
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Vaccine 39 (2021) 6127–6136
Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier .com/locate /vacc ine
A hub-and-spoke design for ultra-cold COVID-19 vaccine distribution
https://doi.org/10.1016/j.vaccine.2021.08.069
0264-410X/� 2021 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: wg152@soe.rutgers.edu (W. Guo).
Xinglu Xu a,c, Mark D. Rodgers b, Weihong (Grace) Guo a,⇑
aDepartment of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
bDepartment of Supply Chain Management, Rutgers Business School, Rutgers, The State University of New Jersey, Piscataway, NJ 07102, USA
c State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 June 2021
Received in revised form 22 July 2021
Accepted 19 August 2021
Available online 25 August 2021

Keywords:
Vaccine distribution
Network design
Resource allocation
COVID-19 pandemic
An orderly and effective vaccination campaign is essential in combating the global COVID-19 pandemic.
As one of the pioneers, the U.S. Center for Disease Control proposes a phased plan to promote the vacci-
nation process. This plan starts with vaccinating the high-priority population in Phase 1, then turns to the
remainder of the public in Phase 2, and ends with a scale-back network in Phase 3. The phased plan not
only provides a sense of hope to impacted communities that this global pandemic can be defeated, but
can serve as a template for other countries. To enhance this plan, this paper develops a generalizable
framework for designing a hub-and-spoke vaccination dispensing network to achieve the goals in the
Phase 2, which aims to expand the vaccination coverage for the general public. We introduce a new cov-
erage index to measure the priority of different potential dispensing sites based on geo-data and develop
an optimization model for network design. The hub-and-spoke network enhances the accessibility of the
vaccines to various communities and helps to overcome the challenges related to ultra-cold storage facil-
ity shortage. A case study of Middlesex County in New Jersey is presented to demonstrate the application
of the framework and provide insights for the Phase 2. Results from the baseline scenario show that
increasing the driving time limit from 10 min to 25 min can improve the total coverage index from
40.8 to 55.9. Additionally, we explore how the changes of parameters impact the network design and dis-
cuss potential solutions for some special cases. When we allow 4 outreach nodes per hub, all potential 45
outreach points can be covered in the vaccination network within a 20-minute drive, and the total cov-
erage index reaches its maximum value of 58.3.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The COVID-19 pandemic is among the deadliest global public
health crises faced by modern society [1]. Scientists, research labs,
and governments around the world have raced to find vaccine can-
didates for this virus, in order to defeat this global pandemic. On
December 11, 2020, the U.S. Food and Drug Administration issued
its first emergency use authorization (EUA) for the COVID-19 vac-
cine, which was produced by the Pfizer-BioNTech [2]. At that time,
the total global deaths had already topped 1.6 million [3]. The
launch of this vaccine, as well as other candidates that have
emerged globally, provides a beacon of hope for society to return
to normal. Outside the U.S., other countries such as Canada, Japan,
Belgium have also placed orders to procure vaccines from various
sources [4]. However, along with the first wave vaccinations in
the U.S., we find that, while developing a vaccine is a monumental
step, it is the first of many key milestones along the journey. Key
challenges in distributing and administering these vaccines to var-
ious communities in a timely and equitable fashion still lie ahead.

To promote the vaccination program, the Center for Disease
Control (CDC) proposed a phased plan in a playbook ahead of the
EUA for the first vaccine [5]. The initial phase of this campaign,
Phase 1, starts with vaccinating high-priority population segments,
with the remainder of the general public having access to vaccines
in Phase 2. However, the Phase 1 vaccine rollout in the U.S. has
shed light on numerous challenges that must be overcome for
these efforts to be successful. Aside from limited supply challenges,
the storage requirements for some vaccine candidates add further
complexities to the distribution process. For instance, the recently
launched Pfizer vaccines require ultra-cold storage at temperatures
between �80 �C and �60 �C in order to maintain efficacy [6]. How-
ever, most administration sites do not have these capabilities, since
these expensive ultra-cold storage resources are usually available
in commercial research labs [7]. The lack of appropriate storage
facilities will shorten vaccine shelf-life and create difficulty in vac-
cine rollout.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2021.08.069&domain=pdf
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In this context, this paper proposes a generic and practical solu-
tion to expand the vaccine coverage during the Phase 2 vaccination
campaign against the backdrop of the U.S. phased plan. Specifically,
we propose a regional hub-and-spoke network design, which
includes hub centers and outreach sites as two types of local dis-
pensing sites in the network [8]. This configuration allows public
health officials to easily adjust the network configuration in differ-
ent rollout phases [9,10]. Moreover, the regional hub-and-spoke
network design allows us to overcome the difficulties associated
with ultra-cold storage without making additional infrastructure
investment from two aspects. First, the vicinity of local dispensing
sites in the hub-and-spoke network design enables local inventory
sharing, thus helping to use up a batch of vaccines within the short
shelf-life, reducing the risk of vaccine wastage due to expiration.
Second, the short-trip transfers within the regional hub-and-
spoke network can help reduce the risk of temperature excursion
in transportation.

