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Abstract

Nearly 500°000 fatalities due to COVID-19 have been reported globally and the death toll is still rising. Most deaths are due to
acute respiratory distress syndrome (ARDS), as a result of an excessive immune response and a cytokine storm elicited by severe
SARS-CoV-2 lung infection, rather than by a direct cytopathic effect of the virus. In the most severe forms of the disease
therapies should aim primarily at dampening the uncontrolled inflammatory/immune response responsible for most fatalities.
Pharmacological agents - antiviral and anti-inflammatory molecules - have not been able so far to achieve compelling results for
the control of severe COVID-19 pneumonia. Cells derived from the placenta and/or fetal membranes, in particular amniotic
epithelial cells (AEC) and decidual stromal cells (DSC), have established, well-characterized, potent anti-inflammatory and
immune-modulatory properties that make them attractive candidates for a cell-based therapy of COVID19 pneumonia.
Placenta-derived cells are easy to procure from a perennial source and pose minimal ethical issues for their utilization. In view
of the existing clinical evidence for the innocuousness and efficiency of systemic administration of DSCs or AECs in similar
conditions, we advocate for the initiation of clinical trials using this strategy in the treatment of severe COVID-19 disease.

Introduction

Since December 2019, when it was first tracked in China, the
novel human coronavirus SARS-CoV-2, the agent of
COVID-19 disease, has quickly spread to pandemic propor-
tions, with rapid person-to-person transmission, and has
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become a global health emergency. The virus has shown an
extremely pathogenic potential, mainly targeting frail individ-
uals, and leading to fatal pneumonia and Acute Respiratory
Distress Syndrome (ARDS). As of the time of this writing,
close to 500°000 fatalities due to COVID-19 have been report-
ed worldwide and the death toll is still rising [1].
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In this opinion paper, we briefly present the pathogenesis of
severe COVID-19 disease, argue that it should be treated primar-
ily with an anti-inflammatory strategy, and propose that this can
be achieved by cell therapy using placenta-derived cells known
for their anti-inflammatory and immunomodulatory properties,
as previously successfully attempted in similar diseases.

COVID-19: a 2-step Clinical Course

The clinical course of severe COVID-19 disease is schemati-
cally thought to follow a 2-step pattern (Fig. 1). In the first
phase, viral infection usually starts in the upper respiratory
tract, where it causes flu-like symptoms and elicits an adaptive
immune response aiming at controlling the infection and
clearing the virus. This is a stage in which antiviral drugs
may be efficient at controlling the disease, but, unfortunately,

we lack SARS-CoV-2-specific antivirals. The lopinavir/
ritonavir combination has not shown obvious efficiency [2],
encouraging results have been reported with remdesivir [3],
and clinical trials testing other antiviral candidate therapies are
ongoing, including antibody therapy using sera from conva-
lescent COVID-19 patients [4].

If the immune system is unable to mount a response strong
enough to clear the virus at this early stage, infection can
progress from upper respiratory tract infection to pneumonia,
in which alveolar epithelial cells get infected. In the lungs, an
excessive reaction from the immune system may then over-
whelm the ongoing cellular and humoral adaptive responses.

