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Background: Family with sequence similarity 111 member A (FAM111A), as a replication
factor required for proliferating cell nuclear antigen (PCNA) loading, has been demonstrated
a possible association with carcinogenesis. However, the role of FAM111A in lower-grade
glioma (LGG) remains unclear. We aim at investigating the expression and function of
FAM111A in lower-grade glioma at the molecular and clinical levels.

Methods: In total, 711 lower-grade glioma samples were analyzed in our research,
including 182 RNA-seq data from the Chinese Glioma Genome Atlas (CGGA) dataset and
529 RNA-seq data from The cancer Genome Atlas (TCGA) dataset. R language and the
GraphPad software were used for the majority of statistical analysis and graphical work.

Results: FAM111A expression was overexpressed in WHO grade III and IDH-wildtype
lower-grade glioma. FAM111A was significantly downregulated in the IDHmut-Codel
molecular subtype. Univariate and multivariate Cox analysis demonstrated that FAM111A
was an independent prognostic factor in LGG patients. Functional characterization of
FAM111A revealed that it was associated with inflammatory response and immune
response to tumor cells. FAM111A could also act as an indicator of the stromal and
immune population, especially for monocytic lineage, myeloid dendritic cells and
fibroblasts. It was positively correlated with macrophages, especially the M2
macrophage cells. Furthermore, FAM111A revealed predictive value for the immune
subtypes and immune checkpoint blockade therapy.
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Conclusion: FAM111A expression was closely related to the malignant phenotype, molecular
pathology and immune response of lower-grade glioma. It might be a promising target for
LGG immunotherapeutic strategies.
Keywords: prognosis, tumor environment, immune response, lower grade glioma, immune checkpoint
INTRODUCTION

Gliomas, known for their heterogeneity and rapid clinical
progression (1), are the most common and malignant brain
tumor of the central nervous system in adults, which originates
from the glial cells (2). Gliomas are generally divided into four
grades (i.e., WHO grade I, II, III, and IV) based on the 2007
World Health Organization (WHO) classification of the central
nervous system tumors (3). The term ‘diffuse lower-grade
glioma’ (LGGs) refers to Grade II and III gliomas. In contrast
to Grade IV gliomas-glioblastomas, LGGs tend to indicate a
more favorable prognosis. However, majorities of LGGs advance
to high-grade secondary aggressive gliomas and finally end with
death (4, 5). Despite the advancements in surgical resection,
adjuvant radiotherapy and chemotherapy, their prognosis is
still poor.

The tumor microenvironment (TME), which is comprised of
extracellular matrix, fibroblasts, vascular cells, neurons and
immune cell, functions as a fundamental regulator of cancer
occurrence, progression and invasion in primary and metastatic
brain malignancies (6). Among infiltrating immune cells,
macrophages and microglia account for the vast majority in
gliomas (7, 8). Tumor-associated macrophages (TAMs), which
frequently exhibit an M2 phenotype, have crucial bidirectional
cross-talk with cancer cells. Brain tumor cells recruit TAMs by
releasing cytokines and chemoattractant, and in turn TAM-
derived pro-tumorigenic and pro-survival factors IL6, TNF, IL-
1b, and IL-23 support tumor angiogenesis and invasion (6, 9). In
addition, other lymphoid and myeloid lineage cells are found in
TME and become a part of brain tumor biology in unique ways
(6).To data, we still poorly understand the biology and function
of these infiltrating immune cells in TME. As a new therapeutic
strategy, TME targeted therapy has become a research hotspot.
For cancer immunotherapy targeting TME, several approaches
are ongoing in preclinical and clinical studies as an alternative
and integrated strategy for the treatment of gliomas, either
through monotherapy or via rational combinations. Of them,
CSF-1R inhibitor, dendritic cell vaccine, anti-CTLA-4, and anti-
PD-1 are gaining vital clinical attention for treatment to
reactivate adaptive and innate immune systems (10–12). TME
is primarily decided by the tumor genomic landscape. Therefore,
further studies are needed to analyze the key immune-related
genes and the interactions between immune cells and gliomas,
which will contribute to deep discovery of underlying molecular
mechanisms and novel strategies to improve efficacy
of immunotherapies.

