
Massively parallel and time-resolved RNA sequencing in single 
cells with scNT-Seq

Qi Qiu#1,2,3, Peng Hu#1,2,3, Xiaojie Qiu5,6, Kiya W. Govek1,4, Pablo G. Camara1,4, Hao 
Wu1,2,3,*

1Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States

2Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States

3Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 
United States

4Institute of Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, 
United States

5Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 
San Francisco, California, United States

6Present address: Whitehead Institute, Cambridge, Massachusetts, United States

# These authors contributed equally to this work.

Abstract

Single-cell RNA sequencing offers snapshots of whole transcriptomes but obscures the temporal 

RNA dynamics. Here we present single-cell metabolically labeled new RNA tagging sequencing 

(scNT-Seq), a method for massively parallel analysis of newly-transcribed and pre-existing 

mRNAs from the same cell. This droplet microfluidics-based method enables high-throughput 

chemical conversion on barcoded beads, efficiently marking newly-transcribed mRNAs with T-to-

C substitutions. Using scNT-Seq, we jointly profiled new and old transcriptomes in ~55,000 single 

cells. These data revealed time-resolved transcription factor activities and cell state trajectories at 

single-cell level in response to neuronal activation. We further determined rates of RNA biogenesis 

and decay to uncover RNA regulatory strategies during stepwise conversion between pluripotent 

and rare totipotent two-cell-embryo-like (2C-like) stem cell states. Finally, integrating scNT-Seq 

with genetic perturbation identifies DNA methylcytosine dioxygenases as an epigenetic barrier 

into 2C-like cell state. Time-resolved single-cell transcriptomic analysis thus opens new lines of 

inquiry regarding cell-type-specific RNA regulatory mechanisms.
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Introduction

Dynamic changes in RNA levels are regulated by the interplay of RNA transcription, 

processing, and degradation1, 2. Understanding the mechanisms by which the transcriptome 

is regulated in functionally diverse cell-types thus requires cell-type-specific measurements 

of temporal dynamics of gene expression. Recent advances in single-cell RNA sequencing 

(scRNA-Seq) are leading to a more complete understanding of heterogeneity in cell types 

and states3. However, standard scRNA-Seq methods capture a mixture of newly-transcribed 

(“new”) and pre-existing (“old”) RNAs without being able to temporally resolve RNA 

dynamics.

Commonly used approaches for distinguishing new from old RNAs within the same 

population of transcripts rely on RNA metabolic labeling that utilizes exogenous nucleoside 

analogs such as 4-thiouridine (4sU) and biochemical enrichment of labeled RNAs1. 

Although these methods have yielded critical insights into RNA dynamics regulation, they 

require ample starting material and present challenges for enrichment normalization. Several 

methods were recently developed to chemically convert 4sU into cytidine analogs, yielding 

uracil-to-cytosine substitutions that label newly-transcribed RNAs after reverse 

transcription4–6. These chemical approaches permit direct measurement of temporal 

information about cellular RNAs without biochemical enrichment. Recent studies 

demonstrated the feasibility of jointly profiling new and old transcriptomes at single-cell 

levels by integrating Smart-Seq/plate-based scRNA-Seq with one of these chemical 

approaches such as thiol(SH)-linked alkylation for the metabolic sequencing of RNA 

(SLAM)-Seq7, 8. However, these Smart-Seq/plate-based methods suffer from several 

limitations. First, they are costly and time-consuming, prohibiting it for large-scale analysis 

of highly heterogeneous cell populations. Second, these methods lack unique molecular 

identifiers (UMIs), preventing accurate quantification of new transcript levels.

To overcome these constraints, we developed scNT-Seq, a high-throughput and UMI-based 

scRNA-Seq method that combines metabolic RNA labeling, droplet microfluidics, and 

chemically induced recoding of 4sU to cytosine analog to simultaneously measure new and 

old transcriptomes from the same cell. We demonstrate that scNT-Seq enables time-resolved 

analysis of cellular RNA dynamics, gene regulatory network (GRN) activity and cell state 

trajectories at single-cell levels, while it substantially improves the scalability and reduces 

the cost.

Results

Development and validation of scNT-Seq

To develop scNT-Seq, we focused on the Drop-Seq platform because its unique barcoded 

bead design affords immobilization of mRNAs for massively parallel on-bead chemical 

conversion reactions and UMI-based scRNA-Seq analysis, and this droplet microfluidics 

platform is widely adopted9–13. The scNT-Seq consists of the following key steps (Fig. 1a): 

(1) metabolically labeling of cells with 4sU; (2–3) co-encapsulating individual cell with a 

barcoded oligo-dT primer coated bead in a nanoliter-scale droplet; (4) performing one-pot 
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4sU chemical conversion on pooled barcoded beads; (5–8) reverse transcription, cDNA 

amplification, tagmentation, and indexing PCR; and (9) using a UMI-based statistical model 

to analyze T-to-C substitutions within transcripts and infer the new transcript fraction14.

To identify the optimal reaction conditions on barcoded beads, we explored two chemical 

approaches (SLAM-Seq4: iodoacetamide (IAA)-based reaction; TimeLapse-Seq5: 2,2,2-

trifluoroethylamine (TFEA)/sodium periodate (NaIO4)-based reaction) and benchmarked 

their performance with species-mixing experiments using mouse embryonic stem cells 

(mESCs) and human K562 cells. TFEA/NaIO4-based chemistry substantially outperforms 

IAA-based chemistry in one-pot chemical reaction on pooled beads (Fig. 1b). We noted that 

chemical treatment alone negatively impacts the library complexity (genes/UMIs detected 

per cell) (Extended Data Fig. 1a), but this issue can be overcome by using second strand 

synthesis to recover partially reversed transcribed mRNAs (see below). The collision rate is 

comparable between TFEA/NaIO4-based scNT-Seq and standard Drop-Seq (Fig. 1b), 

demonstrating the specificity of scNT-Seq in analyzing single-cell transcriptomes. As 

expected, 4sU labeling and TFEA/NaIO4 treatment resulted in a specific increase in T-to-C 

substitution rate (Fig. 1c) and in fraction of labeled transcripts at population and single-cell 

levels (Fig. 1d and Extended Data Fig. 1b). Moreover, scNT-Seq works efficiently with both 

freshly isolated and cryo-preserved cells (Extended Data Fig. 1c), and aggregated single-cell 

transcriptomes were highly correlated between biological replicates (Extended Data Fig. 

1d). Collectively, these data demonstrate the feasibility of detecting metabolically labeled 

new transcripts at single-cell levels using a high-throughput droplet microfluidics platform.

Evaluating scNT-Seq performance for detecting activity-induced new RNAs

Neuronal activity induces expression of hundreds of activity-regulated genes (ARGs) in the 

vertebrate brain, leading to new protein synthesis and epigenetic changes necessary for 

short- and long-term memories of experiences15. Recent studies suggest that different 

neuronal activity patterns could induce a distinct set of ARGs16, which are highly cell-type 

specific in vivo10. The activity-induced gene expression program is well-characterized for 

primary cortical neuronal cultures, which can serve as a model system for evaluating the 

performance of scNT-Seq in quantifying new and old RNAs. We metabolically labeled 

primary mouse cortical cultures (200 μM 4sU) for two hours and stimulated the cells with 

different durations of neuronal activity (0-, 15-, 30-, 60- and 120-min of potassium chloride 

(KCl)-mediated membrane depolarization) (Extended Data Fig. 2a). After quality filtering, 

we retained 20,547 paired single-cell new/old transcriptomes (Fig. 2a, Extended Data Fig. 

2b and Supplementary Table 1). We identified all major cell-types expected for embryonic 

mouse cortex: Neurod6+ cortical excitatory neurons (Ex, 68.5%), four Gad1+ inhibitory 

neuronal subtypes (Inh1–4, 13.9% in total), Dlx1/Dlx2+ inhibitory neuronal precursors (Inh-

NP: 1.7%), two sub-populations of Nes/Sox2+ excitatory neuronal precursors (Ex-NP1/2: 

10.4% in total), and Nes/Aldh1l1+ radial glia (RG: 5.5%) (Fig. 2a and Extended Data Fig. 

2b).

To evaluate scNT-Seq for quantitatively distinguishing new from old RNAs and the extent of 

incomplete 4sU labeling of new transcripts7, 17, we counted and statistically modeled T-to-C 

substitutions in UMI-linked transcripts (see methods). Compared to Smart-Seq/plate-based 
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methods that are constrained by the fixed read length, the coverage of uridines or T-to-C 

substitutions in each transcript is substantially improved in UMI-based scNT-Seq analysis 

(Extended Data Fig. 3a, b). Analysis of both activity-induced genes (e.g., Fos, new/total 

RNA ratio: 90.0%) and slow turnover house-keeping genes (e.g., Mapt, new/total RNA ratio: 

1.7%) in Ex neurons suggests that our statistical correction model allows scNT-Seq to 

accurately distinguish newly-transcribed RNAs from pre-existing ones (Extended Data Fig. 

3c–e).

Principal component analysis (PCA) of highly variable genes could completely separate 

activity-induced (120-min) from resting state (0-min) Ex neurons using either new RNAs or 

new-to-total RNA ratios (NTRs) (Fig. 2b). Interestingly, PCA on total or old RNAs still 

partially separated resting and stimulated neurons (Fig. 2b), which may in part be due to 

neuronal activity-regulated stability of some old RNAs. By contrast, non-neuronal cells (Ex-

NP/RG) did not exhibit activity-dependent separation (Fig. 2b). Some ARGs, such as Jun 
and Btg2, were specifically induced in Ex neurons, but other ARGs (e.g., Egr1, Fos, and 

Npas4), were broadly induced in many cell-types including non-neuronal cells, albeit with 

different magnitudes and response patterns (Fig. 2c, Extended Data Fig. 2c, d and 

Supplementary Table 2). There was little to no change at old RNA levels in response to 

activity (Fig. 2c). Thus, scNT-Seq reveals cell-type-specific, activity-induced immediate 

transcriptional changes.

Identification of neuronal activity-induced, time-resolved regulon activity

Regulon activity of a transcription factor (TF) can be quantified at single-cell resolution by 

linking cis-regulatory sequences to single-cell gene expression. Jointly profiling new and old 

transcriptomes by scNT-Seq may enable parallel analysis of both dynamic regulons induced 

by external stimuli and stable regulons related to cellular identities. By applying single-cell 

regulatory network inference and clustering (SCENIC)18 to paired single-cell new/old 

transcriptomes, we identified 79 co-regulated TF regulons with significant cis-regulatory 

motif enrichment in at least one cell-type (Supplementary Table 3). Among them, 18 

regulons showed significant changes in response to neuronal activity-patterns (Fig. 2d). 