Our current understanding is that the failure to control viral
replication immediately leads to an uncontrolled inflammato-
ry reaction, and that a direct cytopathic effect of the virus is
not the main driver of the severe pulmonary complications of
COVID-19. There is growing evidence that a Th1- and Th17-
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Fig. 1 Schematic representation of COVID-19 clinical course and
treatment options. Viral infection initiates in the upper respiratory tract,
where it causes mild disease. At this stage, the immune response is
balanced, so as to allow cytotoxic clearance of virus-infected cells, elicit
humoral response and maintain a controlled inflammatory/anti-
inflammatory (Th1/Th2) balance. It may then progress to broncho-
alveolar infection, where the immune response may remain balanced,
and the clinical course remain mild and evolve toward resolution. In the
lungs, the immune response, possibly in situations of higher viral load,
may also progress to a severe uncontrolled inflammatory condition, with
Th1/Th2 and Th17/Treg imbalance, recruitment of macrophages and
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neutrophils, and a « cytokine storm » causing ARDS and a systemic
and potentially lethal disease. The severity and lethality of the disease is
the consequence of this overwhelming inflammatory reaction in which
antiviral drugs will not suffice to control the clinical course. There is a
turning point (symbolized by a thin dotted line) from which an anti-
inflammatory/immunomodulatory strategy is required to help dampen
the disease. Anti-cytokine small molecules are currently being tested.
We propose that cell therapy with placenta-derived immunomodulatory
cells (DSCs, AECs) could be an efficient strategy at this stage of the
disease
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driven reaction elicits a cytokine storm, reminiscent of sec-
ondary haemophagocytic lymphohistocytosis (sHLH), in-
volving extravasation of blood neutrophils and excessive
monocyte/macrophage activation. The uncontrolled release
of proinflammatory cytokines and chemokines (IFN-y, inter-
leukin (IL)-1f3, IL-6, TNF-e, IL-2, IL-7, IL-8, G-CSF, IP-10,
MCP-1) in the lung triggers edema, dysfunction of gas ex-
change, ARDS, acute cardiac injury, secondary bacterial in-
fection and, ultimately, death [5—11]. One emerging hypothe-
sis involves activation of the NLRP3 inflammasome in
SARS-CoV-2 infection as a key mediator triggering the cyto-
kine storm. Several mechanisms have been proposed and are
under investigation, and interestingly, NLRP3 inflammasome
activation by the SARS-CoV virus has been demonstrated in
the past [12, 13]. The systemic cytokine release syndrome
may in turn hit peripheral organs, causing their irreversible
damage and multi-organ failure. Atrophy of the spleen and
lymph nodes with reduced lymphocyte numbers indicate fail-
ure to control the infection by a severely impaired immune
system. Most of the infiltrating cells found in the lungs are
monocytes and macrophages, lymphocytic infiltration being
minimal [11]. ARDS is the leading cause of COVID-19-
related mortality, affecting 45-62% of patients critically ill
with COVID-19 pneumonia, with a median time from admis-
sion in the intensive care unit (ICU) to death ranging from 7 to
12 days [5].

Targeting the Inflammatory Reaction
in Severe COVID-19

At this stage of the COVID-19 disease, it is apparent that, once
severe disease is established, purely antiviral therapy is un-
likely to be sufficient and that anti-inflammatory/immuno-
modulatory strategies should be applied. Timely targeting of
the inflammatory phenomena that are the hallmark of the dis-
ease, in an attempt to prevent the ensuing cytokine storm,
appears as a valid strategy to decrease mortality, or simply
time in ICU, with the secondary benefit of increasing the
availability of ICU resources, beds, personnel and respirators,
and thus further decreasing mortality.

Corticosteroids have been used to that purpose from the
onset of the epidemic in Wuhan, but their impact is controver-
sial and their utilization is not recommended [10]. A retro-
spective review of IL-6 blockade with tocilizumab has sug-
gested that it could reduce COVID-19 mortality, but appro-
priate studies are still lacking [14]. A number of randomized
controlled trials (RCT) are currently registered to test toci-
lizumab, but also other drugs targeting IL-6 (siltuximab), IL-
1 (anakinra) or IFN-y (emapalumab), janus kinase inhibitors
(ruxolitinib, baricitinib) or other agents [15]. Reliable results
of completed RCTs using such types of anti-inflammatory
small molecules are still lacking and eagerly expected.

Pharmaceutical inhibition of the NLRP3 inflammasome has
more recently been proposed as a potential addition to the anti-
inflammatory armamentarium to fight severe COVID-19 dis-
ease [12, 13].