In order to simultaneously ensure fair and equitable access to
vaccines for all communities, we apply a newly proposed vaccina-
tion coverage optimization model that seeks to design the optimal
configuration for the hub-and-spoke vaccination network. This
research serves as a generalized framework that can be adopted
in various regions of the globe, especially in low-income countries,
with inadequate cold chain infrastructure.

Next, subsection 1.1 presents additional details about the cur-
rent phased vaccination plan in the U.S. Subsection 1.2 reviews
recent works of literature and identifies existing research gaps.
Subsequently, in Section 2, we will state the potential advantages
of the new configuration and present our model in detail. A case
study is presented in Section 3. Finally, we conclude in Section 4.
1.1. Current vaccination plan in the U.S.

As one of the countries in the first vaccine roll-out echelon, the
U.S. government proposed a phased vaccination plan [5], as given
in Fig. 1. Considering that the supply and demand for vaccines
are highly stochastic, the CDC outlines three phases:

Phase 1 focuses on distributing the vaccine to high-priority pop-
ulations, including the critical infrastructure workforce, and people
at increased risk for severe COVID-19 illness.

Phase 2 aims to expand vaccine access to the general public by
adding more dispensing sites in the provider network.

Phase 3, upon covering most of the population, CDC plans to
scale back these efforts, since the demand for vaccines would be
dramatically reduced

This phased vaccination plan streamlines the immunization
progress in midst of the pandemic, while also providing a good
template for other countries that are mounting a strategy to defeat
COVID-19. This plan was made ahead of the EUA of the first vaccine
in the U.S., with the CDC providing the strategic framework, and
Fig. 1. An illustration of phased vaccination plan in the U.S.
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leaving operational details to the local governments to execute
[11]. At the time of writing, most regions of the U.S. are still in
Phase 1. Several states announced plans to transition into Phase
2, however, there is a lack of guidance on how to successfully
accomplish this task. Our proposed research not only helps to
address this gap for the U.S. but may also help other countries to
deploy a phased immunization program.

1.2. Previous studies and research gaps

To promote global immunization, various studies have been
conducted. This subsection first reviews the existing studies
related to common vaccine distribution, then presents recent stud-
ies on the COVID-19 vaccination campaign. Research gaps are iden-
tified after reviewing from both the problem perspective and the
methodology perspective. Lastly, we briefly outline how this paper
addresses the current challenge in ultra-cold vaccine distribution
and overcomes the drawbacks of existing coverage model.

De Boeck et al. [12] provide a review of studies related to the
vaccine distribution chain. Based on the review, existing studies
can be divided into three categories according to their research
scope and decision variables. The first topic is about long-term
strategic decisions including the facility location and allocation
decisions. For example, Lee et al. [13] use a computational simula-
tion model to re-design the vaccine supply chain in Mozambique
by comparing two simulation outputs: the vaccine availability
and unit logistics cost. Lim et al. [14] focus on comparing the differ-
ences of applying different coverage models in the objective func-
tion when optimizing the location of dispensing sites. Hirsh Bar Gai
et al. [15] develop a model to find out the optimal locations and
capacities for local hub vaccine warehouses to minimize the total
traveling distance. Based on the real data of Nigeria, they compare
the performance of different scenarios. As for the second topic,
some researchers focus on tactical decisions such as shipping poli-
cies and transportation modes. Han et al. [16] optimize the routing
problem in an existing three-layer supply chain to minimize the
total transportation cost for emergency material delivery. Chen
et al. [17] propose a planning model for optimizing the vaccine
quantities of each delivery trip in a directed WHO-EPI vaccine dis-
tribution network in low-income countries. Their model aims to
maximize the number of fully immunized children under known
demand. Rabta et al. [18] study the last-mile distribution problem
by drones in the humanitarian supply chain. An optimization
model is presented in their paper to minimize the total traveling
distance. Lin et al. [19] discuss the distributor’s transportation
decision on using a cold chain for vaccines or not. Meanwhile, they
analyze the impact of retailer’s inspections on the aforementioned
distributor’s decisions. The third topic is operational decisions
including administration policies and inventory policies at the final
dispensing sites. A mixed-integer programming model is devel-
oped by Proano et al. [20] which focuses on optimizing the number
of doses in a combination vaccine. Their model aims to maximize
manufacturing profits and customer surplus. Mofrad et al. [21]
study the vaccine administration policies considering the non-
stationary demand and delayed service. The goal of their work is
to reduce the ‘‘open vial waste”. Azadi et al. [22] develop a two-
stage stochastic programming model to optimize the combination
of vaccine vials in a different size, and decide whether to open a
new vial or not in face of the uncertain patient arrivals.

Most recently, studies about immunization during COVID-19
have received a lot of attention. Cotfas et al. [23] explore how
the COVID-19 vaccination opinions changes in social media net-
work. Risanger et al. [24] present an inventory-location optimiza-
tion model to optimize the allocation of influenza vaccines
during the pandemic. Corey et al. [25] qualitatively discuss possi-
ble challenges for both the endpoints and the manufactures in
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developing COVID-19 vaccines. Similarly, Mills and Salisbury [26]
discuss the potential challenges of distributing COVID-19 vaccines.
Aruffo et al. [27] introduce a compartmental model to study the
vaccination strategy for COVID-19 under scenarios with different
vaccine coverage, effectiveness, and waning immunity. Roy et al.
[28] use an epidemic model to study the allocation of limited vac-
cines. Several other studies focus on identifying the population
group that has the priority to be vaccinated [29].