Family with sequence similarity 111 member A (FAM111A),
also known as KCS2 and GCLEB, is a cell-cycle regulating and
chromatin-associated protein-coding gene. Reduced gene
in.org 2
expression of FAM111A leads to DNA replication defect, that
applies to the replication of the Simian Virus 40 (SV40),
indicating that it has antiviral properties (13). It contains a
PCNA-interacting peptide (PIP) box and the carboxyl-terminal
half, which are homologous to trypsin-like peptidases, and may
interact with proliferating cell nuclear antigen (PCNA) (14).
PCNA is overexpressed on the surface of cancer cells, and act as
an immune checkpoint for NK-cell (15). The close relationship
between FAM111A and PCNA in non-cancerous diseases
suggests its potential function in immune responses.
Additionally, several lines of evidence revealed correlations
between FAM111A and tumorigenesis in prostate cancer and
cervical cancer (16, 17). However, the detail of FAM111A
expression and its role in glioma are still unknown.

In this research, we assessed the expression patterns of
FAM111A to determine its potential functions and prognostic
values in LGG based on data from the Chinese Gliomas Genome
Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets.
To our best knowledge, this is the first comprehensive study
exploring the role of FAM111A in LGG on a large-scale analysis.
In particular, we found that FAM111A took part in various
functional aspects of the immune system and may play as a new
potential bio-target for immune therapy.
MATERIALS AND METHODS

Patients and Data Collection
We downloaded 529 RNA-Seq gene expression profiles and
clinical data of LGG patient samples from TCGA (http://
cancergenome.nih.gov) databases. The molecular classification
(the IDH and 1p/19q-based molecular subtypes) were obtained
in the Merged Cohort of LGG and GBM (TCGA, Cell) from the
cBioPortal for Cancer Genomics (http://cbioportal.org) (18, 19).
We obtained the mRNA expression and clinical data of 182 LGG
patient samples at the mRNAseq_325 Dataset from CGGA
(http://www.cgga.org.cn/) databases (20, 21). To further
identify the protein expression of FAM111A in LGG, a total of
8 LGG samples (4 each for grade II and grade III) were selected
from the Department of Neurosurgery at Provincial Hospital.
The research was approved by Shandong University Ethics
Committee. We also got the tissue chips G6042-5 from Wuhan
Servicebio Technology Co. Ltd, which included 2 WHO grade I,
16 WHO grade II, and 14 WHO grade III glioma patients
samples (Supplementary Table 1).

ONCOMINE Analysis
ONCOMINE gene expression array datasets (www.oncomine.
org), an online cancer microarray database, was used to analyze
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the mRNA expression levels of FAM111A in different cancer
types and glioma tissues. The cut-off of p value and fold change
were defined as 0.01 and 1.5, respectively. It includes Sun Brain,
French Brain, and Bredel Brain in glioma datasets.

Immune Cell Infiltration Analysis
The ESTIMATE and MCP analysis was used to evaluate the
relationship between FAM111A expression and tumor purity as
well as the presence of infiltrating stromal/immune cells.
CIBERSORT was utilized to evaluate the Macrophage and the
Macrophage M2 proportion at the ‘Immune estimation’ part of
the online website ‘TIMER 2.0’ (22, 23). CIBERSORT is an
analytical tool developed by Newman et al., which provides an
estimation of the population abundances of tissue-infiltrating cell
types using gene expression data.