In parallel with the search for a potent pharmacologic
agent, alternative anti-inflammatory or immunomodulatory
approaches that do not impair antiviral response and preserve
from tissue damage are worth being considered. Among them,
stem cell-based therapies might be an interesting option for the
effective management of the cytokine storm/sHLH and mod-
ulation of the monocyte/macrophage response. Mesenchymal
stromal cells (MSC) have been used for decades from basic
research to clinical trials, more for their anti-inflammatory and
immunomodulatory properties, than for stemness characteris-
tics [16-18]. The efficiency of MSCs in treating ARDS in-
duced by viral infections has been shown in a number of pre-
clinical models, and their safety established in a few phase I-11
clinical trials [19, 20]. Together with its lung repair and regen-
erative properties, MSC-based therapy might be effective in
preventing or mitigating the cytokine storm, with the potential
of reducing COVID-19 morbidity and mortality [21]. To this
end, there are currently more than 30 registered clinical trials
planning to use stem cell-based therapy for COVID-19 pneu-
monia and ARDS [15]: umbilical cord blood, Wharton’s jelly,
menstrual blood, dental pulp, and bone marrow and adipose
tissue derived stromal cells are all in the pipeline for clinical
evaluation.

In a recent pilot study, in which seven COVID-19 patients
with ARDS were treated with adult bone marrow-derived
MSCs, the authors report improvement in both clinical and
inflammatory outcome compared to a control group of 3 pa-
tients [22]. These projects and observations point to the need
for trustworthy results obtained in RCTs. A clear mechanistic
rationale for the selection of the cell source is also of primary
importance, rather than the reliance on relatively easy
manufacturing approaches and high cell yields.

Along this line, perinatal tissues may be worthy of consid-
eration. Cells derived from the human placenta or amniotic
membrane have shown therapeutic potential in terms of im-
munomodulatory properties and their procurement has the
immense advantage of being easy, non-invasive, perennial
and devoid of ethical issues.

The Rationale for Human Placenta-
and Amnion-derived Cell Therapy

The placenta and the fetal membranes serve as immunological
barriers at the fetal-maternal interface in pregnancy. During
pregnancy, a switch from the Thl cytokine profile to the Th2
profile occurs to protect the fetus from the mother’s immunity.
The placenta contributes to this natural evolution of maternal
immunity [23]. Maternal and fetal immune cells interact in the
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decidua, a membrane of maternal origin that plays an impor-
tant role in feto-maternal tolerance [24]. Cells isolated from
different parts of placental tissues, including amnion [25, 26],
decidua [26, 27], and umbilical cord have been studied for
their multipotent differentiation capacities [28], but most im-
portantly for their immunomodulatory and anti-inflammatory
properties. Intact amniotic membranes from term placentas
have been used for almost a century to treat severe burn inju-
ries, and, later, corneal wounds, and are known for their ability
for tissue repair without being rejected [29]. In a recent pub-
lication, a marked reduction of pulmonary fibrosis was ob-
served by the intratracheal injection of human amniotic
membrane-derived MSCs in a bleomycin-induced murine
model, mediated by a modulation of lymphocyte and macro-
phage phenotypes [30].

Our interest focuses on decidual stromal cells (DSC) de-
rived from the maternal side of the placenta, and amniotic
epithelial cells (AEC), both of which have been shown to exert
pleiotropic immune regulatory actions, mediated by complex
mechanisms that inhibit the functions of different cell subsets
of innate and adaptive immunity. A summary of their relevant
features appears on Fig. 2.
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Fig. 2 Immunomodulatory properties of DSCs and AECs. DSCs inhibit
NK cell proliferation and promote their differentiation into a dNK
phenotype via two mechanisms: (a) by the release of TGFf3, IL-10, and
MCP-1 and (b) by the interaction between mIL-15 and CD122 receptor.
DSCs also secrete IL-33, contributing to the establishment of a Th2
microenvironment. Finally, they inhibit monocyte differentiation into
dendritic cells mediated by PGE2. AECs suppress proliferation,
inflammatory cytokine production, and differentiation of T cells.
Soluble factors secreted by AECs, including PGE2, TGF-f3, Fas-L,
MIF, TRAIL, and HLA-G, block dendritic cell and M1 macrophage
differentiation and promote differentiation of monocytes into an anti-
inflammatory M2 phenotype. AECs also modulate the host immune
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DSCs play an important role in maintaining feto-maternal
tolerance through an array of immunomodulatory mecha-
nisms that are not completely elucidated. Although they have
characteristics similar to those of bone marrow-derived
MSCs, defined by the International Society for Cell Therapy
(ISCT), DSCs are distinct from bone-marrow MSCs [31, 32].
Their chemokine release pattern (including TGF(3, IL-10, and
MCP-1) inhibits NK cell proliferation, toxicity and IFN-y
production, and fosters their differentiation into a decidual
NK (dNK) phenotype, with inhibitory and tissue repair prop-
erties. DSCs also secrete IL-33, contributing to the establish-
ment of a Th2 microenvironment. Finally, they drive CD14 +
monocyte differentiation to a tolerogenic dendritic cell pheno-
type, with low CD80 and CD86 expression, and IL-10, but not
IL-12 production [33, 34].