Many immediately early genes (IEGs) that are early-response ARGs encode TFs required 

for activating late-response ARGs15. With newly-transcribed (but not pre-existing) RNAs, 

SCENIC analysis revealed activity-dependent increase in regulon activity of both IEG TFs 

(e.g. Fos and Jun) and constitutively expressed TFs (e.g. Srf and Mef2) that are post-

translationally activated15 (Fig. 2d). Regulon activity of these TFs (e.g. Jun) is specifically 

detected in neurons (Fig. 2d, e). Interestingly, we also identified several activity-induced TFs 

not previously implicated in neuronal activation (Fig. 2d). For example, Maff, as a small 

MAF family protein lacking the transactivation domain19, is associated with both activity-

dependent (mainly with new RNAs) and -independent regulon activities (Fig. 2e). 

Interestingly, target genes of Maff significantly overlap with those of the IEG TF, Fosb 

(Extended Data Fig. 2e), and gene ontology (GO) analysis suggests that Maff targets are 

functionally related to neuron projection (P=6.47e-7) and synapse (P=2.30e-3). In addition, 

we found that activity-independent TF regulons are often cell-type specific (e.g. Neurod1/2 

for Ex, Dlx1/2 for Inh) and are associated with both new and old RNAs (Fig. 2d). Thus, 
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scNT-Seq can reveal temporal dynamics of cell-type-specific TF regulon activities at single-

cell resolution.

Metabolic labeling-based time-resolved RNA velocity analysis

Recent work showed that the time derivative of gene expression, termed “RNA velocity”, 

can be estimated by distinguishing unspliced (intronic reads) from spliced (exonic reads) 

mRNAs in scRNA-Seq datasets and used to inform how transcriptional states in single cells 

change over time (on the scale of hours)20. We first examined whether RNA velocity 

analysis can predict the transcriptional state trajectory of individual cells in response to brief 

(minutes) and sustained (hours) neuronal activation. To this end, we focused on the 

excitatory neurons as these cells robustly respond to neuronal activation. However, no 

neuronal activity-dependent directionality was consistently detected in the splicing RNA 

velocity flow, irrespective of using all Ex neurons (left panels in Extended Data Fig. 4a) or 

only high-quality cells (left panels in Fig. 3a). This is probably due to sparsity of unspliced 

transcripts from many activity-induced genes that contain few introns and/or are of fast 

splicing kinetics (e.g. Egr1 and Fos in Extended Data Fig. 5a).

Because metabolic labeling can capture rapid changes in RNA levels21 and detection of new 

RNAs via 3’-tagged UMIs is largely independent of gene structures, we reasoned that 

single-cell paired measurements of new and total RNAs from scNT-Seq can be used to 

compute metabolic labeling-based RNA velocity that is scaled to labeling time (molecules 

per unit time). To quantify this time-resolved RNA velocity, we utilized dynamo22, a 

computational method that explicitly models metabolic labeling based scRNA-Seq. Phase 

portraits of early- (Egr1 and Fos) and late-response genes (e.g. Homer1) showed the 

expected deviations from the predicted steady-state relationship (Extended Data Fig. 5b). 

Measured by velocity flows (indictive of the observed and extrapolated cell states) in the 

low-dimensional embedding, metabolic labeling-based RNA velocity accurately 

recapitulated the transcriptional dynamics of neuronal activation, including a general 

movement of resting state neurons (0-min) towards activated neurons (first phase), and 

second phase movement from briefly stimulated cells (15-/30-min) to longer stimulation 

(60-/120-min) (right panels in Fig. 3a and Extended Data Fig. 4a). Furthermore, randomized 

control supports the specificity of the observed time-resolved RNA velocity flow (low panels 

in Fig. 3a and Extended Data Fig. 4a).

The two distinct phases of observed RNA velocity flow correlate with early- and late-

response gene expression, respectively (Fig. 3b, Extended Data Fig. 4b and 6). We further 

identified activity-regulated TF regulons that are significantly enriched for early- (n=24) or 

late-response (n=73) genes (Fig. 3c and Extended Data Fig. 2d). We calculated the regulon 

activity of these activity-regulated TFs in each cell, based on the aggregated newly-

transcribed RNA levels of its target genes. By projecting regulon activity of these TFs onto 

RNA velocity flows, we constructed a single-cell resolution, time-resolved regulon activity 

map for distinct class of TFs (early-response: Jun versus late-response: Mef2d and Maff) 

(Fig. 3d and Extended Data Fig. 4c). Thus, scNT-Seq supports metabolic labeling-based, 

time-resolved RNA velocity analysis of dynamic cellular processes.
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scNT-Seq reveals distinct RNA regulatory strategies during stem cell state transition.

Determining RNA regulatory strategies in rare, transient cell populations is critical to 

understanding cell state transition but remains a challenge. Cultured mESCs are derived 

from the inner cell mass of pre-implantation blastocysts and exhibit a high level of 

transcriptional heterogeneity23. Interestingly, cells resembling totipotent two-cell-stage 

embryos (2C-like cells) arise spontaneously in mESC cultures24, but 2C-like cells are rare 

(<1% in standard conditions)24. Recent scRNA-Seq studies revealed changes in total RNAs 

during the transition from pluripotent to totipotent 2C-like state and identified an 

intermediate state during the transition25, 26. It remains unclear how regulation of RNA 

synthesis and degradation contributes to the stepwise conversion between pluripotent and 

2C-like states.

To capture rare 2C-like cells without using transgene induction26 or fluorescent reporter 

lines24, wild-type (WT) mESCs were metabolically labeled with 4sU for 4 hours and were 

subjected to scNT-Seq analysis. After quality filtering, we obtained 4,633 single-cell 

transcriptomes from two biological replicates (Extended Data Fig. 7a, b). Besides mouse 

feeder cells (Col1a2/Thbs1+), scNT-Seq also identified all three principal states (pluripotent: 

98.3%; intermediate: 1.0%; totipotent 2C-like: 0.7%) in mESCs using state-specific marker 

genes (Extended Data Fig. 7c, d). The percentage of rare 2C-like cells is consistent with 

previous reports24, 27. As expected, many state-specific genes with regulatory functions 

(e.g., Zscan4d) are associated with a higher proportion of new transcripts than that of house-

keeping genes (e.g. Gapdh) (Extended Data Fig. 7e).

Next, we combined a pulse-chase strategy with scNT-Seq to determine state-specific mRNA 

degradation rates (Fig. 4a). After removing partially differentiated cells (0.6% of all cells), 

we retained 20,059 stem cells from 7 time-points (Fig. 4b). We calculated the half-life (t1/2) 

of mRNAs in each cell state by computing the proportion of labeled transcripts for each 

gene at every time-point and fitting a single-exponential decay model. Consistent with bulk 

assay results4, we observed a substantial accumulation of T-to-C substitutions after 24 hours 

of metabolic labeling and subsequent decrease to the baseline level after chase (Fig. 4c and 

Extended Data Fig. 8a). The RNA half-life determined by pulse-chase scNT-Seq is 

concordant with those derived from bulk SLAM-Seq assays4 (Pearson’s r=0.83, Fig. 4d). 

Interestingly, RNA half-life estimated from one timepoint labeling experiment28 is less 

correlated with measurements from bulk assays (Pearson’s r=0.51, Fig. 4d). Furthermore, 

the top 10% most stable and unstable transcripts were enriched for similar GO terms that are 

uncovered by bulk SLAM-Seq assays4 (Extended Data Fig. 8b). Finally, we analyzed 2,616 

commonly detected genes between cell states to reveal state-specific regulation of mRNA 

stability (Extended Data Fig. 8c–d and Supplementary Table 4). Thus, scNT-seq enables 

transcriptome-wide measurement of RNA stability in rare cell populations.

Using data from the one timepoint labeling (Extended Data Fig. 7a) and pulse-chase (Fig. 

4b) experiments, we computed the RNA synthesis and degradation rates in all three stem cell 

states (see methods). Next, we performed clustering of the synthesis rates, degradation rate 

constants, and total RNA levels of 445 genes that exhibit high expression variability between 

states (Fig. 4e and Supplementary Table 5). By computing the similarity between synthesis 

and degradation dynamics29, we identified three major RNA regulatory strategies during the 
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stepwise pluripotent-to-2C transition: cooperative (110 genes, negative similarity between 

RNA biogenesis and degradation dynamics), neutral (136 genes, small relative changes in 

RNA degradation rate compared with the synthesis rate), and destabilizing (199 genes, 

simultaneous increase or decrease of the synthesis rate and the degradation rate). Further 

analysis indicates that genes with similar cellular functions may be controlled by similar 

RNA regulatory strategies. For instance, among the genes with destabilizing regulatory 

strategies, we identified functional enrichment for mRNA splicing (adjusted P=1.1e-9), 

transcription regulation (adjusted P=3.9e-5), and nucleosome assembly (adjusted P=9.8e-3). 

Interestingly, even among the same subset of genes that both follow destabilizing strategies 

and are down-regulated in 2C-like states compared with the pluripotent state, total RNA 

dynamics of Tet1 (Pearson’s r=0.99) and Lefty2 (Pearson’s r=0.95) are preferentially 

regulated by changes in the RNA synthesis rate and the degradation rate, respectively (Fig. 

4e and Supplementary Table 5). These results demonstrate that changes in both the RNA 

synthesis and degradation contribute to gene expression dynamics during stem state 

transitions.

Time-resolved regulon analysis reveals TET-mediated regulation of the pluripotent-to-2C 
transition

For many genes differentially expressed between pluripotent and 2C-like states (e.g., Ncl, 
Tet1, Zfp42), their new RNA levels exhibited a more pronounced difference than the change 

of old or total RNAs (Extended Data Fig. 9a). GO enrichment analysis further revealed that 

new RNAs are more robust than old or total RNAs to uncover certain state-specific 

biological processes such as “protein deubiquitination” and related genes (e.g. Usp17lc/d/e) 

(Extended Data Fig. 9a, b). These results support the observation that changes in RNA 

synthesis rates drive the RNA dynamics of many state-specific genes during the state 

transition (Fig. 4e).

To further investigate transcriptional regulators underlying the control of RNA synthesis 

during the pluripotent-to-2C transition, we applied single-cell regulon analysis to both new 

and old transcriptomes (Fig. 5a). Because new RNAs exhibited more rapid changes when 

compared to old RNAs (Fig. 5b) and aggregated new RNA levels of a TF’s target genes 

provides a more direct measurement for its regulon activity, we focused our analysis on TFs 

or epigenetic regulators that show state-specific “new RNA” regulon activity (Fig. 5c). In 

addition to well-established TFs related to pluripotency (e.g. Myc/Max and Nanog) and cell-

cycle regulation (e.g. E2f3 and E2f5), several epigenetic regulators were associated with a 

marked decrease in “new RNA” regulon activity during the pluripotent-to-2C transition (Fig. 

5c). TET family of DNA dioxygenases (Tet1–3) is of particular interest as these epigenetic 

enzymes mediate active DNA demethylation at cis-regulatory elements and are known to 

play critical roles in maintaining mESC pluripotency30, 31. During the transition from 

pluripotent to 2C-like state, both new RNA level and regulon activity of Tet1 rapidly 

decreased (Fig. 5b, c). The new RNA level of Tet2 also decreased in both intermediate and 

2C-like states, while Tet3 was nearly undetected in all three states (Extended Data Fig. 9c).