With an overview of the previous studies, the following
research gaps can be identified:

(1) Previous studies related to vaccine distribution mostly focus
on designing or optimizing networks that minimize cost or
traveling distance for permanent routine vaccination. The
existing network design models or strategies cannot be used
directly in the phased COVID-19 campaign that network
changes over time to achieve different goals. Moreover, pre-
vious research fails to address the challenges associated with
the newly-presented ultra-cold vaccine distribution such as
how to facilitate vaccination when most of the sites do not
have the appropriate storage facilities for ultra-cold
requirement.

(2) When developing models, there is a lack of a generalized
framework that can capture local characteristics (e.g., local
transportation accessibility, economics) and be used in dif-
ferent regions of the world. Promoting immunization pro-
gress is a global topic. Without loss of generality, there is a
clear need for these models to capture the local characteris-
tics to better inform their vaccine distribution strategies.

In addressing these gaps, this paper will develop a network
design methodology for the phased vaccination campaign. Consid-
ering the very short shelf-life of ultra-cold vaccines, we introduce a
hub-and-spoke network configuration in which dispensing sites
can share their vaccine inventory, use up the ultra-cold vaccines
quickly, and further reduce the vaccine waste. This hub-and-
spoke network configuration allows more flexible network expan-
sion or reduction in each vaccination campaign phase when
needed. Moreover, to compare the coverage of different dispensing
sites, we introduce a coverage index calculation model which con-
siders not only the population lived around a dispensing site, but
also the local travel and economic characteristics that impact vac-
cination wiliness.
(a) Flowchart view

Fig. 2. Point-to-point network versus hub-and

6129
2. Framework

2.1. Hub-And-Spoke network for vaccine distribution

Vaccines are strategic stockpiles controlled by a special national
division. In general, vaccines are produced by authorized domestic
manufacturers and then sent into the vaccine distribution network
[13]. For some low-income countries, due to the lack of technology
and raw materials, vaccines may be imported from other countries
instead of producing locally [17]. In the vaccine distribution sys-
tem, the specified national division such as the Division of Strategic
National Stockpile in the U.S. will manage the allocation and distri-
bution of vaccines. Generally, vaccine distribution involves multi-
ple sectors from the national warehouse to the local warehouse.
After vaccines arrive at the local warehouse, local stockpile divi-
sions will take over the vaccines and allocate them to the final dis-
pensing sites where people can be vaccinated [30]. In some cases,
vaccine manufactures can directly send vaccines to the final dis-
pensing sites if resources are allowed. In this paper, we focus on
the final step of the vaccine distribution network where the vacci-
nes are delivered from manufacturers or local warehouses to the
final dispensing sites.

As shown in Fig. 2, the final vaccine delivery in the current
point-to-point configuration is from the upstream sector directly
to each dispensing site. This configuration is very effective and
easy to manage for routine vaccines that can be stored at room
temperature or refrigerator. A batch of vaccines is delivered to each
dispensing site and stored in the required environment until they
are administrated to people. However, when it comes to vaccines
that require ultra-cold storage, the point-to-point configuration
may cause huge waste. Since ordinary refrigerated trucks cannot
reach the required ultra-low temperature, passive refrigerators
are widely used along the ultra-cold chain [17,31]. Due to cost rea-
sons, one passive refrigerator container contains a number of vac-
cine vials. In the point-to-point configuration, upstream sectors
ship such containers to each dispensing site. Since there is no
ultra-cold freezer in dispensing sites, once a container is opened
at the dispensing site, all vaccines in the container start to defrost.
Outside the ultra-cold environment, vaccines are only good for a
short time once thawed. Hence, the administrations of these vacci-
nes become a race against time. However, it’s highly likely that the
number of vaccines in one container is more than the amount that
most of the dispensing sites could reasonably expect to use. For
(b) An example in map view

-spoke network for vaccine distribution.
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example, the current Pfizer’s storage container holds from 1,000 to
5,000 doses of the shot [6]. These vaccines need to be used within
five days in standard refrigeration. There are different kinds of dis-
pensing sites such as big hospitals, health care centers, doctor
offices, and pharmacies. Based on the data in New Jersey’s vaccina-
tion plan published by the New Jersey Department of Health [32],
the expected administration capacity per day at one site varies
from 50 to 400. That is to say, most of the dispensing sites cannot
use up the vaccines in one container before they are out-of-date.

At the time of writing, the U.S. promotes the COVID-19 vaccina-
tion rollout process by sending vaccines (point-to-point) to several
large, centralized vaccination centers which can rapidly go through
all doses. This solution seems to be all right at this phase (Phase 1)
whose target is to vaccinate the high-priority population [5]. How-
ever, once we step into the second phase aiming to cover as many
people as possible, the centralized sites with point-to-point config-
uration will be unfavorable. These centralized dispensing sites are
usually located in densely populated regions and are spread out.
People may need to travel a long way to get to an available central-
ized dispensing site. According to a recent survey conducted in
Uganda, one of the most crucial factors determining people’s will-
ingness to be vaccinated is convenience [33]. Long traveling time to
a vaccination site will decrease people’s willingness to be vacci-
nated. So, in addition to using the mega, centralized sites, Phase
2 must expand the provider network by involving more local sites
to enhance people’s accessibility to vaccines. By doing so, the aim
of stimulating more people to get vaccinated can be achieved.