In recent years, successful attempts at treating immune-
mediated inflammatory diseases, such as graft versus-host dis-
ease (GVHD), by intravenous injection of decidual stromal
cells (DSCs) have been reported in clinical trials from the
Karolinska Institute. Control of the cytokine storm associated
with this lethal condition and stimulation of tissue regenera-
tion were achieved in these trials [35, 36]. The clinical safety
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system, mainly through downregulation of TNF-«, IFN-y, MCP-1 and
IL-6 and upregulation of anti-inflammatory cytokines. DSCs and AECs
also share common features: both cell types stimulate the generation of
Treg cells trough PGE2, TGF-3 and IDO and suppress proliferation of
activated PBMCs. They also block monocyte to dendritic cell maturation
AEC: amniotic epithelial cell; dNK cell: decidual natural killer cell; DSC:
decidual stromal cell; GM-CSF: granulocyte macrophage colony
stimulating factor; IDO: Indoleamine 2,3-dioxygenase; MIF:
Macrophage migration inhibitory factor; NK cell: natural killer cell;
PBMC: peripheral blood mononuclear cell; PGE2: prostaglandin 2;
TRAIL: TNF-related apoptosis-inducing ligand
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of the systemic injection of DSCs was documented and its
safety profile established [36, 37]. Of special interest, in the
context of COVID-19 ARDS, in vivo cell tracking showed
that DSCs migrated to the lungs and remained there for at least
48 h, where they could maintain protection and restoration of
alveolar epithelial cells, reverse fibrosis and improve lung
function [38]. In a case report from the same group, a patient
suffering from sepsis-induced ARDS was treated with DSCs
with a spectacular and fast response, leading to total weaning
of oxygen supply within four days and a decrease of circulat-
ing inflammatory markers within a few hours [39].

Another key cell population for feto-maternal tolerance,
AECs exhibit at least equally potent immunomodulatory fea-
tures and appear to use wider-ranging mechanisms compared
with other MSC types. They express and/or secrete FasL and
non-classical MHC class 1 HLA-G, which bind to NK and T
cells to trigger apoptosis and inhibit T-cell activation and pro-
liferation [40—42]. They promote T-cell differentiation toward
the Treg phenotype, which in turn induces a phenotype switch
from M1 to M2 macrophages with tissue repair function [43,
44]. AECs also release anti-inflammatory cytokines and pro-
teins, including IL-1 receptor antagonist, tissue inhibitors of
matrix metalloproteinases — 1, -2, -3, and — 4, TGF-[3 and IL-
10 [44, 45]. These soluble factors contribute to the regulation
of macrophage recruitment and inhibit the chemotactic activ-
ity of neutrophils and macrophages [46]. In contrast to high
expression of HLA-G, AECs express low levels of MHC class
I antigens, while MHC class II antigens and costimulatory
molecules are not expressed, protecting them from rejection
[40].

