)	443	of	513	sites	Levine	clock	(Levine	et	al.,	2018),	and	455	
of	514	sites	from	the	Zhang	clock	(Zhang	et	al.,	2019).	Significantly	
higher	heritabilities	 (A	+	D,	A)	and	common	environmentality	 (C)	
were	 observed	 for	 the	 1190	 unique	 clock	 sites	 compared	 to	 all	
remaining	 CpGs	 (0.02–0.05	 higher,	 p	 ≤	 8.68E−10,	 see	 Table	 S2,	
Variance	 Components).	 Comparisons	 of	 absolute	 variances	 sug-
gested amplified genetic and common environmental influences 
(p	 ≤	3.94E−05)	 as	well	 as	non-shared	 factors	 (p	 ≤	3.90E−08)	be-
tween	the	clock	sites	and	remaining	background	CpGs	(see	Table	
S2,	 Absolute	 Variances).	 Thus,	 the	 clock	 sites	 showed	 greater	
overall variability across sources of variance suggesting greater in-
dividual differences in these sites, with a significantly higher por-
tion of variance attributed to heritable and shared environmental 
influences.

Among	the	1190	unique	CpG	sites	compared	to	one	another,	the	
Zhang	 clock	 sites	 tended	 to	 show	 stronger	 broad	 (A	+	D)	 genetic	
(0.07–0.08	higher,	p	≤	4.00E−07)	and	shared	environmental	(C)	con-
tributions	(0.06	higher,	p	≤	2.19E−08)	than	Horvath	or	Levine	clock	
sites,	while	Hannum	 sites	were	 comparable	 to	Zhang	 sites	 (within	
−0.018	to	0.018,	p	≥	4.71E−01)	(see	Table	S3).	The	ratio	of	intercept	
variance	to	total	variance	(ρ)	in	heritability	estimates	was	0.559	for	
ADE	best	models	and	0.680	for	ACE	best	models	suggesting	56%	and	
68%	of	the	variation	in	heritability,	respectively,	was	CpG	site-spe-
cific across time and less than half of the variation was unique to 
CpG	site	and	time,	consistent	with	analyses	by	 location	 (see	Table	
S1).	Likewise,	absolute	variances	showed	strong	between-site	varia-
tions	(66%–88%,	see	Table	S3).

3.3 | Low stability sites

We	identified	2020	CpGs	with	low	stability	but	meaningful	genetic	
or common environmental contributions at one or both timepoints, 
that is, p >	0.01	(df = 3, where a12 = [d12 or c12] = e12 =	0)	and	where	
e1 or e2 accounted for <50%	of	the	total	variation	(1638	ADE	best,	
382	ACE	best).	Based	on	skew-normal	analyses,	low	stability	CpGs	
had lower correlations among non-shared factors across time than 
background	 CpGs	 (ADE	 best:	 rE,background = 0.24 vs. rE,low = 0.10, 
p =	 2.80E−154;	 ACE	 best:	 rE,background = 0.17 vs. rE,low = 0.07, 
p	≤	3.09E−27).	The	correlations	of	genetic	(rA, rD)	and	common	envi-
ronmental	influences	(rC)	across	time	were	comparable	(within	0.02	
units)	between	background	and	low	stability	CpGs,	albeit	significant	
(p	 ≤	1.02E−03),	 and	otherwise	 very	 strong	based	on	 skew-normal	
analyses	 (rbackground =	0.97–0.99	vs.	rlow =	0.95–0.99).	Variability	 in	
these	low	stability	CpGs	increased	across	time	with	a	ratio	of	SD2/
SD1	of	1.08	to	1.09	(SDratio =	0.13)	for	ACE	and	ADE	best	models,	re-
spectively. Moreover, heritabilities decreased across time while non-
shared	components	tended	to	increase	(see	Figure	S1).	Compared	to	
background	CpGs,	low	stability	CpGs	tended	to	show	higher	A	+ D 
or	A	and	C	components	(all	p	≤	2.03E−14)	but	generally	lower	over-
all	absolute	variances	for	A	+	D	and	E	variances	(p	≤	15.51E−09)	in	
ADE	models	(see	Table	S2).	Higher	absolute	variance	for	A	but	lower	
variance	for	E	was	observed	in	ACE	models	(p	≤	4.94E−03)	(see	Table	
S2).	Altogether,	results	suggest	lower	overall	phenotypic	variance	in	
methylation	among	the	low	stability	versus	background	CpGs	across	
time	(c.f.,	Table	S2).	However,	within	the	set	of	lower	stability	CpGs,	
variance in methylation increased at time 2 mainly due to novel non-
shared	factors	(c.f.,	Figure	S1).