To better understand how TET enzymes regulate cell state transition, we generated mESCs 

deficient for all three Tet proteins (Tet1/2/3 triple knockout, Tet-TKO) via CRISPR/Cas9 
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genome editing32 and analyzed isogenic WT and Tet-TKO mESCs in parallel using scNT-

Seq (Extended Data Fig. 9d). While WT and mutant cells were intermingled in 

intermediate/2C-like states, they were separately clustered by both genotypes and cell cycle 

states within the pluripotent state (Fig. 5d and Extended Data Fig. 9e). Compared to WT 

cells, substantially more Tet-TKO cells in the pluripotent state were found proximal to the 

intermediate/2C-like states in the UMAP (Fig. 5d), suggesting that Tet-TKO cells are more 

poised to transition to intermediate/2C-like states. Consistent with a previous study27, Tet-
TKO cells exhibited a marked increase in the 2C-like state (3.6-fold) compared to WT cells 

(Fig. 5e). Interestingly, Tet-TKO cells also showed a 2.2-fold increase in the intermediate 

state, suggesting that Tet enzymes act as a regulator in the early stage of pluripotent-to-2C 

transition.

Recent study showed that Myc negatively regulates transition towards intermediate/2C-like 

state by actively maintaining the pluripotent transcriptome26. Because Tet1 regulon activity 

dynamics is similar to that of Myc/Max (Fig. 5c) and Tet1 targets are significantly 

overlapped with Myc/Max targets (Extended Data Fig. 9f), we asked whether Tet1 inhibits 

the pluripotent-to-2C transition through a similar mechanism. First, Tet1 regulon targets are 

significantly overlapped with pluripotent state-enriched newly-transcribed RNAs 

(P=1.36e-129), but not with 2C-like state-enriched new RNAs (P=0.94). Second, 

differentially gene expression analysis identified 2,281 genes up-regulated and 205 genes 

down-regulated in Tet-TKO pluripotent state (Fig. 5f and Supplementary Table 6), but very 

few genes were dys-regulated in intermediate and 2C-like states in absence of TET proteins. 

Finally, Tet1 direct targets are significantly enriched for down-regulated genes (P=1.29e-30), 

but less so for genes up-regulated (P=6.32e-3) in Tet-TKO mESCs, suggesting that TET 

proteins may maintain expression of their target genes functionally related to the pluripotent 

state. Indeed, GO analysis showed that genes down-regulated in Tet-TKO mESCs are 

enriched for pluripotent state-specific biological processes (Fig. 5g). Collectively, Tet 

proteins may act as an epigenetic barrier for the transition from pluripotent to 

intermediate/2C-like states by maintaining a pluripotent state-specific transcriptome.

Second strand synthesis reaction substantially enhances the efficiency of scNT-Seq

We reasoned that TFEA/NaIO4 treatment may increase the failure rate of generating full-

length cDNAs (“truncated” cDNAs in Fig. 6a), which is required for the “template-

switching” reaction to add second PCR handle for cDNA amplification (step 6 in Fig. 1a). 

Indeed, generation of truncated cDNA during reverse transcription could be a major reason 

leading to lower library complexity in scRNA-Seq methods employing the on-bead 

“template-switching” reaction33.

To improve scNT-Seq performance for 3’-tagged new transcript counting analysis, we 

developed a random priming based second strand synthesis (2nd SS) reaction to recover 

truncated cDNA (Fig. 6a) and benchmarked the performance of this approach in human 

K562 cells. The 2nd SS reaction in scNT-Seq (4sU/TFEA/2nd SS) is compatible with the 

analysis of T-to-C substitution (Extended Data Fig. 10a), and leads to 2.2-fold increase in 

genes and 4-fold increase in UMIs detected per cell, when compared to standard scNT-Seq 

protocol (4sU/TFEA) at matched sequencing depth (Fig. 6b). Further comparison indicated 
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that the new RNA levels, old RNA levels and new-to-total RNA ratios (NTRs) from the 2nd 

SS scNT-Seq protocol are highly concordant with those derived from the standard protocol 

(Fig. 6c).

Next, we validated the 2nd SS scNT-Seq protocol in analyzing cell cycle state specific genes 

in K562 cells. All three experimental protocols (Drop-Seq control: 4sU/2nd SS; scNT-Seq: 

4sU/TFEA or 4sU/TFEA/2nd SS) readily revealed major cell-cycle phases using PCA 

analysis (Fig. 6d and Extended Data Fig. 10b). While the levels of new/old RNAs and NTRs 

are generally comparable between standard and 2nd SS scNT-Seq protocols (Extended Data 

Fig. 10c–d), 2nd SS scNT-Seq increases the detection sensitivity for many genes (e.g. MKI67 
in S phase, CENPE in G2M phase; Extended Data Fig. 10c–d), which is consistent with 

increased library complexity in 2nd SS scNT-Seq datasets.

Discussion

By combining TimeLapse chemistry with a high-throughput droplet microfluidics platform, 

scNT-Seq enables jointly profiling newly-synthesized and pre-existing transcriptomes of the 

same cell, capturing temporal information about mRNA at single-cell levels. Standard RNA 

velocity analysis uses endogenous RNA splicing kinetics to inform on future trajectory of a 

cell; it is thus limited by uncontrolled timing of RNA splicing and sparsity of intronic reads 

for many genes. Because the timing and length of metabolic labeling period can be 

experimentally controlled, direct counting of new and old transcripts via 3’-tagged UMIs in 

scNT-Seq provides an unbiased means to calculate RNA kinetics parameters for all 

detectable genes. Using computational models that explicitly incorporate metabolic labeling-

based single-cell measurements22, we can compute time-resolved RNA velocity for highly 

dynamic processes (minutes to hours). Furthermore, measuring new RNA levels of target 

genes linked to a TF can temporally resolve TF regulon activity at single-cell levels during 

external stimulation or cell state transitions. Finally, with pulse-chase experiments, scNT-

Seq can more accurately estimate RNA kinetics parameters, revealing RNA regulatory 

strategies in rare cell populations.

ScNT-Seq is conceptually similar to sci-fate34, a method that integrates single-cell 

combinatorial indexing with SLAM-Seq chemistry and was reported during the revision of 

this manuscript. Both methods share several technical advantages over SMART-Seq/plate-

based methods such as scSLAM-Seq7 and NASC-Seq8 (Supplementary Table 7): (1) when 

combined with 2nd SS reactions, scNT-Seq detects ~6,000 genes and ~20,000 UMIs per cell 

with sequencing depth of ~50,000 reads per cell. This is comparable to the performance of 

sci-fate (~6,500 genes and ~26,000 UMIs per cell with ~200,000 reads per cell). By contrast, 

scSLAM-Seq requires ~2 million reads to detect ~5,000 genes per cell. (2) scNT-Seq is 

highly scalable and we successfully analyzed from ~1,000 to >20,000 cells in one 

experiment. Further, scNT-Seq is compatible with cryo-preserved cells, facilitating 

simultaneously handling multiple samples. (3) scNT-Seq costs <$0.5 per cell for library 

preparation and sequencing, which is >50-fold more cost-effective than SMART-Seq/plate-

based methods.
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We note that the standard scNT-Seq protocol permits amplification of full-length cDNAs and 

can be further optimized to capture metabolically labeled, full-length transcript isoforms 

using long-read sequencing approach35 and to uncover temporal information about mRNA 

processing events. TimeLapse chemistry can also utilize 6-thioguanine (6tG) to mark new 

RNAs with G-to-A conversions36. Thus, dual labeling of cells with 4sU and 6tG followed by 

scNT-Seq can enable two independent transcriptomic recordings in single cells, permitting 

time-series experimental designs to untangle complex RNA regulatory mechanisms and to 

predict past and future cell states over an extended time period. High-throughput time-

resolved single-cell transcriptomics thus provides a broadly applicable strategy to investigate 

dynamic biological systems.

Methods

Mouse embryonic stem cell (mESC) cultures and metabolic labeling

Wild-type (WT) and Tet-TKO J1 mESCs (ATCC, SCRC-1010) were cultured in presence of 

Mitomycin C inactivated mouse embryonic fibroblasts on 0.1% gelatin-coated (Millipore, 

ES-006-B) 6-well plates in Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, 

11965084) supplemented with 15% fetal bovine serum (Gibco, 16000044), 0.1 mM 

nonessential amino acid (Gibco, 11140050), 1 mM sodium pyruvate (Gibco, 11360070), 2 

mM L-glutamine (Gibco, 25030081), 50 μM 2-mercaptoethanol (Gibco, 31350010), 1 μM 

MEK inhibitor PD0325901 (Axon Med Chem, Axon 2128) and 3 μM GSK3 inhibitor 

CHIR99021 (Axon Med Chem, Axon 2128), and 1,000 U/mL LIF (Gemini Bio-Products, 

400–495-7). Cells were maintained at 37°C with 5% CO2 and passage every 2–3 days. The 

average doubling time of J1 mESCs in presence of 4sU as determined by cell counting was 

14.8 hours.

For labeling experiments, 4sU (Alfa Aesar, J60679) were dissolved in DMSO to make 1 M 

stock. WT and Tet-TKO mESCs were seeded at a density of 3×105 cells/mL two days before 

the labeling experiments and cultured in feeder-free conditions (0.1% gelatin-coated plates). 

One timepoint 4sU labeling was performed by incubating mESCs in fresh medium 

supplemented with 4sU (at a final concentration of 100 μM). After 4 hours of labeling, 

mESCs were rinsed once with PBS and dissociated into single cell suspensions with 

TrypLE-Express (Gibco, 12605010) for 5 min at 37°C.

CRISPR-Cas9 genome editing in mESCs

Tet1/2/3 triple knockout (Tet-TKO) J1 mESCs were generated by CRISPR/Cas9 genome 

editing using previously validated guide RNAs (gRNAs)32. Briefly, gRNA oligonucleotides 

were cloned into lentiCRISPR v2 vector (Addgene 52961) as described37. After reaching 

~70% confluency on 0.1% gelatin-coated 6-well plates, WT J1 mESCs were dissociated and 

two million cells were co-transfected with 1 μg of lentiCRISPRv2-sgTet1, 1 μg of 

lentiCRISPRv2-sgTet2 and 1 μg of lentiCRISPRv2-sgTet3 vectors in suspension using 

Lipofectamine 2000 (Invitrogen, 11668019) as recommended by the manufacturer. Three 

days after transfection, 30,000 transfected mESCs were seeded on 0.1% gelatin 10-cm dish 

in presence of mitotically inactivated feeder cells. 0.5 μg/ml puromycin was then added to 

enrich transfected mESCs for 2 d. After 14 d, single colonies were picked and expanded in 
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24-well plates. DNA isolation, PCR amplification of Tet1/2/3 loci, and Sanger sequencing 

was performed to genotype the clonal cell lines. Inactivation of Tet1–3 was further 

confirmed by the lack of 5-hydroxymethylcytosine (5hmC) via mass spectrometry as 

described38.