Immunohistochemistry (IHC)
Paraffin-embedded lower-grade glioma tissue blocks were cut into 4
mm sections and then analyzed by immunohistochemistry (IHC).
The staining intensity was classified as four grades: 0 (negative), 1
(weak), 2 (moderate) and 3 (strong). FAM111A protein expression
(semi-quantitative scoring by using H-score system): H-score =
(percentage of cells with weak intensity staining ×1) + (percentage
of cells with moderate intensity staining ×2) + (percentage of cells
with strong intensity staining ×3). The scoring was automatically
measured by Quant Center software and the H-score ranges from 0
to 300. The scores of duplicate specimens were averaged. CD163,
CD206, CD276, TIM-3 protein expression was analyzed by using
the Indica Labs-Multiplex IHC v2.2.0 analysis software to quantify
the number of positive cells and the total number of cells in the
target area of each slice to determine the positive rate. IHC:
FAM111A (1:20); CD163 (1:500); CD206 (1:1,000); CD276
(1:100); TIM-3 (1:100) Zen Bioscience, China.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated from the tissue samples using Trizol
reagent (Invitrogen, USA). QRT-PCR was performed using a
Real-Time PCR System (Bio-rad, USA) with a SYBR Green PCR
kit (TransGen biotech, China) following the manufacturer’s
instructions. Comparative quantification was evaluated through
the 2−DCt method and GAPDH was as the endogenous control.
The primer sequences were as follows:

FAM111A, 5 ’-CTTCACAAAAAGGGGCGCAA -3 ’
(forward) and 5’ ATCAACTGGCTGGGTGCTTT-3’ (reverse);

JAK2, 5’-TCTGGTGCCTTTGAAGACCG -3’ (forward) and
5’- GCACATCTCCACACTCCCAA-3’ (reverse);

STAT3, 5’- ACGAAGGGTACATCATGGGC-3’ (forward)
and 5’- CTGGATCTGGGTCTTACCGC-3’ (reverse);

NFKB1, 5’-ATGTGGGACCAGCAAAGGTT -3’ (forward)
and 5’- CACCATGTCCTTGGGTCCAG-3’ (reverse).

Statistical Analysis
The statistical software R (version 3.6.3), IBM SPSS Statistics 25
(version 25.0.0.1), GraphPad Prism 8 software (version 8.3.0),
Adobe Illustrator CC 2018 (version 22.0.0) were used for the
statistical analysis and generation of figures. The value of
Frontiers in Oncology | www.frontiersin.org 3
FAM111A expression level above the median value (7.5 for
CGGA, 2.6 for TCGA) were defined as high-expression group
and the value of FAM111A expression level below the median
was defined as the low-expression group. The GSEA molecular
signatures dataset (MSigDB) hallmark gene sets were used to
perform pathway analysis (24). The enrichment status estimates
of inflammatory response-associated metagenes were obtained
using the GSVA package. Correlograms and circus plots were
performed using the “circlize” package, and the R packages
“ImmuneSubtypeClassifier” was used to identify six immune
subtypes, which describe a categorization of tumor-immune
status. Other R packages, “ggplot2”, “plotROC”, and “xgboost”
were also applied for visualizing the results of data analysis. All
statistical tests were two-sided and p < 0.05 was considered a
significant difference.
RESULTS

The mRNA Expression of FAM111A in
LGGs
Based on the data fromOncomine databases, the mRNA expression
of FAM111A in LGGs were significantly higher in comparison with
that in normal brain tissues (Supplementary Figures 1A–G). To
characterize the expression pattern of FAM111A in LGGs, we
investigated the RNA-Sequencing data based on WHO glioma
grades from the CGGA and TCGA datasets. Compared to WHO
grade II gliomas in the CGGA dataset, WHO grade III gliomas
showed a higher mRNA expression of FAM111A (Figure 1A).
Consistent results were validated using the TCGA RNA-seq data
(Figure 1B). Taken together, these results suggest that FAM111A
was significantly up-regulated in WHO grade III gliomas. Several
reports have shown that isocitrate dehydrogenase (IDH) mutation
plays a crucial role in the development and progression of
glioma (25, 26). We found that FAM111A was indeed highly
elevated in IDH wild-type gliomas in both of the CGGA and
TCGA data sets (Figures 1C, D). What’ more, we performed
the immunohistochemistry (IHC) to explore the relation between
tumor grade, and FAM111A protein expression. The results showed
that the FAM111A protein expression was higher in high-grade
gliomas (Figures 2A, B).