Considering the aforementioned challenges in COVID-19 vac-
cine distribution, we propose a hub-and-spoke network configura-
tion for the Phase 2 vaccination campaign. In the proposed
configuration, dispensing sites are divided into clusters. Each clus-
ter contains one big hub dispensing site (H-DS) and several out-
reach dispensing sites (OR-DS). Vaccine containers are shipped
from upstream to the H-DSs in each cluster, similar as in Phase
1. The H-DS then shares the vaccines with the OR-DSs in its cluster.
This hub-and-spoke network configuration provides three signifi-
cant advantages over the current point-to-point configuration.
First, sharing vaccines within the cluster can help use up the doses
within a short time and further reduce the waste caused by unused
overdue vaccines. This is particularly important for ultra-cold vac-
cine rollout since the lack of appropriate storage facilities shortens
vaccine shelf-life. Second, the use of outreach dispensing sites
enhances the convenience of getting people vaccinated by expand-
ing the geographical coverage area of sites, which will stimulate
more people to get vaccinated. Third, the proposed hub-and-
spoke configuration can help reduce the temperature excursion
risks associated with transporting ultra-cold vaccines, since some
of the long-distance shipping trips from upstream to dispensing
sites will be replaced by short-distance transfer shipping trips
between local dispensing sites within the cluster. With these three
strengths, this hub-and-spoke configuration can help us overcome
the challenges brought by the lack of ultra-cold freezers in vaccine
distribution without having to invest in expensive infrastructure.
One question then naturally arises: How to design such a hub-
and-spoke network based on the current vaccine distribution
system?

2.2. Optimal design of Hub-And-Spoke network

In this section, an optimization model is proposed for designing
a hub-and-spoke network for Phase 2 of COVID-19 vaccine distri-
bution. According to the CDC’s vaccine rollout recommendations
[5], Phase 2 includes all other persons aged � 16 years not already
recommended for vaccination in Phase 1, and any authorized
COVID-19 vaccine may be used. Some of the large centralized dis-
pensing sites used in Phase 1 will act as the H-DSs in Phase 2 since
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the distribution of vaccines from upstream to these sites is well
established. To cover the larger population in Phase 2, OR-DSs will
need to be added to the vaccination network. These OR-DSs should
be strategically selected from the available local dispensing sites
and allocated to the existing H-DSs.

An integer programming problem is formulated with a decision
variable xi;j to determine which local sites are selected to be OR-
DSs and how the OR-DSs are connected to the H-DSs in the hub-
and-spoke network.

Let
i ¼
 local dispensing site; i ¼ 1;2; � � � ; I.

I ¼
 the number of local dispensing sites being

considered as potential out-reach dispensing sites
(OR-DSs).
j ¼
 hub dispensing site (H-DS); j ¼ 1;2; � � � ; J.

J ¼
 the number of hubs within the given region.

ci ¼
 the coverage index of local dispensing site i. (ci � 0).

nMAX ¼
 the maximum number of OR-DSs that can be

connected to H-DS j.
dHi;j ¼
 the driving time between site i and hub j.
dMAX ¼
 the upper limit on the allowed driving time from a
hub to its OR-DSs considering the ultra-cold vaccine
shelf life.8
xi;j ¼
 1; if local dispensing site i is selected to
connect with hub j:
0; otherwise:

<
:

Then, the total coverage of the hub-and-spoke network, also the
objective function to be maximized is equal to
X
i

ðci

X
j

xi;jÞ ð1Þ

subject to
X
j

xi;j � 1 8i 2 I ð2Þ

X
i

xi;j � nMAX 8j 2 J ð3Þ

xi;jd
H
i;j � dMAX 8j 2 J;8i 2 I ð4Þ
Eqs. (2) and (3) together establish the hub-and-spoke configura-

tion. Specifically, Eq. (2) specifies that an OR-DS can only be
assigned to at most one H-DS; Eq. (3) specifies that an H-DS is con-
nected with at most nMAX OR-DSs. Frequent vaccine transfers occur
between the H-DS and its OR-DS. Thus, it is necessary to limit the
travel distance from the H-DS to its OR-DS since a long trip will not
only shorten the ultra-cold vaccine’s shelf life in dispensing sites
but also increase the temperature excursion risk. Thus, Eq. (4)
ensures that OR-DS i can be assigned to H-DS j only if the driving

time between i and j is within a predetermined upper limit dMAX.

2.3. Coverage model for Covid-19 vaccine distribution

The most crucial input in the optimization model is the cover-
age index (CI for short) of each site. The optimal network should
consist of high-CI sites to maximize the total coverage. This section
presents how we define and estimate the coverage index ci by
extending the basic concept from literature but customizing it
for the COVID-19 vaccine.