Human K562 cell cultures and species mixing experiments

Human K562 cells (ATCC, CCL-243) were maintained at 37°C with 5% CO2 in RPMI 

media supplemented with 10% FBS (Sigma, F6178) in T75 flask and passage every 3 days. 

For species mixing experiments, the mESCs or K562 cells were seeded 3×105 cells/mL the 

day before the experiment and incubated with media supplemented with 100 μM 4sU. After 

4 hours of labeling, mESCs and K562 cells were washed once with PBS and harvested for 

scNT-Seq analysis.

Mouse cortical neuronal culture and activity stimulation

Mouse cortices were dissected from embryonic day 16 (E16) C57BL/6 embryos of mixed 

sex (Charles River). Cortical neurons were dissociated with papain (Worthington) and plated 

on 6-well plates (at a density of ~600,000 cells/well) coated with poly-ornithine (30mg/mL, 

Sigma, P2533). Mouse cortical neuronal cultures were maintained in neurobasal media 

(Gibco, 21103049) supplemented with B27 (Gibco, 17504044), 2 mM GlutaMAX (Gibco, 

35050061), and 1X Penicillin/streptomycin (Gibco, 15140122). Mouse experiments were 

conducted in accordance with the ethical guidelines of the National Institutes of Health and 

with the approval of the Institutional Animal Care and Use Committee of the University of 

Pennsylvania.

After 4 days of in vitro culture, primary cortical cultures were stimulated with a final 

concentration of 55mM potassium chloride (KCl) for various durations (0/15/30/60/120 

minutes). For metabolic labeling, neuronal cultures were incubated with media 

supplemented with 200 μM 4sU. After 2 hours of labeling, cells were washed once with 

PBS, digested in 0.05% Trypsin-EDTA (Gibco, 25300054) for 20 min at 37°C, and 

harvested in PBS with a cell-scraper.

Cell fixation, cryopreservation and rehydration for sample processing

Cultured mESCs in 6-well plates were digested with TrypLE-Express and harvested as 

aforementioned. The cells were washed once with PBS and were resuspended with 0.4 mL 

of PBS containing 0.01% BSA. Split the cells to two 1.5 mL LoBind tubes (Eppendorf) and 

add 0.8 mL methanol dropwise at final concentration of 80% methanol in PBS. After mixing 

and incubating the cell suspension on ice for 1 hour, the methanol fixed cells were then 

stored in the -80°C freezer for up to one month. For sample rehydration, cells were taken out 

of -80°C freezer and kept on ice throughout the procedure. After cells were spun down at 

1,000 g for 5 min at 4°C, methanol-PBS solution was removed, and cells were resuspended 

in 1 mL of rehydration buffer. After cell counting, the single cell suspension was diluted to 

100 cells/μL and immediately used for scNT-Seq analysis. We compared two rehydration 

buffers (PBS-based39: 0.01% BSA in PBS supplemented with 0.5% RNase-inhibitor 

(Lucigen, 30281–2); SSC-based40: 3X SSC, 40 mM DTT, 0.04% BSA, 1% RNase-inhibitor) 

in Extended Data Fig. 1a and observed similar performance.

Qiu et al. Page 11

Nat Methods. Author manuscript; available in PMC 2021 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pulse-chase experiment for RNA half-life analysis

mESCs were seeded at a density of 3×105 cells/mL the day before the experiment. 4sU 

metabolic labeling was performed by incubating mESCs in fresh medium supplemented 

with 200 μM 4sU and media exchange every 4 hours for the duration of the 24-hour pulse. 

For the uridine chase experiment, cells were washed twice with PBS and incubated with 

fresh medium supplemented with 10 mM uridine (Sigma, U6381). At respective time points 

(0/0.5/1/3/6/12/24-hour), cells were harvested, methanol fixed as aforementioned and stored 

at -80°C for later use. On the day of performing droplet microfluidics assays, all samples 

were rehydrated (PBS-based buffer) and analyzed in parallel. Clustering analysis based on 

total RNAs separated mESCs (combined from 7 time points) into three stem cell states 

(pluripotent: 97.4%+/-0.78%, intermediate: 1.5%+/-0.49%, and 2C-like: 1.1%+/-0.38%), 

suggesting that our pulse-chase experiments did not significantly alter the state transition.

scNT-Seq library preparation and sequencing

A step-by-step protocol of scNT-Seq is provided as Supplementary Protocol and is also 

available at Protocol Exchange14. Droplet microfluidics-based cell and barcoded bead co-

encapsulation, library preparation and sequencing were performed as previously described 

with minor modifications10, 11. Specifically, the single cell suspension was counted (with 

Countess II system) and diluted to a concentration of 100 cells/μL in PBS containing 0.01% 

BSA. The flow rates for cells and beads were set to 3,200 μL/hour, while QX200 droplet 

generation oil (Bio-rad) was run at 12,500 μL/h.

Droplet breakage with Perfluoro-1-octanol (Sigma-Aldrich). After droplet breakage, the 

beads were treated with TimeLapse chemistry to convert 4sU to cytidine-analog5. Briefly, 

50,000–100,000 beads were washed once with 450 μL washing buffer (1 mM EDTA, 100 

mM sodium acetate (pH 5.2)), then the beads were resuspended with a mixture of TFEA 

(600 mM), EDTA (1 mM) and sodium acetate (pH 5.2, 100 mM) in water. NaIO4 was then 

added to the reaction at a final concentration of 10 mM and incubated at 45°C for 1 hour 

with rotation. The beads were washed once with 1 mL TE, then incubated in 0.5 mL 1 X 

Reducing Buffer (10 mM DTT, 100 mM NaCl, 10 mM Tris pH 7.4, 1 mM EDTA) at 37°C 

for 30 min with rotation, followed by washing once with 0.3 mL 2X RT-buffer.

After one-pot chemical conversion reaction on pooled beads, remaining library preparation 

steps were performed as previously described9. Specifically, up to 120,000 beads, 200 μL of 

reverse transcription (RT) mix (1x Maxima RT buffer (ThermoFisher), 4% Ficoll PM-400, 1 

mM dNTPs (Clontech), 1 U/μL RNase inhibitor, 2.5 μM Template Switch Oligo (TSO: 

AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG), and 10 U/μL Maxima H Minus 

Reverse Transcriptase (ThermoFisher)) were added. The RT reaction was incubated at room 

temperature for 30 minutes, followed by incubation at 42°C for 120 minutes. After 

Exonuclease I treatment and determining the optimal number of PCR cycles for cDNA 

amplification as previously described10, we prepared PCR reactions (~6,000 beads per tube) 

for all barcoded beads collected for each scNT-Seq run in a volume of 50 μL (25 μL of 2x 

KAPA HiFi hotstart readymix (KAPA biosystems), 0.4 μL of 100 μM TSO-PCR primer 

(AAGCAGTGGTATCAACGCAGAGT)10, 24.6 μL of nuclease-free water), and amplified 

full-length cDNA with the following thermal cycling parameter (95°C for 3 min; 4 cycles of 
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[98°C for 20 sec, 65°C for 45 sec, 72°C for 3 min]; 9–12 cycles of [98°C for 20 sec, 67°C 

for 45 sec, 72°C for 3 min]; 72°C for 5 min, hold at 4°C). We then tagmented cDNA using 

the Nextera XT DNA sample preparation kit (Illumina, cat# FC-131–1096), starting with 

550–1,000 pg of cDNA pooled from all PCR reactions of a sample. After cDNA 

tagmentation, we further amplified the library with 12 enrichment cycles using the Illumina 

Nextera XT i7 primers along with the P5-TSO hybrid primer 

(AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCA

ACGCAGAGT*A*C). After quality control analysis using a Bioanalyzer (Agilent), libraries 

were sequenced on an Illumina NextSeq 500 instrument using the 75- or 150-cycle High 

Output v2 or v2.5 Kit (Illumina). We loaded the library at 2.0 pM and added Custom Read1 

Primer (GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) at 0.3 μM to 

position 7 of the reagent cartridge. Paired-end sequencing was performed on Illumina 

NextSeq 500 sequencer as described previously11. The sequencing configuration was 20 bp 

(Read1), 8 bp (Index1), and 60 or 130 bp (Read2).

SLAM-Seq reaction on barcoded beads

After droplet breakage, the beads were washed once with NaPO4 buffer with 30% DMSO 

(50 mM, pH 8.0), and then incubated in 500 μL reaction-mix containing 10 mM IAA for 

either 15 min at 50°C (standard condition) or 1 hour at 45°C (modified condition)4. Stop 

reaction by adding 10 μL 1 M DTT (final concentration: 20 mM). Note that the library for 

Fig.1b (IAA reaction) was generated with modified condition because we cannot efficiently 

amplify cDNA with standard reaction condition.

Second-strand synthesis on barcoded beads

After exonuclease I treatment, pooled beads were washed once with TE-SDS buffer and 

twice with TE-TW buffer. The beads were resuspended in 500 μL 0.1 M NaOH and 

incubated for 5 min at room temperature with rotation, and 500 μL 0.2 M Tris-HCl (pH 7.5) 

was then added to neutralize the solution. The beads were washed once with TE-TW buffer 

and once with 10 mM Tris-HCl (pH 8.0). For 2nd strand synthesis reaction, the beads were 

resuspended in 200 μL of reaction mix (1x Blue buffer (Enzymatics), 4% Ficoll PM-400, 1 

mM dNTPs (Clontech), 2.5 μM Template Switch Oligo-GAATG (TSO-GAATG: /5SpC3/

AAGCAGTGGTATCAACGCAGAGTGAATG), 5 μM TSO-N9 (TSO-N9: /5SpC3/

AAGCAGTGGTATCAACGCAGAGTGAAT(N1:25252525)(N1) (N1)(N1)(N1)(N1)(N1)

(N1)(N1), N1 stands for mixture of A,T,C,G at 25:25:25:25 ratio) and 1.25 U/μL Klenow 

exo- (Enzymatics)). The reaction was incubated at room temperature for 10 min, followed 

by incubation at 37°C for 1 hour with rotation. The reaction was stopped by washing the 

beads once with TE-SDS buffer and twice with TE-TW buffer.