3.4 | Enrichment analysis: High heritability/
familiality

The	set	of	5037	CpGs	achieving	epigenome	significance	(p <	1E–07)	
when	evaluating	tests	of	heritability	(AD	vs.	E;	N =	2049)	or	familial-
ity	(AC	vs.	E;	N =	2988)	across	time	were	submitted	to	GREAT	4.0.4	
to	 identify	 functions	of	 cis-regulatory	 regions	 (McLean	et	 al.,	 2010).	
Specifically,	 we	 report	 the	 binomial	 and	 hypergeometric	 tests	 over	
genomic	 regions	 covered	 by	 the	 5037	 CpGs,	 reporting	 those	 that	
achieved	region-based	fold	enrichment	(FE)	>2 and both binomial and 
hypergeometric	FDR	Q-Values <	0.05	 (see	Table	2;	 for	full	ontology	
results,	see	Table	S4).	The	sites	that	showed	the	greatest	heritabilities	
showed enrichment in immune and inflammation pathways as well as 
neurotransmitter	 activity	 pathways.	 For	 example,	 the	MHC	 protein	
complex	pathway	in	the	GO	Cellular	ontology	list	includes	HLA	region	
genes	that	code	for	HLA	class	II	histocompatibility	antigens	in	humans	
(c.f.,	GO:0042611,	Table	S4).	Moreover,	the	interferon-gamma-medi-
ated	signaling	pathway	in	the	GO	Biological	ontology	list	includes	nu-
merous	genes	associated	with	altered	cytokine	signaling	and	genes	in	
the	HLA	region	(c.f.,	GO:0060333,	Table	S4).

The	 set	 of	 5037	 CpGs	 were	 then	 submitted	 to	 the	 mQTL	
Database	 (Gaunt	et	al.,	2016).	The	search	 resulted	 in	1435	unique	
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CpG	matches	to	155,177	SNP	variants	 from	the	Middle	Age	time-
point	 (see	Table	 S6).	Of	 the	1435	CpG	matches,	 1256	were	 asso-
ciated with cis-mQTLs	and	304	were	associated	with	trans-mQTLs	
suggesting an abundance of associations with cis-mQTLs.	The	max-
imum	 number	 of	 mQTLs	 associated	 with	 any	 given	 CpG	 was	 for	
cg03202060	with	5230	cis-mQTLs	variants	plus	575	trans-mQTLs.	
The cis-mQTLs	for	cg03202060	reside	 in	the	HLA	region	on	chro-
mosome	 6	 (e.g.,	 https://www.genec	ards.org/cgi-bin/cardd	isp.pl?-
gene=HLA-DQB1&keywo	rds=HLA-DQB1),	 and	 the	 trans-mQTLs	
traverse genes such as DDAH2 related to metabolism of nitric 
oxide	 (https://www.genec	ards.org/cgi-bin/cardd	isp.pl?gene=D-
DAH2)	 and	 BAG6	 (https://www.genec	ards.org/cgi-bin/cardd	isp.
pl?gene=BAG6&keywo	rds=BAG6)	 residing	within	 the	major	histo-
compatibility	class	III	region	(MHCIII)	and	involved	in	the	control	of	
apoptosis.	A	scatterplot	of	cg03202060	M-values of twin 1 by twin 
2	across	time	is	shown	in	Figure	S2a,b	showing	greater	similarity	for	
MZ	than	DZ	pairs.

As	 polycomb	 repression	 may	 relate	 to	 age-related	 changes	 in	
DNA	methylation,	we	filtered	our	set	of	5037	CpGs	to	reflect	genes	
annotated	on	the	27	k	array	and	evaluated	whether	our	set	mapped	
to	1861	PolyComb	Group	Target	genes	(PCGTs)	identified	using	the	
Illumina	27	k	chip	probes	 (Zhuang	et	al.,	2012).	We	observed	493	
CpGs	within	a	set	of	293	PCGTs	overlapped,	or	a	15.7%	overlap	of	
PCGTs	(see	Table	S6).	A	hypergeometric	test	of	the	293	overlapping	
PCGTs	was	significant	at	p =	1.004E−11	suggesting	overrepresenta-
tion,	when	considering	the	number	of	unique	PCGTs	in	Zhuang	et	al.	
(2012),	 and	 the	number	of	 genes	 represented	 in	 the	 Illumina	27	k	
chip.