The original meaning of vaccination coverage is the percentage
of vaccinated people [34,35]. Lim et al. [14] presented several ways
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of measuring coverage: The simplest method is the binary cover-
age model which assumes all the population within a certain dis-
tance radius of the site is covered; Extending from the binary
coverage model, the variable single coverage model assumes that
the fraction of covered people decreases stepwise as the distance
radius increases. Risanger et al. [24] assumed the fraction of cov-
ered people decays exponentially as the distance increases. All
these models assume straight-line distance when estimating the
covered population. Although the straight geographical distance
is reasonable in general location selection problems, it does not
accurately reflect vaccination coverage. People’s willingness to
get vaccinated at a site is directly impacted by how accessible
the site is. Transportation accessibility is highly impacted by the
conditions of transportation infrastructure (road network, public
transportation network, etc.), which may differ significantly in var-
ious regions. Straight distance fails to capture the actual trans-
portation accessibility to dispensing sites in different regions,
especially in some low-income countries with poor infrastructures.

To remedy the drawback of existing coverage models, we pro-
pose a new coverage index that works as a quantitative measure
of site selection priority. It’s worthwhile to highlight that the pro-
posed coverage model can also be applied in dispensing site eval-
uation in different regions regardless of the vaccine types. Our
model is derived from the aforementioned variable single coverage
model in which a stepwise decreasing function of coverage is
assumed. The coverage area is divided into several levels.
a�
i;k 2 ½0;1� is the fraction of covered people in coverage level k

(k = 1, 2, . . ., K) of dispensing site i. Fig. 3 illustrates the stepwise
coverage model in a simple example with three levels. From the
inner level (k = 1) to the outer level (k = 3), people’s willingness
to get vaccinated show a stepwise decrease (a�

i;1 � a�
i;2� a�

i;3).
The proposed coverage model improves existing models in

three aspects when estimating the total number of covered people.
First, we use the driving time instead of the straight distance as the
criterion of each coverage level. By doing so, we can grasp the local
transportation condition in different regions. Specifically, coverage
level k of a dispensing site is the area between tk�1 and tk driving
time to the site. For example, people in the first coverage level
(k = 1) can reach site i within t1 time by driving; the second cover-
age level (k = 2), shown as the cricoid area in blue in Fig. 3, has its
outer boundary as the place from which we need to drive t2 to the
dispensing site. Second, the a�

i;k value in our model adjusts the
baseline fraction of covered people by considering public trans-
portation. With public transportation near site i, the site is more
convenient and hence will attract more people to come to the site
for vaccination. So, we define a�

i;k as

a�
i;k ¼ minð1;ak þ b� NiÞ ð5Þ

where ak is the fixed baseline fraction of covered people in k level
area from Lim’s study [14], Ni is the total number of public trans-
portation stops (bus stops, subway stops, etc.) around site i, and b
Fig. 3. Illustration of the stepwise coverage model.
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is the additional ‘‘attractiveness” brought by each transportation
stop. So, the fraction of covered people increases from the baseline
ak by bNi when public transportation is considered. The minð�Þ func-
tion ensures that a�

i;k does not exceed 1. When a�
i;k = 1, the entire

population level k of dispensing site i is covered by this site.
Let tkdenote the driving time boundary of coverage level k, and

PiðtkÞ denote the total number of residents in the coverage level k
of dispensing site i. Considering all K coverage levels for each site,
the total number of people covered by site i is calculated by

ci ¼
X
k

a�
i;kPi

ðtkÞ ð6Þ

Third, we further propose to adjust the coverage index with
social vulnerability. This is especially important for COVID-19 vac-
cination because a more socially vulnerable community is at
higher risk of COVID-19 and hence is in more urgent need of vac-
cines. Let SVIi denote the social vulnerability index (SVI) of the
community that dispensing site i is located in. In order to raise
the priority of the more vulnerable regions, we define the final cov-
erage index of site i be

ci ¼ ci
c
� � ð1þ SVIiÞ ð7Þ

where ci is normalized by the average c
� ¼ 1

I

P
ici, and the site’s final

coverage index gets higher if the SVIi value is higher. The ci calcu-
lated from (7) is then used in the objective function shown in (1).

The calculation of SVIi depends on the available data of the tar-
get area. For example, in the U.S., the CDC has an open and well-
established measuring system to calculate the SVI based on the
census variables. The value of CDC’s SVI is between 0 and 1. Up
to 15 social factors are considered in the SVI including poverty,
aged 65, diploma, etc. These factors are also the key risk factors
for COVID-19. CDC ranks tracts within each state based on the
value of these social factors. Tracts in the top 10% are given a value
of 1 to indicate high vulnerability, while 0 is given to the tracts in
the bottom 10%. For other countries that have no ready-to-use SVI,
they can apply a similar calculation and use important social fac-
tors with available data for ranking the local regions.

3. Case Study

To demonstrate our framework and gain insights on the Phase 2
vaccination campaign, a case study is conducted in this section. We
take Middlesex County in central New Jersey, U.S., as the case area.
Also known as the ‘‘Heart of New Jersey,” Middlesex County is
located squarely in the center of New Jersey [36]. As part of the
New York metropolitan area, Middlesex has an estimated popula-
tion of over 825,000 in 2019 and 523 census block groups [37].
The County is 318 square miles in size, has 25 municipalities rang-
ing from quiet rural towns to vibrant city centers [36]. The case
study will develop a hub-and-spoke vaccination network at the
county level based on real data. Section 3.1 describes the data col-
lection process. Section 3.2 provides results of the case study. The
optimization model in this case study is solved by the CPLEX
Optimizer.