Read alignment and quantification of metabolically labeled transcripts

Paired-end sequencing reads of scNT-Seq were processed as previously described10 with 

some modifications. Each mRNA read (read2) was tagged with the cell barcode (bases 1 to 

12 of read 1) and unique molecular identifier (UMI, bases 13 to 20 of read 1), trimmed of 

sequencing adaptors and poly-A sequences, and aligned to the mouse (mm10, Gencode 

release vM13), human (GRCh38, Gencode release v23), or a concatenated mouse and 

human (for the species mixing experiment) reference genome assembly using STAR v2.5.2a. 
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Both exonic and intronic reads mapped to predicted strands of annotated genes were retained 

for the downstream analysis. To quantify the labeled and unlabeled transcripts, uniquely 

mapped reads with mapping score >10 were grouped by UMI indices in every cell and were 

used to determine the T-to-C substitution using sam2tsv (https://github.com/lindenb/jvarkit, 

version: ec2c2364). T-to-C substitutions with a base quality of Phred score >27 were 

retained. For each experiment, sites with background T-to-C substitutions (present in the 

control sample without TFEA/NaIO4 treatment) was determined and excluded for T-to-C 

substitution identification. After correcting background mutations, a UMI/transcript was 

defined as labeled if there is at least one T-to-C substitution in any one of the reads linked to 

the same UMI index. Every UMI could then be assigned as labeled or unlabeled based on 

presence of T-to-C substitutions (Fig. 1d). For each transcript, the total number of uniquely 

labeled and unlabeled UMI sequences were counted and finally were assembled into 

matrices using gene name as rows and cell barcode as columns. Thus, each cell is associated 

with two digital gene expression matrices (new and old) from the scNT-Seq sequencing data.

Cell-type clustering and dataset integration

The raw digital expression matrices of new and old UMI counts were summed up and loaded 

into the R package Seurat. For normalization, UMI counts for all cells were scaled by library 

size (total UMI counts), multiplied by 10,000 and transformed to log space. Only genes 

detected in >10 cells were retained. Cells with a relatively high percentage of UMIs mapped 

to mitochondrial genes (≥5%) were discarded. Cells with fewer than 500 or more than 5,000 

detected genes were also removed.

For mouse cortical neurons (Fig. 2a), we used Seurat (v 2.3.4)41 for downstream analysis. 

After removing low quality cells, 20,547 cells of mouse cortical were retained. The highly 

variable genes (HVGs) were identified using the function FindVariableGenes in Seurat with 

the following parameters: x.low.cutoff = 0.05,y.cutoff = 0.5, resulting in 2,290 HVGs. The 

expression level of HVGs in the cells was scaled and centered for each gene across cells and 

was subjected to principal component analysis (PCA). The most significant 30 PCs were 

selected and used for 2-dimension reduction by uniform manifold approximation and 

projection (UMAP)42, in Seurat with the default parameters. Clusters were identified using 

the function FindCluster in Seurat with the resolution parameter set to 1. To identify major 

cell-types, we merged adjacent clusters in UMAP that showed high expression levels of 

excitatory neuronal markers (Neurod2 and Neurod6) and define it as “Ex” cluster.

For RNA-decay experiment (Fig. 4b), 20,190 cells were kept for downstream analysis after 

quality filtering. Seurat 3 (v. 3.1.4)43 was used to align cells from different time points. Top 

2,000 HVGs were identified using the function FindVariableFeatures with “vst” method. 

Canonical correlation analysis (CCA) was used to identify common sources of variation 

among different time points. The first 30 dimensions of the CCA was chosen for integration. 

The expression level of HVGs were then scaled and centered for each gene across cells and 

were conducted to PCA analysis. The 20 most significant PCs were selected and used for 2-

dimension reduction by UMAP. Clusters were identified using the function FindCluster in 

Seurat with the resolution parameter set to 2. After UMAP projection, a small cell cluster (n 

= 131 cells, 0.65% of input cells) was identified as “partially differentiated mESCs” based 
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on previously identified markers (Cryab, S100a6, Thbs1, Krt7, Gsn, Krt19 and Krt8)23 and 

was thus excluded. Adjacent clusters with high levels of Sox2 were combined to a single 

“pluripotent” state cluster. Thus, 20,059 cells were assigned to three principle stem cell 

states (pluripotent, intermediate and 2C-like). Cell type specific markers were identified 

using the function FindMarkers in Seurat with a two-sided Wilcoxon rank sum test with 

default parameters.

To enable directly comparative analyses within cell states between WT and Tet-TKO mESCs 

(Fig. 5d), we used Seurat 3 (v. 3.0.0.9000) to perform joint analysis. After quality filtering, 

4,633 WT cells and 2,319 Tet-TKO cells were retained. Top 2,000 HVGs were identified 

using the function FindVariableFeatures with “vst” method. Canonical correlation analysis 

(CCA) was used to identify common sources of variation between WT and Tet-TKO cells. 

The first 20 dimensions of the CCA was chosen to integrate the two datasets. After 

integration, the expression level of HVGs in the cells was scaled and centered for each gene 

across cells and was conducted to PCA analysis. The 20 most significant PCs were selected 

and used for 2-dimension reduction by UMAP. Clusters were identified using the function 

FindCluster in Seurat with the resolution parameter set to 3. As aforementioned, adjacent 

clusters with high expression levels of Sox2 were combined to “pluripotent” cluster.

Estimation of the fraction of newly-synthesized transcripts

Current metabolic labeling strategy typically results in incomplete 4sU labeling of all newly-

transcribed RNAs in single cells7, 8. To overcome this issue, we adapted a binomial mixture 

model based statistical correction strategy5, 44 and optimized it for UMI-based scNT-Seq 

datasets. For each experiment, the data were modeled as mixture of two binomial 

distribution to approximate the number of T-to-C substitutions yi for each gene transcript i, 
with its likelihood function as:

f θ, p, q = θ Binom yi; p, ni + 1 − θ Binom yi; q, ni

where θ is the fraction of new transcripts in each experiment, p and q are the probabilities of 

a T-to-C substitution at each nucleotide for new and old transcripts, respectively, and ni is the 

number of uridine nucleotides observed in the transcript i. A consensus sequence for each 

transcript is built by pooling reads with the same UMI index and taking the most frequent 

variant at each position. 10,000 UMIs were randomly sampled and the global substitution 

probabilities p and q were estimated based on the above mixture model. The model was fit 

by maximizing the likelihood function using the Nelder-Mead algorithm. The optimization 

was repeated ten times with random initialization values for θ, p, and q in the range [0,1], 

keeping the best fit with θ ∈ [0,1].

To obtain enough UMIs for global parameters estimation at each time point of mouse 

cortical neuronal culture datasets, 4 inhibitory neuronal clusters (Inh 2–4 and Inh-NP) were 

combined based on transcriptomic similarity, and 3 non-neuronal clusters (Ex-NP1, Ex-NP2 

and RG) were also aggregated. Thus, four major cell clusters (Ex, Inh1, and two combined 

clusters) were subjected to statistical modelling separately. For mESC datasets, we assumed 

that Tet-TKO will not affect 4sU incorporation rate and thus combined WT and Tet-TKO 
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datasets to estimate unified global parameters, p and q, for 3 stem cell states (pluripotent, 

intermediate and 2C-like). In sum, 20 sets of p and q (5 time-points × 4 combined clusters) 

were determined in cortical neuronal datasets and 3 sets of p and q (pluripotent, intermediate 

and 2C-like clusters) were estimated for mESC datasets. These global parameters were then 

used to estimate the fraction of new transcripts.

1. Computing aggregated new transcripts for each cell type or state—For Fig. 

2c and Extended Data Fig. 3d, we aggregate all the UMIs belongs to the same cell-type and 

estimate the fraction of new transcripts θ for each gene with >100 UMIs in that cell-type at 

each time point. The likelihood function for the mixture model above was maximized using 

the Brent algorithm with the constraint θ ∈ [10−8, 1]. The 95% confidence interval was 

calculated from the Hessian matrix, and θ estimates for genes with a confidence interval 

greater than 0.2 were removed. The level of new transcript (N) was then estimated:

N = θ L + U

where θ is the fraction of newly-transcribed RNAs for a gene in a cell-type, L is labeled 

transcripts of a gene, U is unlabeled transcripts of a gene. The level of old transcript was 

calculated by: (1 − θ)(L + U).

2. Computing new transcripts in single cells—While the fraction of new 

transcripts could theoretically be estimated for each gene in single cells using the 

aforementioned statistical correction model. Due to limited sequencing coverage for single-

cell transcriptomes, modeling every gene for tens of thousands of cells is not experimentally 

feasible and computationally inefficient. We noticed that most genes exhibit highly similar 

detection rate α (the ratio between observed and corrected new RNA levels) in aggregated 

scNT-Seq datasets (Extended Data Fig. 3d). Under the assumption that 4sU labeling of new 

transcripts in each cell is largely a stochastic process and may vary between cells, the global 

metabolic labeling rate in each cell can also be thought to a good approximation as a 

binomial process, and therefore the mean detection rate α of all genes can be estimated for 

each cell using the same aforementioned statistical model. The single-cell level detection 

rate α can be computed by dividing all the labeled transcripts of a cell by the statistically 

estimated new transcripts of that cell. After removing cells without-range values (α >1), we 

successfully computed the detection rate α for 88.3% (18,133/20,547) mouse cortical cells 

and 95.1% (6,609/6,952) of mESCs. The mean detection rates α were 60% and 66% in 

cortical cells and mESCs, respectively. For each gene, the new RNA level is computed as:

N = min L
α , L + U

where α is the new RNA detection rate of a cell, L is the number of labeled transcripts of a 

gene in that cell, U is the number of unlabeled transcripts of a gene. The number of pre-

existing transcripts was calculated by: L + U − N. The computed new and old transcripts 

were used for all downstream single-cell level analysis, including SCENIC-based single-cell 

regulon/GRN activity analysis (Fig. 2d, 2e and 5c) and RNA velocity analysis (Fig. 3 and 

Extended Data Fig. 4–6).
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Gene ontology enrichment analysis

To identify functional categories associated with defined gene lists, GO annotations were 

downloaded from the Ensembl database. An enrichment analysis was performed via a 

hypergeometric test. The P-value was calculated using the following formula:

P = 1 − ∑
i = 0

m − 1
M
i

N − M
n − i

N
n

where N is the total number of background genes, n is the total number of selected genes, M 

is the number of genes annotated to a certain GO term, and i is the number of selected genes 

annotated to a certain GO term. P value was corrected by function p.adjust with false 

discovery rate (FDR) correction in R. GO terms with FDR<0.05 were considered enriched. 

All statistical calculations were performed in R.

For enrichment analysis of stable/unstable mRNAs (Extended Data Fig. 8b), genes were 

ranked by the RNA half-life. Top 10% genes with longest half-lives were defined as stable 

genes, whereas bottom 10% genes with shortest half-life were considered as unstable. Then 

the stable and unstable gene sets were subjected to GO enrichment analysis. For Extended 

Data Fig. 9b, genes showed >1.5-fold changes between pluripotent and 2C-like states were 

selected and subjected to GO enrichment analysis. For Fig. 5g, significantly differentially 

expressed genes between WT and Tet-TKO mESCs (adjusted P-value <0.05) were subjected 

to GO enrichment analysis.