3.5 | Enrichment analysis: Low stability sites

The	2020	low	stability	CpGs	were	submitted	to	GREAT	4.0.4,	show-
ing	enrichment	for	stress-related	DNA	and	RNA	transcription	path-
ways	 (see	Tables	S7-S8).	Hence,	 these	 sites	may	 lie	 in	 genes/gene	
pathways that are sensitive to exogenous exposures to stress lead-
ing to increasing divergence in methylation profiles across time. The 
GO	Biological	RNA	and	DNA	pathways	noted	relate	to	heat	shock	
and response to hypoxia in a number of plant and animal species, in-
cluding	humans	(c.f.,	annotations	GO:0043620,	GO:0061418;	Table	
S8).

The	 low	 stability	 CpGs	 were	 submitted	 in	 kind	 to	 the	 mQTL	
Database	 (Gaunt	et	al.,	2016)	producing	397	unique	CpG	matches	
to	7103	mQTLs	at	the	Midlife	timepoint.	Of	the	397	CpG	matches,	
58	 annotations	were	 to	 cis-mQTLs	 and	 347	were	 to	 trans-mQTLs	
(see	Table	S9),	suggesting	an	abundance	of	associations	with	trans-
mQTLs.	The	maximum	number	of	mQTLs	linked	with	any	given	CpG	
was	for	cg07677296	matched	with	576	cis-mQTLs.	The	cis-mQTLs	
variants	associated	with	cg07677296	traverse	FAHD1 and NUBP2 on 
chromosome	16	and	have	been	implicated	in	aging	pathways	related	
to	 insulin-like	growth	factor	 (Teumer	et	al.,	2016).	A	scatterplot	of	
cg07677296	M-values of twin 1 by twin 2 across time shows compa-
rable	similarity	for	MZ	and	DZ	pairs	(see	Figure	S2c,d).

4  | DISCUSSION

Overall,	 results	 suggest	genetic	contributions	 to	DNA	methylation	
tended to be small, vary by location, and decrease across a dec-
ade; however, genetic influence mainly contributed to the stability 
of methylation. Unique person-specific influences not shared by 
cotwins were emergent across 10 years suggesting that non-shared 
factors	become	more	salient	to	DNA	methylation	in	late	life.	The	ex-
tent	of	variation	in	methylation	at	any	given	CpG	site	was	positively	
correlated with observing stronger heritable effects. Moreover, 
58%	of	sites	showed	stability	across	time	due	to	strongly	correlated	
genetic influences and modestly correlated non-shared factors, 
suggesting continuity of influences across 10 years for more than 
half	the	CpG	sites.	The	sites	that	showed	the	greatest	heritabilities	
showed enrichment in immune and inflammation pathways and 
neurotransmitter	 transporter	activity	pathways.	Low	stability	sites	
meanwhile showed increased expression variability across time due 
to novel non-shared factors, with enrichment in stress-related path-
ways,	suggesting	that	these	sites	are	responsive	to	“new”	environ-
mental cues even in old age.

Prior	studies	report	average	heritabilities	of	16.5%–19.0%	across	
adulthood	 (17-79	 years)	 (van	 Dongen	 et	 al.,	 2016;	 Hannon	 et	 al.,	
2018)	and	common	environmental	 influences	of	3.0%–12.6%,	 that	
are	stronger	in	young	adulthood	(Hannon	et	al.,	2018).	Our	results	
of	weakening	heritable	influences	across	age	are	consistent	with	the	
Dutch	cross-sectional	study	reporting	average	heritabilities	of	21%	
and	18%	at	ages	25	and	50	assuming	an	AE	model	(van	Dongen	et	al.,	
2016),	 whereas	 our	 estimates	 of	 broad	 heritability	 under	 an	 ADE	
model	are	24%	and	18%	many	decades	later	at	ages	69	and	79	years,	
respectively.	Where	non-additive	genetic	effects	fit	best,	the	aver-
age	broad	heritability	was	24%	across	age.	For	sites	where	 includ-
ing	common	environment	fit	best	(ACE),	lower	average	heritabilities	
were	 observed	 at	 7%	whereas	 common	 environment	 contributed	
10%	 to	variation	 in	methylation	 across	 age;	 common	environment	
is	higher	 in	18-year-old	UK	adults	 at	12.6%	 (Hannon	et	 al.,	 2018).	
We	 directly	 compared	 our	 heritabilities	with	 those	 available	 from	
Van	Dongen	et	al.	 (2016)	where	twins	were	on	average	37.2	years	
(17-79	years).	 For	337,322	matching	 sites,	 our	A	+ D estimates at 
time	 1	 (69	 years)	 were	 strongly	 correlated	 with	 their	 AE	 results	
(r =	.568,	df = 337,320, CI95 =	0.566,	0.570)	and	with	their	total	her-
itability	estimates	where	age	interactions	were	estimated	(r =	.556,	
df =	334,657,	CI95 =	0.554,	0.559).