3.1. Data Collection

Two types of data are needed for the optimization model: loca-
tion of the potential dispensing sites and geographic data and
information (also known as geo-data) on local demographics,
transportation facilities, economics, etc.

The vaccination plan published by NJDOH in October 2020 pro-
vides a list of potential local dispensing sites for each county [32].
According to NJDOH, potential dispensing sites include hospitals,
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Federally Qualified Health Centers (FQHC), and chain retail phar-
macies. The NJDOH’s vaccination plan lists a total of 58 potential
dispensing sites in Middlesex County, including 6 hospitals, 7
health centers, and 45 retail pharmacies. For convenience, we rea-
sonably assume that all 13 hospitals and health centers (numbered
101 to 113) are already included in the Phase 1 vaccination plan
and will serve as H-DSs in Phase 2. The remaining 45 chain retail
pharmacies (numbered 201 to 245) are potential OR-DSs for Phase
2. For further mapping and analytics, we import the longitude and
latitude information of all 58 sites into the ArcGIS Online platform
[38]. By doing so, a map layer with the location information of all
dispensing sites can be generated in the ArcGIS Online platform.

Geo-data on Middlesex are retrieved from ArcGIS Online’s geo-
portal. This geoportal pulls data from various sources such as the
CDC, the American Community Survey, and the U.S. Department
of Transportation into an open database for users to generate maps
showing the geo-data. The geo-data used in the case study include
the demographic data at the block level, public transportation
routes and stops, social vulnerability index at the tract level, and
live traffic data. The demographic data and live traffic data are used
to calculate PiðtkÞ, the total residents that live in the coverage level
k of dispensing site i. We use the Summarize Nearby function in Arc-
GIS Online to calculate the total population within a specified dis-
tance of a dispensing site. As stated in Section 2, to better capture
the local transportation accessibility, we define that distance is
measured by driving time. The live speed in a typical peak hour
(Monday 8 a.m.) is used to estimate the driving time. Public trans-
portation data are used to obtain the number of nearby bus stops
(NiÞ. The SVI data layer enables us to calculate the SVIi.

Table 1 lists the input data to the case study. The K = 3 coverage
levels and the values of ak’s are adopted from Lim’s work [14].
According to the 2017 person trips statistics data released by the
U.S. Department of Transportation [39], about 2% of personal trips
use public transportation. So, we assume that the estimated addi-
tional attractiveness brought to a dispensing site per public trans-
portation stop is 0.02.

The maximum number of OR-DSs that can connect to a H-DS
(nMAX) and the upper limit on the allowed driving time from a H-

DS to its OR-DSs (dMAX) vary in different scenarios. As stated in Sec-

tion 2, dMAX is introduced to limit the travel distance from H-DS to
its OR-DS for reducing the on-trip time and the long-trip tempera-
ture excursion risks during ultra-cold vaccine delivery. It’s reported
that the ultra-cold COVID-19 vaccine allows at most 30 min under
room temperature considering some local transfers may not use

refrigerated trucks [6]. So, we let the dMAX values range between
10 and 30 min. As for nMAX, the baseline scenario allows each
hub to be connected with at most 3 OR-DSs (nMAX ¼ 3), since a
Table 1
Input of the case study.

Symbol Definition Value

K The number of coverage levels being considered 3
a1 The baseline fraction of level 1 coverage 1
a2 The baseline fraction of level 2 coverage 0.5
a3 The baseline fraction of level 3 coverage 0.2
t1 The driving time limit (minutes) of level 1 coverage 5
t2 The driving time limit (minutes) of level 2 coverage 8
t3 The driving time limit (minutes) of level 3 coverage 10
b The additional attractiveness brought to a

dispensing site per public transportation stop
0.02

nMAX The maximum number of out-reach dispensing sites
that one hub dispensing site can connected with

{3, 4, 5}a

dMAX The upper limit on allowed driving time from a hub
dispensing site to its out-reach dispensing sites
(minutes)

{10, 15, 20,
25, 30}a

a Value differs in different scenarios.
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cluster with 4 sites (1 hub and 3 outreach sites) is expected to
administer 1,000 doses per day according to NJDOH’s estimation
[32], which is the minimum quantity in one Pfizer’s container. To
investigate how nMAX impacts vaccine distribution, we increase
nMAX to 4 and 5, respectively, in sensitivity analysis, allowing more
OR-DSs to be connected to a hub. For convenience, we name each

scenario by its nMAX and dMAX values. For example, ‘‘4OR15DT” rep-

resents the scenario with nMAX = 4 and dMAX = 15 min.
3.2. Results Analysis

(1) Baseline Scenarios

This section analyzes the results of the 5 baseline scenarios.
Table 2 presents the total coverage index (TCI, objective function
value) and the total number of OR-DSs included in the optimal

hub-and-spoke network. As shown in Table 2, when dMAX is less
than 20 min, several H-DSs do not reach the maximum number
of out-reach dispensing sites that one hub can connect with, due
to a lack of available sites within the allowed distance of the H-

DS. The TCI increases as dMAX increases until dMAX reaches 25 and
then TCI stays at 55.9. We can then conclude that there is a thresh-

old dMAX value that below the threshold, increasing dMAX can

improve the TCI. Once dMAX reaches the threshold, the TCI can no
longer be improved.