FAM111A Is a Potential Marker for the
IDHMut-Codel Molecular Subtype in LGGs
According to the phenotypes and genotypes (27, 28), based on
mutation of the IDH1 and IDH2 genes and codeletion of
chromosomes 1p and 19q, lower-grade gliomas can be
classified as three molecular subtypes: IDH wild type (IDHwt),
IDH mutant with 1p/19q codeletion (IDHmut-Codel) or IDH
mutant with no 1p/19q codeletion (IDHmut-Noncodel) (29). To
seek the molecular expression pattern of FAM111A, we
evaluated the expression of FAM111A in the three molecular
subtypes of LGGs. Based on the CGGA and TCGA RNA-seq
data, FAM111A was significantly downregulated in the IDHmut-
Codel molecular subtype compared to the other molecular
October 2020 | Volume 10 | Article 573800
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subtypes (Figures 3A, B). To further confirm the findings above,
ROC curves for FAM111A expression and IDHmut-Codel
molecular subtype of LGGs were performed. The results
showed that area under the curve (AUC) were 78.70% and
77.84% in CGGA and TCGA data set, respectively, indicating
that FAM111A is a potential marker for the IDHMut-codel
molecular subtype in LGGs (Figures 3C, D).
Frontiers in Oncology | www.frontiersin.org 4
High Level of FAM111A Predicted Worse
Survival in LGGs
To determine the prognostic value of FAM111A, the survival
time of all the 697 LGG patients from the CGGA and TCGA
RNA-seq was analyzed by Kaplan-Meier method. As shown in
Figure 3, high expression of FAM111A predicted a remarkably
shorter overall survival (OS) both in CGGA (Figures 4A–C) and
A B

DC

FIGURE 1 | The mRNA expression of FAM111A in lower-grade glioma. (A, B) FAM111A was significantly increased in WHO grade III gliomas in Chinese Glioma
Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) dataset. (C, D) FAM111A was significantly increased in isocitrate dehydrogenase (IDH)-wildtype
lower-grade glioma (LGG) in CGGA and TCGA dataset. *P < 0.05, **P< 0.01, ***P < 0.001, ****P < 0.0001.
A B

FIGURE 2 | The protein expression of FAM111A in lower-grade glioma (IHC). (A) upper, × 20; lower, × 40. (B) The staining of FAM111A was scored based on the
H-score system. FAM111A protein expression was higher in high-grade lower-grade glioma (LGG). *P < 0.05, **P< 0.01, ***P < 0.001.
October 2020 | Volume 10 | Article 573800
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in TCGA datasets (Figures 4D–F) in LGGs, which included
WHO grade II and WHO grade III gliomas. Then, we used
univariate and multivariate Cox regression to determine whether
FAM111A expression acted as an independent prognostic factor
(Table 1). Interestingly, in univariate analysis of the two
databases, FAM111A along with age, grade, and IDH status
remarkably predicted the OS in LGG. In multivariate regression,
it also revealed that the expression of FAM111A was an
independent prognosticator after adjusting for all the clinical
factors in the table. These findings evidently suggested that
FAM111A predicted poor prognosis in LGGs.

FAM111A Was Closely Associated With
Immune Functions in LGGs
Due to the vital role of FAM111A in LGG progression and
prognosis, we aim to explore the function of FAM111A in both
of the CGGA and TCGA databases. The specifically enriched
Frontiers in Oncology | www.frontiersin.org 5
signaling pathway in FAM111A-high expression samples could
be substitutable targets for FAM111A. Based on the FAM111A
median expression, samples were divided into two groups. We
subsequently performed gene set enrichment analysis (GSEA)
using the MSigDB hallmark gene sets to obtain significantly
different expressing genes between these two groups (24).
Immune response-related gene sets were highly positively
enriched when FAM111A-high expression with FAM111A-low
expression samples were compared (Figures 5A, B;
Supplementary Figures 2A, B). Among the top five
significantly enriched hallmark gene sets, both datasets
contained “Hallmark interferon gamma response”. We then
used the real time qRT-PCR to detect the mRNA expression of
3 “Hallmark interferon gamma response” related genes (JAK2,
STAT3 and NFKB1) from 8 LGG tissue samples, and divided
them into the high expression group and the low expression
group according to the FAM111A mRNA expression. Results
A B

DC

FIGURE 3 | FAM111A expression pattern in different molecular subtypes. (A, B) FAM111A was significantly downregulated in the IDHmut-Codel molecular subtype
in CGGA and TCGA dataset. (C, D) The predictive value of FAM111A expression in Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA)
dataset by ROC curve analysis. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
October 2020 | Volume 10 | Article 573800
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showed that the mRNA expression of JAK2 and STAT3 were
significantly enriched in the high expression group
(Supplementary Figures 3A–C).