Identification of differentially expressed genes (DEGs)

Differential gene expression analysis of new transcripts between different time-points of 

neuronal activation (15, 30, 60 and 120 min) and control (0 min) was performed using the 

function FindMarkers in Seurat, using a two-sided Wilcoxon rank sum test. New transcripts 

with a fold-change of >1.5 and an adjusted P-value (Bonferroni corrected) <0.05 were 

considered to be differentially expressed. Neuronal activity induced genes were further 

identified if a new transcript was significantly increased in at least one time-point with KCl 

stimulation in at least one cell-type (Extended Data Fig. 2d). For MA-plots in Extended Data 

Fig. 9a, genes showed >1.5-fold changes of new or old RNA expression between pluripotent 

and 2C-like states were considered differentially expressed. For comparison between WT 

and Tet-TKO mESCs among three stem cell states (Fig. 5f), two-sided Wilcoxon rank sum 

test was used to assess significance of the difference, and the P-value was adjusted by 

Bonferroni correction. Genes with adjusted P-value <0.05 were considered as differentially 

expressed.

Estimation of RNA half-life

For each gene, we separately aggregate labeled and unlabeled UMI counts in each cell state 

(Fig. 4 and Extended Data Fig. 8). Then the fraction of labeled transcripts was calculated 

with summed labeled UMI counts divided by total UMI counts (labeled + unlabeled). The 

fraction of labeled transcripts was normalized to 0 h of chase. R function nls was used to 
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perform curve fitting with the parameters setting: “y ~ I(a*exp(-b*x))”, “start=list(a=1, 
b=0)” and “na.action=na.exclude”. We kept the fit with the goodness of R2 > 0.4. After 

filtering out genes expressed in <5% of cells, we determined RNA half-life of 1,926 genes 

that are also commonly detected in bulk SLAM-Seq assays4.

Splicing kinetics-based RNA velocity analysis

For standard RNA velocity analysis (splicing RNA velocity), we first generated the bam files 

using the Drop-Seq analysis pipeline (version 1.1.2). The reads were demultiplexed using 

dropEst45 (version 0.8.5) pipeline, using “-m -V -b -f -L eiEIBA” to annotate bam files. The 

genome annotations (mm10, Gencode release vM13) were used to count spliced and 

unspliced molecules for each experiment. Dynamo22 (https://github.com/aristoteleo/

dynamo-release, commit:9871d78) was then used for RNA velocity analysis. To specifically 

reveal the neuronal activity-dependent RNA dynamics, we provide dynamo with the 

unspliced and spliced counts of 97 neuronal activity genes as features (Extended Data Fig. 

2d and Supplementary Table 2) for PCA denoising, followed by UMAP projection. The 

estimation assumption and model are set to be “steady states” and “stochastic”, respectively. 

The high-dimensional velocity vectors were projected to two-dimensional UMAP space and 

visualized with the streamline plot using dynamo with default parameters. Similarly, phase-

diagram and randomized velocity vector streamline plot are generated using dynamo with 

default settings (Fig. 3a, Extended Data Fig. 4 and 5).

Metabolic labeling-based RNA velocity analysis

The original RNA velocity described by La Manno et al20 is defined as the rate of changes in 

spliced mRNAs over time or ds
dt = ṡ = βu − γs (s, u are the abundance of spliced and 

unspliced mRNAs in a single cell measured by scRNA-seq, respectively. β,γ are RNA 

splicing or degradation rates, respectively, while t is the time). To estimate splicing-based 

RNA velocity, La Manno et al. assumes a constant splicing rate β = 1 that enables the 

identifiability of γ when cells are at steady states (when the RNA velocity is 0), that is:

ṡ = 0 = βu − γs, where β = 1.

At steady states,u = γs and γ can be estimated by linear regression of the expression of 

spliced and unspliced transcripts s, u for each gene. For simplicity, La Manno et al regarded 

cells with extreme expressions (i.e. the top or bottom five percentile of all gene expression) 

as steady-states cells. In the scSLAM-seq study7, the authors replaced unspliced and spliced 

counts with new and total RNA to compute a new form of RNA velocity that they denote as 

NTR (new-to-total RNA ratio) velocity. However, as discussed below, NTR velocity analysis 

is only valid under specific metabolic labeling conditions.

To compute a metabolic labeling based RNA velocity that is generally applicable, we 

employed dynamo, which explicitly models metabolic labeling of newly-synthesized 

transcripts. Let us denote n, r the new (metabolic labelled RNAs), total RNA abundance for 

each gene in each cell, respectively. The velocity of new and total RNA can then be written 

as:
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ṅ = α − γn,

γ̇ = α − γr .

Here α is the transcription rate (or RNA synthesis rate) while γ is the degradation rate, by 

solving the differential equation related to new RNA’s velocity, we have:

n = α
γ 1 − e−γt .

After some arrangement, the transcription rate can be further written as:

α = nγ
1 − e−γt ≈ n

t .

The above approximation is derived from the fact that, by Taylor expansion, e−γt ≈ 1 − γt. 
Thus, the velocity for the total RNA will be:

ṙ = n
t − γr .

If we replaced new RNA as the unspliced RNA, and total RNA as the spliced RNA as 

described for NTR velocity, we have:

ṡ = u
t − γs

Interestingly, if t is around 1 hour (which is the case for scSLAM-seq7 and our study), we 

can have ṡ = u − γs, the same equation used by the original RNA velocity. Thus, the NTR 

velocity is an approximation of the total RNA velocity.

In the dynamo model22, the NTR velocity is extended so that it is not conditioned on that t ≈ 
1, using the same steady-state assumption. At the steady states, denoting the slope of the 

regression line of the NTR velocity as k we have:

rss = α
γ ,

n = k rss .

thus we have n = α
γ 1 − e−γt = rss 1 − e−γt , which leads to k = (1 − e−γt). Therefore, we can 

calculate γ, α as:
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γ = −ln 1 − k
t ,

α = γn
k .

We use the above the equations to calculate the “time-resolved dynamo RNA velocity” γ̇:

γ̇ = −ln 1 − k
kt n + ln 1 − k

t γ −kt
ln 1 − k ṙ = n − kr .

The above result implies that the “time-resolved dynamo RNA velocity” for each gene 

scales to the NTR velocity via a gene specific factor −kt
ln 1 − k . This suggests that even when t 

≠ 1, the NTR velocity is still informative if k does not substantially differ across genes. 

However, NTR velocity lacks physical meaning of how many molecules change per unit 

time. In our time-resolved dynamo RNA velocity implementation, the thickness of 

directional streamlines in the locally averaged vector field indicates RNA velocity rate 

(molecules per unit time). Specifically, the new and total RNA counts are provided as input 

to dynamo, and the labeling time is also explicitly supplied for calculating metabolic 

labeling-based time-resolved RNA velocity (Fig. 3a, Extended Data Fig. 4 and 5). For Fig. 

3a and Extended Data Fig. 4a, permutation of velocity flows was performed by shuffling 

velocity for genes in each cell and then randomly flipping the sign of shuffled velocity 

values.

Estimation of RNA biogenesis rate and degradation rate constant

The degradation rate constant (γ, units/h) can be calculated using:

λ = In 2 /half‐life

Then, we assume the gene-specific RNA biogenesis rate (α, molecules/h) is a constant for 

all cells from each cell state, which is can then be calculated using:

α − nγ
1 − e−γt

where n is the average labelled RNA abundance for each gene in each state (pluripotent, 

intermediate, or 2C-like), γ is the degradation rate constant in each state, and t (units in h) is 

the metabolic labelling time.

To define gene-specific RNA regulatory strategies for transition from pluripotent to 

intermediate and 2C-like states in mESCs (Fig. 4e), we computed the Pearson correlation 

coefficient r between degradation rate and transcription rate constant. To determine the RNA 

regulatory strategy as previously described29, we defined genes with a strong negative 

Pearson correlation coefficient (r <= -0.5) as a cooperative strategy, strong positive Pearson 
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correlation coefficient (r >= 0.5) as a destabilizing strategy and a moderate Pearson 

correlation coefficient (-0.5 < r < 0.5) as a neutral strategy.

Analysis of single-cell regulon activity using new and old RNAs

To assess the activity of transcription factors associated with different cell states or cell-

types, we used SCENIC18 (version 1.1.2.2) to perform single-cell GRN or regulon activity 

analysis. Regulatory modules are identified by inferring co-expression between TFs and 

genes containing TF binding motif in their promoters. We first separate the expression 

matrix into two parts based on the expression level of new and old transcripts, then provide 

them as inputs to SCENIC analysis, which enables us to identify specific regulatory modules 

associated with either new or old transcriptomes from the same cell. Two gene-motif 

rankings, 10kb around the TSS and 500 bp upstream, were loaded from RcisTarget 

databases (mm9). Gene detected in >1% of all the cells and listed in the gene-motif ranking 

databases were retained. To this end, 8,744 genes in mouse cortical neuronal culture datasets 

and 9,388 genes in mESC datasets were subjected to downstream analysis. Then GRNBoost 

(implemented in pySCENIC) was used to infer the co-expression modules and to quantify 

the weight between TFs and target genes. Targets genes that did not show a positive 

correlation (>0.03) in each TF-module were discarded. SCENIC identified 4,944 and 5,406 

TF-modules in mouse cortical neuronal culture and mESC datasets, respectively. The cis-

regulatory motif analysis on each of the TF-modules using RcisTarget revealed 277 and 325 

regulons in cortical culture and mESC data, respectively. The top 1% of the number of 

detected genes per cell was used to calculate the enrichment of each regulon in each cell. For 

Figs. 2d and 5c, we computed the mean AUC of all cells belonging to defined groups, then 

scaled the mean AUC by function scale in R. R package, pheatmap, was used to generate the 

heatmap. For Fig. 3d and Extended Data Fig. 4c, AUC value of TF regulons of each cell was 

quantified by SCENIC and were projected to UMAP plots.

For Fig. 2d and 2e, AUC values of TFs inferred from new RNAs were obtained and then 

subjected to two-sided Wilcoxon rank sum test to assess significance of the difference in TF 

activity. TFs with a fold-change of mean AUC values more than 1.5 and an adjusted P-value 

(Bonferroni corrected) less than 0.05 were considered differentially regulated after KCl 

stimulation in at least one cell type. For Fig. 5c, AUC values of TFs inferred from new or old 

RNAs were obtained and then subjected to two-sided Wilcoxon rank sum test to assess 

significance of the difference of TF activity. TFs with fold-change >1.25 and adjusted P-

value <0.05 were considered differentially regulated. Notably, we did not identify the 

regulon activity of Zscan4 in 2C-like cells, potentially due to the lack of Zscan4 motif 

information in the SCENIC database.

Data visualization

All plots were generated using the ggplot2 (v. 3.3.0), cowplot (version 1.0.0), and pheatmap 

(version 1.0.12) packages in R (version 3.5.1). Boxplots are defined as follows: the boxes 

display the median (center line) and interquartile range (IQR, from the 25th to 75th 

percentile), the whiskers represent 1.5 times the interquartile range, and the circles represent 

outliers. Violin plots are defined as follows: the gray line on each side is a kernel density 
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estimation to show the distribution shape of the data. Wider sections of the violin plot 

represent a higher probability while the skinnier sections represent a lower probability.