In order to take a closer look at the optimal hub-and-spoke net-
work, Table 3 lists the selection results of the 15 potential OR-DSs
with smallest coverage index. Symbol ‘‘s” in Table 3 indicates the
OR-DS is selected into the optimal hub-and-spoke network,
whereas symbol ‘‘ - ” indicates the OR-DS is not selected. In
3OR25DT and 3OR30DT, unselected OR-DSs are the sites with the
top 6 smallest coverage indices. This observation explains why
the system’s TCI stays the same in 3OR25DT and 3OR30DT: under
the limitation of 3 OR-DSs per hub, the system achieves its maxi-
mum TCI in 3OR25DT and 3OR30DT. Another observation is that
sites No.239 and No.238 are not selected in any of the baseline sce-
narios. This observation can be explained by further analysis of the
results in a map view.

Fig. 4 is a map view of the Middlesex County, NJ. All local dis-
pensing sites are marked at their locations in Fig. 4. The green cross
markers represent H-DSs. The circles represent potential OR-DSs,
and the gradient colors correspond to the CI values (ci) of the sites.
Deeper colors indicate higher CI values. The size of a circular object
shows the preference of the OR-DS. Preference here is defined as
the number of times out of the 5 baseline scenarios that a site is
selected into the optimal hub-and-spoke network. A larger circle
indicates the site receives higher preference and that the site is
selected into the optimal design more. CI is an input attribute of
a site, while preference is an output from optimization. Intuitively,
the preference of a site should depend on its CI.

It can be seen from Fig. 4 that the geographical distribution of
dispensing sites in the case area shows an obvious imbalance: 11
of the 13H-DSs and nearly all high-CI OR-DSs are located in the
northern half of the county. Moreover, the locations of the H-DSs
are bunched up in big cities. This imbalance in geographical distri-
bution impacts the preference of each site. The results show that
high-CI OR-DSs in the northern part of the county indeed have high
preferences since they are usually located in big cities with H-DSs
nearby. However, for those low-CI OR-DSs, their preferences are
highly impacted by their geographical location. For example,
although sites No.239 and No.238 have CIs higher than that of site
No.244, it takes more than 20 min of driving between No.239 or
No.238 and their closest H-DS (No.106). So, sites No.239 and
No.238 are not selected in 3OR10DT, �15DT, and �20DT scenarios.



Table 2
Input and optimal results in baseline scenario.

nMAX dMAX(minutes) Scenario Name Total Number of Selected OR-DSs Total Coverage Index (TCI)

3 10 3OR10DT 27 40.8
15 3OR15DT 38 51.5
20 3OR20DT 39 55.4
25 3OR25DT 39 55.9
30 3OR30DT 39 55.9

Table 3
Selection of the 15 OR-DSs with smallest coverage index

Scenario
Site ID

3OR10DT 3OR15DT 3OR20DT 3OR25DT 3OR30DT ci
b

244 s s - - - 0.326
239 - - - - - 0.380
238 - - - - - 0.397
241 - s s - - 0.413
243 - s s - - 0.432
245 s s s - - 0.437
230 - - - s s 0.481
227 - s - s s 0.586
207 - s - s s 0.716
217 - s s s s 0.738
205 s s s s s 0.843
214 - s s s s 0.934
229 - s s s s 0.955
221 s s s s s 0.960
219 s s s s s 0.993

s indicates the node is selected.
- indicates the node is excluded.

b Sites are sorted in ascending order of the coverage index.
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If we increase dMAX to 25 or 30 so that No.106 can be connected
with No.239 and No.238, additional potential sites can be consid-
ered and some of them have a higher CI than No.239 and No.238.
Therefore, sites No.239 and No.238 are not selected into the opti-
mal design in any of the baseline scenarios.

Fig. 5 shows the area covered by the optimal hub-and-spoke
network in the baseline scenarios. The innermost covered areas
(k = 1) are filled with deep green color, while the outmost covered
areas (k = 3) are filled with light yellow-green. We highlight the
three main differences in the results by red dashed boxes (I), (II),
and (III). In 3OR10DT, the covered areas wrap tightly around the
H-DSs. Areas (I) and (II) are both underpopulated areas, but Area
(I) is not covered at all in 3OR10DT since there is no H-DS in this

area. When dMAX is increased from 10 min to 15 min, an obvious
expansion of the covered area can be observed in both Areas (II)
and (III), showing greener in these areas. More OR-DSs in these
two areas are involved in the vaccination plan. In 3OR20DT, a fur-
ther expansion can be seen in Area (III). At this point, the northern
half of the county is almost completely covered. Scenarios
3OR25DT and 3OR30DT have identical results. The case county
achieves its largest possible TCI under the limitation of 3 OR-DSs
per hub. Compared with 3OR20DT, No.245, No.244, and No.243
in Area (II) are now replaced by No.230, No.227, and No.207 in Area
(I). Unselected sites in the last two scenarios are the sites with the
smallest CI. In combination with the findings provided by Fig. 4, we

can conclude that a big enough dMAX can mitigate the negative
effect brought by the geographical imbalance of H-DSs.