To further identify the role of FAM111A in immune response
in LGGs, we downloaded immune-associated gene sets from the
AmiGO 2 Web portal (http://amigo.geneontology.org/amigo).
Genes most relevant to FAM111A (|R| > 0.4 and p < 0.05) were
Frontiers in Oncology | www.frontiersin.org 6
selected for heat-map drawing. Among the 369 selected genes in
the CGGA datasets, 343 immune-related genes were significantly
positively correlated with FAM111A expression. On the other
hand, a significantly positive correlation also existed between
FAM111A expression and 399 genes out of the 429 genes
selected in the TCGA datasets (Figures 5C, D). A detailed list
of these genes was presented in Supplementary Table S2, 3.
A B

D E F

C

FIGURE 4 | Kaplan-Meier survival curves comparing the high and low expressions of FAM111A in lower-grade glioma. High expression of FAM111A predicted
worse outcome in lower-grade glioma patients (A, D), WHO grade II (B, E), and WHO grade III (C, F) gliomas patients in Chinese Glioma Genome Atlas (CGGA) and
The Cancer Genome Atlas (TCGA) dataset.
TABLE 1 | Univariate and multivariate Cox analysis of clinic-pathologic characteristics in lower-grade gliomas based on Chinese Glioma Genome Atlas (CGGA) and The
Cancer Genome Atlas (TCGA) datasets.

Datasets Characteristic HR 95%CI P HR 95%CI P

CGGA Univariate Multivariate
Age 3.187 1.632-6.224 0.001 Age 1.375 0.675-2.800 0.381
Gender 0.612 0.404-0.928 0.021 Gender 0.627 0.408-0.965 0.034
Grade 3.745 2.435-5.759 0.000 Grade 2.706 1.729-4.234 0.000
IDH-Mut 0.385 0.247-0.600 0.000 IDH-Mut 0.675 0.420-1.087 0.106
FAM111A 5.468 3.383-8.836 0.000 FAM111A 4.211 2.547-6.961 0.000

TCGA Univariate Multivariate
Age 4.848 3.205-7.334 0.000 Age 3.513 2.014-4.937 0.000
Gender 1.144 0.814-1.606 0.438 Gender 1.236 0.851-1.794 0.266
Grade 3.296 2.277-4.771 0.000 Grade 2.159 1.431-3.256 0.000
IDH-Mut 0.182 0.126-0.261 0.000 IDH-Mut 0.323 0.210-0.495 0.000
FAM111A 2.946 2.045-4.243 0.000 FAM111A 1.823 1.204-2.760 0.005
October 2020 |
 Volume 10 | Article 5
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Overall, these results indicated that FAM111A might be closely
associated with immune responses in LGGs.

FAM111A-Related Inflammatory Activities
Inflammation not only exerts cancer-promoting effects, but also
plays an important role in the host immune response to tumors
as well as cancer immunotherapy (30). To determine which types
of inflammatory activities were related to FAM111A, we
altogether chose seven metagenes of 104 genes (31), which
Frontiers in Oncology | www.frontiersin.org 7
were related to different types of inflammation and immune
responses (Supplementary Table S4). Gene Sets Variation
Analysis (GSVA) were subsequently performed to convert the
expression data of these metagenes into enrichment scores. The
results, as shown in Figure 5, indicated that FAM111A was
positively associated with HCK, LCK, MHC‐I, MHC II, and
STAT1, but negatively correlated with IgG, which mainly refers
to the activities of B-lymphocytes both in the CGGA and TCGA
datasets (Figures 6A, B, Supplementary Figure 3D, F).
A B