Statistics.

Statistical analyses were performed using R. Statistical details for each experiment are also 

provided in the figure legends.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

All sequencing data associated with this study have been deposited to Gene Expression 

Omnibus (GEO) database under the accession code GSE141851.

Code availability

The analysis source code underlying the final version of the paper will be available on 

GitHub repository (https://github.com/wulabupenn/scNT-seq).
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Extended Data

Extended Data Fig. 1. Performance and quality control analyses of scNT-Seq.
a. Scatterplots showing the number of detected gene per cell (y-axis, upper panel) or UMI 

per cell (y-axis, lower panel) as a function of aligned reads per cell (x-axis) between 4sU 

(red, 462 cells), TFEA (blue, 211 cells), and 4sU/TFEA (green, 578 cells) experiments. 4sU, 

cells labeled with 4sU (100 μM, 4 hours (h)). TFEA, beads treated with TFEA/NaIO4 

chemical reaction. 4sU/TFEA, cells labeled with 4sU and beads treated with TFEA/NaIO4 

chemical reaction. The fitted lines of different experiments were shown. The predicted 
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numbers of gene or UMI detected per cell at matching sequencing depth (50,000 aligned 

read per cell) are shown on the top.

b. Shown are all transcripts (with unique UMIs) for the ACTG1 gene from one untreated 

control K562 cell (upper panel) and one TFEA/NaIO4-treated cell (lower panel). Grey 

circles denote uridine sites without T-to-C substitution, and “X”s denote sites with T-to-C 

substitutions. The read coverage for each T-to-C substitution is color-scaled. All 9 

sequencing reads of the 2nd UMI (in red box) from the TFEA/NaIO4-treated cell are 

highlighted below.

c. Bar plot showing nucleotide substitution rates in mESCs with different labeling 

parameters (100 μM 4sU for 4 h or 200 μM 4sU for 24 h) and sample processing methods 

(freshly isolated versus methanol fixation followed by cyro-preservation and rehydration 

with two different rehydration buffers: PBS-based versus SSC-based). A sample (100 μM 

4sU for 4 h) that was not treated with TFEA/NaIO4 served as the control.

d. Scatterplots showing Pearson’s correlation between two biologically independent 

replicates of mESCs (rep1: 427 cells and rep2: 733 cells). The expression levels of new (n = 

10,925 genes) and old (n = 14,496 genes) transcripts were quantified as natural log 

transformation of (TP10K + 1).
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Extended Data Fig. 2. Cell-type clustering and analysis of activity-dependent gene expression 
programs in mouse cortical neuronal cultures.
a. Experimental scheme of characterizing neuronal activation in primary mouse cortical 

cultures with scNT-Seq. Cells were treated with KCl from 15 min to 120 min. Cells from all 

treatment conditions were labeled with 4sU for 2 h before harvest for scNT-Seq.

b. Left, UMAP plot for 20,547 cells from mouse cortical cultures (the same UMAP plot in 

Fig. 2a). The cells are colored by different time points of neuronal activation. Right, violin 

plot showing the distribution of total RNA levels for representative cell-type specific marker 

genes.

Qiu et al. Page 25

Nat Methods. Author manuscript; available in PMC 2021 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c. Heatmap showing new RNA levels (z-scaled natural log transformation of (TP10K + 1)) 

of neuronal activity induced genes across different cell-types.

d. Heatmap showing new RNA levels (z-scaled natural log transformation of (TP10K + 1)) 

of early- and late-response genes in excitatory neurons with different durations of KCl 

stimulation. 97 significantly induced genes were clustered into two groups (early- and late-

response). The expression levels of early- and late-response genes are in Supplementary 

Table 2.

e. Venn diagram showing a significant overlap between Maff and Fosb regulon targets (243 

genes, P-value = 1.64 × 10−164, Two-sided Fisher’s exact test).
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Extended Data Fig. 3. UMI-based statistical correction of newly-transcribed RNA fraction.
a. Density plot showing the distribution of number of covered uridine sites per read (60 bp) 

or per UMI (UMI-linked transcript) in excitatory neurons with 60 min of KCl stimulation.

b. Bar plot of the number of T-to-C substitutions per read (60 bp) or UMI. Shown is the 

analysis of excitatory neurons with 60 min of KCl stimulation.

c. Shown are all unique transcripts (with unique UMIs) of the Fos (an activity-induced gene) 

and Mapt (a slow turnover housekeeping gene) from a single excitatory neuron with 60 min 

of KCl stimulation. Grey circles represent uridines without T-to-C conversion, while crosses 

(“X”s) denote uridines with T-to-C substitution in at least one read. The read coverage for 

each T-to-C substitution is color-scaled.

d. Comparison of uncorrected and statistically corrected new RNA levels of each detected 

gene (n=9,082 genes) in excitatory neurons (with 60 min of KCl stimulation). Four 

representative activity-induced genes (Fos, Jun, Egr1, and Npas4) and two housekeeping 

genes (Mapt and Actb) are highlighted with red circles.

e. Scatter plot showing the new transcript fraction (over total RNAs; y-axis) of excitatory 

neurons with 60 min of KCl stimulation as a function of differential gene expression 

(between 60 min and 0 min of KCl stimulation; x-axis). Two-sided Wilcoxon rank sum test 

was used to assess significance of the difference, and the P-value was adjusted by 

Bonferroni correction. Genes were color-coded by statistical significance of differential gene 

expression. The fraction of new transcripts, expression fold-change, and adjusted P-value of 

each gene are in Source Data Extended Data Fig.3.
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Extended Data Fig. 4. scNT-Seq enables metabolic labeling-based time-resolved RNA velocity in 
excitatory neurons.
a. UMAP visualization of excitatory neurons (13,511 cells, with >500 genes detected per 

cell) that were characterized by standard splicing kinetics-based (left) or metabolic labeling 

based RNA velocity (right) analyses. Cells are color-coded by time points. The streamlines 

indicate the integration paths that connect local projections from the observed state to 

extrapolated future state. The thickness of streamline indicates the magnitude of velocity. 

UMAP plots in lower panels (same as upper panels) show randomized velocity controls for 

splicing (left) or metabolic labeling (right) based RNA velocity. Permutation of velocity 
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flows was performed by shuffling velocity for genes in each cell and then randomly flipping 

the sign of shuffled velocity values.

b. UMAP (same as right of a) visualization of Ex neurons colored by the average new RNA 

expression level (natural log transformation of (TP10K + 1)) of 24 early- (left) or 73 late-

response (right) genes.

c. UMAP (same as right of a) showing Ex neurons colored by the regulon activity of three 

representative TFs (Jun, Mef2d, and Maff).
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Extended Data Fig. 5. Comparison of splicing-based and metabolic labeling-based RNA velocity 
analysis methods.
The excitatory neurons (n=3,066 cells, with >2,000 genes detected per cell) were analyzed 

by either splicing kinetics-based (a) or metabolic labeling-based (b) RNA velocity. Shown 

are the phase portraits (left), UMAP plots colored by smoothed total RNA level based on 

local averaging (middle), and RNA velocity values (right) of three representative activity-

induced genes (Egr1, Fos and Homer1).

Extended Data Fig. 6. Quality control for metabolic labeling based RNA velocity analysis.
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a. UMAP (as in right panels of Fig. 3a) visualization of high-quality Ex neurons (3,066 cells, 

>2,000 genes detected per cell) colored by time points (left), number of gene detected 

(middle), and number of UMI detected per cell (right).

b. UMAP (as in right panels of Fig. 3a) visualization of high-quality Ex neurons colored by 

the new RNA levels (natural log transformation of (TP10K + 1)) of six representative genes, 

including three early-response genes (Egr1, Fos, Jun) and three late-response genes 

(Homer1, Gadd45g, Nr4a2).

c. UMAP (as in right panels of Extended Data Fig. 4a) visualization of all Ex neurons 

(13,511 cells, >500 genes detected per cell) colored by time points (left), number of gene 

detected (middle), and number of UMI detected per cell (right).

d. UMAP (as in right panels of Extended Data Fig. 4a) visualization of all Ex neurons 

colored by the new RNA levels (natural log transformation of (TP10K + 1)) of six 

representative genes (same as in b).
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Extended Data Fig. 7. scNT-Seq reveals different stem cell states in mESC cultures.
a. UMAP visualization of 4,633 WT cells (from two biological replicates) colored by 

different cell-types or cell-states. Feeders are contaminating mouse embryonic fibroblasts.

b. UMAP visualization of two biological replicates in (a).

c. Violin plots showing total RNA levels (natural log transformation of (TP10K + 1)) of 

representative marker genes for feeders or specific stem cell states.

d. UMAP (same as in (a)) visualization of cells colored by total RNA levels (natural log 

transformation of (TP10K + 1)) of four representative marker genes.

e. Violin plots showing both new and old RNA levels (natural log transformation of (TP10K 

+ 1)) of selected genes across three stem cell states.
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Extended Data Fig. 8. Pulse-chase scNT-Seq reveals state-specific mRNA half-life.
a. Violin plots showing levels of labeled and total transcripts of two representative genes 

(Sox2 and Top2a) during pulse-chase assay. The expression level is measured in natural log 

transformation of (TP10K + 1).

b. Enrichment analysis of GO terms within stable (top 10% genes with longest half-lives) 

and unstable genes (top 10% genes with shortest half-life) in pluripotent state mESCs. 

Enrichment analysis was performed via a one-sided hypergeometric test. P-value was then 

corrected by FDR. The P-values of GO terms are in Source Data Extended Data Fig.8.
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c. Heatmap showing the mRNA half-life of 2,616 genes across three stem cell states. These 

genes are clustered to six groups based on the scaled RNA half-lives in three cell states. The 

state-specific half-lives are in Supplementary Table 4.

d. Shown are mRNA decay curves of representative genes from each group. The fraction of 

labeled transcripts was calculated for each time point and normalized to chase (0 h), then fit 

to a single-exponential decay model to derive RNA half-lives (t1/2).

Extended Data Fig. 9. scNT-Seq analysis of the pluripotent-to-2C transition in mESCs.
a. Scatter MA-plot showing differential expression of new, old, and total RNAs between 

pluripotent and 2C-like states. Dashed line denotes 1.5-fold change between states.
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b. Heatmap showing enriched GO terms for state-specific genes. Significance of enrichment 

(FDR) is scaled by colors. Enrichment analysis was performed using a one-sided 

hypergeometric test. P-value was then corrected by FDR. The exact P-values of GO terms 

are in Source Data Extended Data Fig.9.

c. Normalized new and old RNA levels (natural log transformation of (TP10K + 1)) of major 

DNA methylation regulators across three stem cell states.

d. Validation of genotypes of the Tet1 (-11bp/+1bp) and Tet2 (-7bp/-1bp) genes in Tet-TKO 

cells by aligning scNT-Seq reads to the CRISPR-Cas9 genome editing sites.

e. UMAP visualization (same as in Fig. 5d) of mESCs colored by cell-cycle states (left) or 

the new RNA level (natural log transformation of (TP10K + 1)) of Zscan4a (right).

f. Venn diagrams showing significant overlap between Tet1 and Myc regulon target genes 

(upper) (P-value = 2.42 × 10−25, two-sided Fisher’s exact test), and between Tet1 and Max 

regulon target genes (lower) (P-value = 1.96 × 10−62, two-sided Fisher’s exact test).