(2) Sensitivity analysis on the maximum number of out-reach
dispensing sites per hub

The previous baseline scenarios allow up to 3 OR-DSs to be con-
nected to one H-DS (nMAX = 3). This section conducts a sensitivity
analysis on nMAX to investigate its impact on the vaccine distribu-
tion network. Fig. 6 compares the results of the baseline scenarios
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with additional 10 scenarios (nMAX = {4, 5}, dMAX = {10, 15, 20, 25,
30}). Compared with the baseline scenarios, allowing 4 OR-DSs
per H-DS can improve the TCI. However, when further increasing
nMAX from 4 to 5, the TCI stays the same. Scenarios 3OR15DT,
4OR15DT, and 5OR15DT have identical results since there are only
38 OR-DSs within the 15 min driving time limit and all of them
have been selected into the optimal vaccine distribution network

at dMAX = 15. A threshold of dMAX can also be observed in the scenar-

ios with a higher nMAX: once dMAX reaches 20 min, any further

increase in dMAX can no longer improve the TCI. At dMAX � 20, all
45 potential OR-DSs are selected into the optimal hub-and-spoke
network for vaccine distribution. In other words, when the hub-
and-spoke network configuration is implemented, ultra-cold vacci-
nes can be delivered to all local dispensing sites from the hubs
within its 30-min restriction under room temperature after open-
ing the vaccine container.

3.3. Insights and lessons learned

Using our analytical framework, we have demonstrated the pro-
cess of utilizing a geographical information system to determine
and improve the coverage index of each dispensing site. Further-
more, within this framework, we adopt a hub-and-spoke design
to support vaccination efforts, and apply it to the Phase 2 vaccina-
tion campaign in Middlesex County, NJ, the U.S. After evaluating 15
scenarios with varying constraints and parameters, we observe the
following key takeaways:

(1) There is a maximum threshold level for the distance limita-
tion which restricts the acceptable driving time from a H-DS
to its OR-DSs. While we can expand coverage by increasing
the distance limitation, once this threshold is met, any fur-
ther increases in the distance limitation would not result
in expanded coverage.



Fig. 4. Coverage index and preference of each OR-DS in the baseline scenarios.

Fig. 5. Area covered by the optimal hub-and-spoke network in the baseline scenarios.
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(2) Increasing the number of OR-DSs per H-DS will not always
lead to expanded coverage. To determine an upper bound
on the number of OR-DSs per H-DS, public health officials
and local government should assess the current state of
the pandemic in conjunction with demographic information
and guidance from the Federal Government.

(3) Our framework serves as a decision support tool, which can
aid state and local governments in designing vaccination
campaigns in the face of a public health crisis. While this
framework can be applied to many regions and countries
6134
to obtain generalizable insights, we observe that rural and
underpopulated areas are at risk of limited coverage under
the current assumptions of this framework. For example,
Fig. 7 shows the potential dispensing sites in New Jersey’s
Cape May County. Pharmacies in the highlighted area are
far from the county’s hub centers. In order to ensure fair
and equitable access to vaccines in such cases, public health
officials may need to consider alternative options, establish-
ing partnerships with neighboring counties or deploying
pop-up vaccine administration sites.



Fig. 6. Comparison of the total coverage index (TCI) in all scenarios.

Fig. 7. Locations of potential dispensing sites in the Cape May County in New Jersey.
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4. Conclusion

This paper focuses on expanding the COVID-19 vaccination cov-
erage against the backdrop of the phased vaccination campaign in
the U.S. In face of the challenges brought by ultra-cold storage
requirements, we propose a framework to design a regional hub-
and-spoke vaccine distribution network that can be generalized
to support different communities in a public health crisis by
enhancing the access to the vaccines. This network configuration
is expected to reduce vaccine waste without making infrastructure
investments by sharing inventory within each region. Furthermore,
we introduce an improved coverage index in the optimization
model to measure the priority of each dispensing site. This newly
proposed coverage index utilizes a geographical information sys-
tem to capture local characteristics and demographics. We demon-
strate our framework by evaluating 15 different scenarios based on
real data, which yields actionable strategies for the upcoming
Phase 2 vaccination campaign.

Additionally, our newly proposed framework can be further
generalized to support other countries deploying a vaccination
campaign in the face of a public health crisis. To accomplish this,
our work may be further expanded by considering site-specific
demands, flexible administration policies, and new opportunities
for secondary distribution such as using drones or smaller contain-
ers. Though our solution provides a way to improve vaccine access,
it must be noted that enhancing vaccine awareness and acceptance
are also essential for a successful vaccination program [40]. Further
actions such as funding support and media promotion should be
taken simultaneously to improve vaccine acceptance. Future
research is required on a case-by-case basis to evaluate individual
challenges faced by other regions or countries, and how to combine
the framework with other opportunities.
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