DC

FIGURE 5 | FAM111A was closely associated with immune functions in lower-grade glioma. (A, B) Enrichment plots of the top five enriched signaling pathways in
FAM111A-high expression phenotype from gene set enrichment analysis (GSEA). (C, D) Most immune response related genes were significantly positively correlated
with FAM111A expression, while a few genes were negatively correlated with FAM111A expression in Chinese Glioma Genome Atlas (CGGA) and The Cancer
Genome Atlas (TCGA) dataset.
October 2020 | Volume 10 | Article 573800
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Association of FAM111A and Immune Cell
Populations in the TME
The MCP counter and ESTIMATE methods were used to
investigate the relationship between FAM111A expression and
immune cell infiltration. Both methods indicated that FAM111A
was strongly related to the immune score and immune infiltrating
cell population, especially for CD8 T cells, monocytic lineage,
myeloid dendritic cells, and fibroblasts (Figures 7A, B).

It is acknowledged that M2 macrophages plays a vital role in
the immunosuppression, tumor progression and metastasis of
gliomas (32). Therefore, we aimed to explore whether expression
of FAM111A was associated with the macrophages, especially the
M2 macrophages in the TME. Consistent with our hypothesis,
positive correlations was seen between CD68 and FAM111A
(Figures 7C, D), as well as between CD163 and FAM111A
(Figures 7E, F), a marker of macrophage and M2 macrophage
respectively. The results of CIBERSORT were also in accordance
with the above-mentioned findings (Figures 7G–J). Moreover,
we performed IHC staining of M2 macrophage markers
including CD163 and CD206 in LGG tissues, and results
showed that the protein expression of these markers was
higher in high FAM111A expression LGG samples
(Supplementary Figure 4A).

Although FAM111A expression was associated with the M2
macrophages, some samples with high expression of FAM111A
had low levels of M2 macrophage infiltrations. Therefore, we
took a step further to investigate the survival of patients with
high or low infiltration of M2 macrophages stratified by
Frontiers in Oncology | www.frontiersin.org 8
FAM111A expression (Figures 7K, L). Interestingly, patients
with the best survival had low-expression of FAM111A together
with low infiltration of M2 macrophages, whereas patients with
high-expression of FAM111A as well as elevated level of M2
macrophages infiltration had the worst survival. These results
suggested that the combined analysis of FAM111A and levels of
M2 macrophages infiltration could yield different subtypes of
LGGs; specifically, high levels of M2 macrophages infiltration in
the absence of FAM111A expression might herald improved
survival in LGG patients.

FAM111A Expression in Different Immune
Subtypes
Recently Thorsson et al. identified six immune subtypes that
define distinct immune response patterns influencing prognosis
based on immunogenomics analyses of over 10,000 tumors (33).
To examine the relationship between FAM111A expression and
the six immune subtypes, ImmuneSubtypeClassifier was used.
The results showed that LGGs consisted most of C4
(Immunologically Quiet) and C5 (Lymphocyte Depleted)
subtypes (Supplementary Figure 5A, B), which was in line
with Thorsson’s findings. FAM111A was significantly
overexpressed in C4 (Figures 8A, B) that had the worse
prognosis than C5 in both datasets (Supplementary Figure
5C, D). Results of ROC curve analysis also showed that the
AUC was 84.01% and 75.11% in the CGGA and TCGA RNA-seq
datasets, respectively (Supplementary Figure 5E, F). To explore
the significance of FAM111A expression in different immune
A B

FIGURE 6 | FAM111A-related inflammatory activities in lower-grade glioma. (A) The heatmap of the relationship between FAM111A and seven inflammatory
metagenes in Chinese Glioma Genome Atlas (CGGA) dataset. (B) Correlogram showed the correlation between FAM111A and seven inflammatory metagenes in
CGGA dataset.
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A B