CpG	sites	related	to	age	show	a	greater	 impact	of	heritable	 in-
fluences consistent with genetic regulation of the rate of biological 
aging.	Sites	associated	with	age	and	longevity	generally	show	higher	
heritabilities	 than	 the	 total	 background	 sites	 and	 varied	 in	magni-
tude	of	heritabilities	by	location,	where	“islands,”	which	often	reside	
in	promotor	regions	(Vinson	&	Chatterjee,	2012),	typically	showed	
lower	heritability	 than	 those	sites	 residing	 in	surrounding	 “shores”	
and	“shelves,”	which	have	been	shown	to	be	differentially	methyl-
ated	compared	to	islands	(Jones	et	al.,	2015).

Moreover,	the	set	of	methylation	clock	sites	are	likewise	more	
heritable	 than	 background	 CpG	 sites,	 with	 Zhang	 sites	 more	

https://www.genecards.org/cgi-bin/carddisp.pl?gene=HLA-DQB1&keywords=HLA-DQB1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=HLA-DQB1&keywords=HLA-DQB1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DDAH2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DDAH2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=BAG6&keywords=BAG6
https://www.genecards.org/cgi-bin/carddisp.pl?gene=BAG6&keywords=BAG6
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heritable	than	Horvath	and	Levine	sites,	and	Hannum	sites	com-
parable	to	the	Zhang	sites.	We	have	recently	reported	heritability	
estimates	of	methylation	clock	ages	of	52%	for	the	Horvath	clock	
and	36%	for	the	Levine	clock	(Jylhava	et	al.,	2019),	where,	consis-
tent with our current site-specific effects, stability across time was 
mediated primarily by genetic factors, whereas the person-spe-
cific environmental factors contributed to differences across time. 
The	353	Horvath	clock	sites	were	selected	as	best	predictors	of	
chronological	 age	 using	 multiple	 tissues	 (Horvath,	 2013)	 similar	
to	the	513	Levine	clock	sites	that	were	selected	based	on	predic-
tion	of	chronological	age	and	nine	biomarkers	of	phenotypic	aging	
with	models	trained	on	multiple	tissues	(Levine	et	al.,	2018).	The	
71	Hannum	clock	sites	best	predicted	age	(adjusted	for	sex,	BMI)	
based	on	methylation	observed	in	whole	blood	while	the	514	sites	
from	the	Zhang	prediction	model	relied	on	methylation	observed	
in	blood	and	saliva	samples	(Zhang	et	al.,	2019).	The	current	find-
ings	of	moderately	higher	heritabilities	in	the	Zhang	and	Hannum	
sites	versus	the	other	clock	sites	may	be	in	part	due	to	our	use	of	
blood tissue.