Qiu et al. Page 35

Nat Methods. Author manuscript; available in PMC 2021 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 10. Benchmarking the 2nd SS scNT-Seq protocol in human K562 cells.
a. Bar plot showing nucleotide substitution rates in K562 cells analyzed with different 

experimental protocols. 4sU, metabolic labeling with 4sU (100 μM, 4 h); TFEA, on-bead 

TFEA/NaIO4 chemical reaction; 2nd SS, second strand synthesis.

b. PCA plots showing K562 cells colored by the total RNA level of the TOP2A gene 

(natural log transformation of (TP10K + 1)) in three experimental protocols (same as in Fig. 

6d).

c. Violin plots showing the new-to-total RNA ratios of 8 representative cell-cycle genes in 

datasets generated by 2nd SS (4sU/TFEA/2nd SS, n =795 cells) or standard (4sU/TFEA, n = 

Qiu et al. Page 36

Nat Methods. Author manuscript; available in PMC 2021 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



533 cell) scNT-Seq protocols. See ‘Data visualization’ in the Methods for definitions of box-

plot elements.

d. Same as in c but showing new and old RNA levels (natural log transformation of (TP10K 

+ 1)).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Development and validation of scNT-Seq.
a. Overview of single-cell metabolically labeled new RNA tagging sequencing (scNT-Seq).

b. Species-mixing experiment benchmarks the performance of TFEA/NaIO4- and IAA-

based chemical conversion reactions on pooled beads in scNT-Seq, by sequencing a mix 

(1:1) of human (K562) and mouse (mESC) cells. Scatterplot shows the number of transcripts 

(UMIs) mapped to mouse (y-axis) or human (x-axis) genome for each cell (dot) that is 

colored by its identity (human: blue, mouse: red, mixed: green).

c. Bar plot showing nucleotide substitution rates in 4sU labeled K562 cells. Untreated, 

control cells that were not chemically treated.

d. Boxplots showing the fraction of 4sU-labeled transcript (UMI) per cell in untreated 

(n=193 cells) and TFEA/NaIO4-treated (n=202 cells) K562 cells. See ‘Data visualization’ in 

the Methods for definitions of boxplot elements.
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Fig. 2. scNT-Seq captures newly synthesized transcriptomes and time-resolved regulon activity in 
response to neuronal activation.
a. UMAP visualization of 20,547 mouse cortical cells colored by their cell-types. Fractions 

of each cell-type are shown on the left. Ex, excitatory neurons; Inh, inhibitory neurons; NP, 

neural progenitors; RG, radial glial cells.

b. PCA plots showing excitatory neurons and non-neuronal cells at resting (0 min: red) or 

stimulated (120 min: blue) states based on their newly-synthesized transcriptomes (new 

RNAs), pre-existing transcriptomes (old RNAs), whole transcriptomes (total RNAs), and 

new-to-total RNA ratios. 200 cells (with >1,000 genes detected per cell) were randomly 

chosen from excitatory neurons or non-neuronal cells (Ex-NP1, Ex-NP2 and RG) at the two 

time points. Density of dots was indicated by contour lines.
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c. Line plot showing cell-type specific new and old RNA expression for select activity-

induced genes in response to distinct activation durations. The mean new and old RNA 

levels were scaled by library size (TP10K, Transcripts Per 10,000 transcript/UMI counts).

d. Clustered heatmap showing cell-type-specific regulon activity of 79 TFs in response to 

distinct activity durations, concurrently inferred from either new or old RNAs. 18 activity-

dependent regulons were associated with significantly increased new RNA levels of their 

target genes in at least one cell-type (adjusted P <0.05 and fold change >1.5) after KCl 

stimulation. Two-sided Wilcoxon rank sum test was used to assess significance of the 

difference. P-values were adjusted by Bonferroni correction. The P-value and regulon 

activity of each TF are in Source Data Fig.2 and Supplementary Table 3, respectively.

e. Boxplots showing cell-type-specific regulon activity (inferred from either new or old 

RNAs) of Jun and Maff in response to distinct activity durations. Cell number, Ex: n = 1,422 

(0 min), 2,678 (15 min), 2,884 for (30 min), 4,664 (60 min) and 1,863 (120 min); Ex-NP: n 

= 147 (0 min), 169 (15 min), 218 (30 min), 391 (60 min) and 177 (120 min); Inh1: n = 146 

(0 min), 244 (15 min), 311 (30 min), 428 (60 min) and 166 (120 min); Inh-NP: n = 7 (0 

min), 3 for (15 min), 12 for (30 min), 20 (60 min) and 19 (120 min). See ‘Data visualization’ 

in the Methods for definitions of box-plot elements.

Qiu et al. Page 42

Nat Methods. Author manuscript; available in PMC 2021 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Metabolic labeling-based RNA velocity analysis of rapid changes in transcriptional states.
a. UMAP visualization of Ex neurons (n=3,066 cells, with >2,000 genes detected per cell) 

that were characterized by standard splicing kinetics-based (left) or metabolic labeling-based 

RNA velocity (right) analyses. Cells are color-coded by time points. The streamlines 

indicate the integration paths that connect local projections from the observed state to 

extrapolated future state. UMAP plots in lower panels (same as upper panels) show 

randomized velocity controls for splicing- or metabolic labeling-based RNA velocity. The 

thickness of streamline indicates the velocity rate.
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b. UMAP (same as right of a) visualization of Ex neurons colored by the average new RNA 

expression level (natural log transformation of (TP10K + 1)) of 24 early- (left) or 73 late-

response (right) genes.

c. Dot plot showing enrichment of 24 early- or 73 late-response genes in activity-dependent 

TF regulon targets from all Ex neurons (n=13,511 cells, with >500 genes detected per cell). 

The predicted regulon target genes were used as background for calculating statistical 

significance. The significance of enrichment is determined by a two-sided Fisher’s exact 

test. The size of dots is scaled by -log10 (FDR adjusted P-value), and significant regulons 

(adjusted P<0.05) are color-coded for early- (in red) or late-response (in blue) genes. The P-

values are in Source Data Fig.3.

d. UMAP (same as right of a) showing Ex neurons colored by the regulon activity of three 

representative TFs (Jun, Mef2d, and Maff).
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Fig. 4. scNT-Seq reveals mRNA regulatory strategies during stem cell state transition.
a. Design of pulse-chase scNT-Seq experiments.

b. UMAP visualization of 20,059 mESCs colored by three stem cell states (left) or by 7 time 

points during chase (right). Cell numbers of each state across 7 time points are also shown.

c. Line plots showing changes in nucleotide substitution rates across 7 time points of pulse-

chase.

d. Scatter plots showing Pearson’s correlation of RNA half-life measurements (n=1,926 

genes) between this study (top: one timepoint inference (4sU, 4 hours); bottom: multiple 

timepoint pulse chase) and bulk SLAM-Seq in mESCs.
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e. Clustered heatmaps of estimated synthesis rates (left), degradation rates (middle), and 

observed total RNA levels (right) of 445 genes across three stem cell states. The values in 

intermediate or 2C-like states were normalized to the pluripotent state. Also shown are RNA 

regulatory strategies (cooperative, 110 genes; neutral, 136 genes; destabilizing, 199 genes) 

colored-coded by similarity between the synthesis and degradation rates. Rightmost panel 

shows four representative genes with their raw synthesis/degradation rates and total RNA 

levels indicated. The synthesis rate, degradation rate, total RNA abundance, and regulatory 

strategy of each gene are in Supplementary Table 5.
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Fig. 5. Analysis of time-resolved regulon activities and TET-dependent regulation of the stepwise 
plutipotent-to-2C transition.
a. Experimental scheme of identifying time-resolved regulon activity across stem cell states.

b. Line plots showing the fold changes of new and old RNA abundance of Tet1 and Zscan4d 
genes in intermediate and 2C-like states relative to pluripotent states.

c. Clustered heatmaps showing regulon activities inferred from new and old RNA levels 

across three stem cell states.

d. UMAP visualization of WT (n=4,633 cells) and Tet-TKO (n=2,319 cells) mESCs colored 

by genotypes (left) or stem cell states (right).
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e. Fractions of three stem cell states in two biological replicates of WT and Tet-TKO mESC 

cultures.

f. Volcano plots showing genes differentially expressed between WT and Tet-TKO in three 

stem cell states. Genes significantly up-regulated (red) or down-regulated (blue) in Tet-TKO 

cells were identified by a two-sided Wilcoxon rank sum test (Bonferroni adjusted P-value 

<0.05). Note that both Tet1 and Tet2 genes were significantly decreased in Tet-TKO cells. 

Cell number, WT: n = 4,532 (pluripotent), 47 (intermediate), 30 (2C-like); Tet-TKO: n = 

2,168 (pluripotent), 51 (intermediate), 53 (2C-like). The list of differentially expressed genes 

and their P-values are in Supplementary Table 6.

g. Gene ontology enrichment analysis of genes significantly down- or up-regulated in Tet-
TKO mESCs (in pluripotent state). Significance of enrichment was determined with a 

hypergeometric test and color-scaled by -Log10(FDR adjusted P-value). The P-values are in 

Source Data Fig.5.
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Fig. 6. Second strand synthesis reaction enhances the efficiency of scNT-Seq.
a. The second strand synthesis (2nd SS) reaction workflow in scNT-Seq.

b. Scatterplots comparing the number of gene (y-axis, upper panel) or UMI (y-axis, lower 

panel) detected per cell as a function of aligned reads per cell (x-axis) between 4sU (n=692 

cells), TFEA (n=447 cells), 4sU/TFEA (n=533 cells), 4sU/2nd SS (n=515 cells), TFEA/2nd 

SS (n=400 cells), and 4sU/TFEA/2nd SS (n=795 cells) experiments. 4sU, metabolic labeling 

with 4sU (100 μM, 4 h); TFEA, on-bead TFEA/NaIO4 chemical reaction; 2nd SS, second 

strand synthesis reaction. The fitted lines for each experiment were shown. Right panels 

show estimated numbers of gene or UMI detected per cell at matching sequencing depth 

(50,000 reads per cell) for different experiments.

c. Scatterplots showing Pearson’s correlation for new (left), old (middle) RNA abundance 

and new-to-total RNA ratio (right) between standard (4sU/TFEA) and 2nd SS (4SU/

TFEA/2nd SS) scNT-Seq protocols. Levels of new and old RNAs are in natural log 

transformation of (TP10K + 1).

d. PCA plots showing K562 cells colored by cell-cycle states (top) or experiments (bottom).
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