Human AECs have shown efficiency in murine models of
pulmonary fibrosis and preclinical models of broncho-
pulmonary dysplasia [47, 48]. These effects were obtained
through a lowering the number of pulmonary leucocytes and
expression of pro-inflammatory markers (e.g., TGF-f3,
PDGF-«, PDGF-f3, TNF-«x, IFN-y, and IL-6) and a Treg-
induced phenotype switch in macrophages from M1 to M2
[43]. A recent, first-in-human, phase 1 trial in 7 premature
infants from Australia has demonstrated the safety of systemic
AEC administration, and the same group has published the
protocol for a further study including efficiency endpoints
[49-51].

It is well documented that MSCs exert most of their anti-
inflammatory properties through their secreted extracellular
vesicles (EV) and that EVs are an attractive and more versatile
alternative to whole cell therapy, including for COVID-19
[52]. EVs derived from DSCs or AECs could be utilized to
this end.

Viral transmission from mother to fetus seems to be ex-
tremely rare [53-55]. Reasons why the SARS-CoV-2 virus
is not transmitted in utero may pertain to two issues: the pla-
cental barrier between mother and fetus, and the mechanisms
by which the virus enters the infected cells. The prerequisite

for cell infection by the SARS-CoV-2 virus is the identifica-
tion of the angiotensin-converting enzyme-2 (ACE2) receptor
by its spike protein. Only cells expressing ACE2 can get in-
fected. In addition to ACE2, the cellular protease TMRRSS2
is also required to allow entry of the virus into host cells [56].
In a recent investigation of SARS-CoV-2 entry factors in mul-
tiple scRNA-seq datasets from different tissues, ACE2 was
found to be expressed in cells derived from multiple tissues
including airways, but at low levels. In contrast TMPRSS2
was highly expressed and had broader distribution, suggesting
that the limiting factor for viral infection is ACE2 [57].
Interestingly, in placental or decidual tissues, ACE2 expres-
sion was only noticeable in very few cell types, but no
TMPRSS2 expression could be detected, suggesting that
DSCs and AECs may be protected from SARS-CoV-2 infec-
tion [47]. Indeed, a case of SARS-CoV-2 placental infection
was recently reported, showing predominant location of the
virus in the syncytiotrophoblast [58].

The Case for DSC- or AEC-based Cell Therapy
in Severe COVID-19 Disease

The characteristics reviewed above make some of the
placenta-derived cells attractive candidates for the treatment
of COVID19 pneumonia. Several factors contribute to make
these cells more attractive than other MSC-derived cell prod-
ucts, including: (i) human placenta and fetal membranes are a
perennial source of cells; (ii) they are available with limited
ethical issues, since they are obtained from tissues discarded
after childbirth; (iii) unlike bone marrow or adipose MSCs, no
invasive procedure is needed for their recovery; (iv) large
quantities of cells can be obtained from a single placenta and
banked for repeated or multiple therapeutic use; (v) they mi-
grate to the lungs after systemic injection; (vi) their low im-
munogenicity profile protects them from rapid immune de-
struction and dampens local activation of immunity; and
(vii) they may be protected from SARS-CoV-2 infection.

With the existing clinical evidence for the innocuousness
of'the systemic administration of DSCs or AECs, we advocate
for the initiation of clinical trials using this strategy. In order to
avoid the controversy that has surrounded a number of previ-
ous clinical studies addressing the COVID-19 disease, we
believe that such trials should take the form of RCTs, with
robust efficacy endpoints. The injected cell dose should be
based on previous clinical experience in GVHD and ARDS.
Timing of administration of the cell therapy product should be
carefully determined, early enough to tackle the cytokine
storm before it becomes uncontrollable, but paying attention
not to interfere with the host’s immune system while it is still
able to mount a response against the SARS-CoV-2 virus.
Clinical scores, such as the HScore, might be the right tools
to help identify the moment to initiate therapy [10].
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Finally, there is a need for proper determination of isolation
techniques and means of characterization of the isolated cells.
Further studies are also required to fully understand the poten-
tial of these cells in order to turn them into certified cell prod-
ucts, generated under good manufacturing practices (GMP),
and authorized by the European Medicines Agency (EMA) in
Europe and by the FDA in the United States.
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