Enrichment	 analyses	 of	 the	 1.4%	 of	 sites	meeting	 p <	 1E−07	
suggest immune and inflammation pathways and neurotransmit-
ter transporter activity pathways may feature in sites with strong 
heritable	 or	 familial–environmental	 components.	 Moreover,	 the	
analysis	of	mQTL	associations	 suggests	 that	a	number	 these	high	
heritability	CpGs	are	associated	 largely	with	cis-mQTLs,	 including	
those	in	the	HLA	region.	Previous	studies	have	identified	methyla-
tion changes associated with altered immune functioning, including 
age-related	hypermethylation	and	reduced	expression	in	CD8+ cells 
for genes involved in T-cell-mediated immune response and differ-
entiation	 (Tserel	et	al.,	2015).	 Indeed,	 five	CpGs	 in	our	set	 identi-
fied as associated with cis-mQTLs	 at	midlife	 lie	within	 the	BCL11 
gene	 (cg26396443)	 or	 RUNX3	 gene	 (cg05162523,	 cg13566436,	
cg20674490,	cg22509179)	involved	in	T	cell	differentiation	(Tserel	
et	 al.,	 2015).	 A	 related	 study	 of	 German	 and	 Danish	 individuals	
(including	an	overlapping	sample	of	twins	herein)	evaluating	RNA-
sequencing expression patterns and longevity identified expression 
patterns in biological processes contributing to immune system and 
response	pathways	(Häsler	et	al.,	2017)	and	observed	high	herita-
bilities	 (30%–99%)	 among	 20%	of	 cis-eQTLS.	 Immunosenescence	
describes an age-associated decline in elderly individuals’ immune 
functioning, such as mounting less effective responses to vaccines 
and lowered resistance to illnesses, with concomitant upregulation 
of	 pro-inflammatory	 cytokines,	 among	 several	 other	 cellular	 and	
physiological	 changes	 in	 the	 immune	 system	 (Accardi	 &	 Caruso,	
2018).	 It	 has	 been	 proposed	 that	 heritable	 factors	may	 be	 partly	
associated	 with	 differential	 immune	 responses	 (Derhovanessian	
et	al.,	2010;	Poland,	Ovsyannikova,	Kennedy,	Lambert,	&	Kirkland,	
2014)	and	may	predict	influenza-related	susceptibility	and	mortal-
ity	(Poland	et	al.,	2014),	for	example,	and,	broadly,	successful	aging	
and	 longevity	 (Derhovanessian	 et	 al.,	 2010).	 Hence,	 differential	
adaptions to aging processes including immunosenescence reflect 
gene–environment	dynamics	with	some	individuals	showing	better	
adaptions than others due to genetic influences.

High	heritability	CpGs	were	also	enriched	for	PCGTs—a	group	of	
genes that are epigenetically regulated by polycomb-group proteins 
and involved in developmental processes and cell-fate decisions 
(Lanzuolo	 &	 Orlando,	 2012).	 Enrichment	 of	 hypermethylated	 of	
PCGT	has	also	been	implicated	in	cancer	and	aging	and	show	consis-
tent	patterns	across	different	cell	types	(Teschendorff	et	al.,	2010).	
Our	findings	would	thus	support	the	role	of	heritable/familial–envi-
ronmental factors in the epigenetic regulation of these fundamental 
cellular processes.

Enrichment	 analyses	 of	 low	 stability	 CpG	 sites	 suggest	 that	
stress-related	DNA	and	RNA	transcription	pathways	may	be	relevant	
for these environmentally responsive sites which showed increased 
novel environmental contributions to methylation. It is notable that 
unlike	 the	 high	 heritability	 set,	 the	 low	 stability	 set	 showed	more	
associations with trans-mQTLs.	 That	 said,	 cg07677296	 matched	
with	 576	 cis-mQTLs,	 with	 variants	 spanning	 FAHD1 and NUBP2, 
both implicated in metabolic and aging pathways related to insu-
lin-like	growth	factor	(IGF)	(Teumer	et	al.,	2016).	Specifically,	FAHD1 
was identified as a cis-eQTL	 associated	 with	 a	 variant	 in	 NUBP2 
(rs1065656)	 that	may	 contribute	 to	 circulating	 IGF-I	 and	 IGFBP-3	
concentrations	 (Teumer	et	al.,	2016).	Moreover,	 IGF-I	 is	 implicated	
in	oxidative	stress	pathways	(Gubbi,	Quipildor,	Barzilai,	Huffman,	&	
Milman,	2018).

The current study establishes the extent to which the genetic 
and environmental influences contribute to site-specific meth-
ylation	 across	 a	 10-year	 span	 in	 a	 longitudinal	 sample	 of	 Swedish	
and	Danish	twins.	While	stability	of	methylation	was	largely	due	to	
genetic influences, person-specific environmental influences were 
emergent	across	 time	and	explained	change.	By	and	 large,	 the	dy-
namics of methylation may be influenced by experiences and expo-
sures, suggesting possible mediation of gene expression; however, 
the most heritable sites may participate in immune and inflammation 
pathways and neurotransmitter transporter activity pathways which 
suggest that adaptions to aging and senescence may be differentially 
impacted	by	genetic	background.
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