D E F
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K L

C

FIGURE 7 | FAM111A-related immune population in the TME. (A, B) FAM111A was positively related to the immune scores and immune infiltrating cell population in
Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) dataset. FAM111A was significantly correlated with CD68 (C, D) and CD163 (E, F) in
both datasets. Abundance of macrophage and M2 macrophage immune cell infiltration was quantified based on mRNA expression data with TIMER and
CIBERSORT. Results showed significant correlations between FAM111A expression and macrophage cells (G, H) as well as the M2 macrophage cells (I, J). Survival
was stratified by a combined analysis of FAM111A expression and M2 macrophage infiltration level in CGGA and TCGA cohort. Survival based on high/low
FAM111A expression and high/low infiltration levels of M2 macrophage in CGGA (K) and TCGA (L) dataset.
Frontiers in Oncology | www.frontiersin.org October 2020 | Volume 10 | Article 5738009
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FIGURE 8 | FAM111A expression in the immune subtypes. (A, B) FAM111A expression was significantly overexpressed in the C4 subtype in Chinese Glioma
Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) dataset. (C, D) C4 or C5 stratified by FAM111A expression exhibited distinct expression patterns of
immunoregulatory genes and compositions of immune cells. Average z-score of each immune-regulatory gene and immune cell was obtained. (E, F) Kaplan–Meier
survival curves of OS among four patient groups stratified by the FAM111A expression and the immune subtype. C4: the Immunologically Quiet subtype, C5: the
Lymphocyte Depleted subtype. *P < 0.05, **P< 0.01, ***P < 0.001, ****P < 0.0001.
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subtypes, we further compared the immune-regulatory gene
expression profiles and immune-cell compositions of C4 or C5
stratified by FAM111A expression (34). Results showed that the
four groups had a distinct immune pattern, especially for C4 with
high FAM111A expression and C5 with low FAM111A
expression (Figures 8C, D). A detailed list of immune-
regulatory genes was presented in Supplementary Table S5.
Moreover, in comparison to C4 with low-expression FAM111A,
C4 with high-expression of FAM111A had worse prognosis.
Consistently, C5 with high-expression of FAM111A predicted
worse survival compared to C5 with low levels of FAM111A in
LGGs (Figures 8E, F). These findings suggested that differential
expression of FAM111A might define distinct response patterns
and further subdivide the immune subtypes.
Relationships Between FAM111A
Expression and Immune Checkpoints
Immune checkpoints play a crucia l role in tumor
immunosuppression. Therefore, we analyzed the relationship
between expression of FAM111A and the immune checkpoint-
related genes by Pearson correlation analysis in LGGs,
including CD274 (PD‐L1), PD-L2 (PDCD1LG2), HAVCR2
(TIM‐3), LAG3 and B7-H3 (CD276). Results showed that
FAM111A was mostly relevant to PD-L2, B7-H3, and TIM-3
in CGGA and TCGA datasets (Figures 9A, B). The results of
IHC also revealed that B7-H3 and TIM-3 were highly expressed
in high FAM111A-expression LGG samples compared with the
negative ones (Supplementary Figure 4B), evidently
suggesting possible synergistic effects of FAM11A with these
checkpoint genes.
Frontiers in Oncology | www.frontiersin.org 11
DISCUSSION

Glioma is a severe malignant brain tumor that affects human
health severely. WHO grades II and III gliomas are categorized as
LGGs that naturally undergo anaplastic conversion or
dedifferentiation into glioblastoma on average of about 4–5
years following diagnosis. Despite aggressive treatment
including surgery, radiotherapy, chemotherapy and targeted
agents, glioma still has a dismal prognosis. (35). Tumor
immunotherapies targeting TME, as a novel treatment strategy
for glioma patients has shown a promising prospect. However,
by increasing the activity of immune system, immune checkpoint
blockade could cause immune-related adverse events, such as
inflammation involved in the central nervous system (36). Thus,
it is critical to explore the new key immune-related genes in
order to achieve a comprehensive understanding of the tumor
immune landscape , fur ther improv ing e fficacy of
immunotherapies of gliomas.

Recent studies demonstrated that FAM111A played an
inhibitory role in viral DNA replication and might have the
anti-viral effects (37), which suggested its potential function in
immune responses. Based on data from the Oncomine database,
FAM111A expression was remarkably upregulated in LGGs.
When applied to the TCGA and CGGA RNA-seq datasets,
FAM111A exhibited a significant association with glioma
grades and IDH mutation status. The FAM111A protein
expression was also higher in high-grade gliomas and IDH
wild-type gliomas. We also found that FAM111A was
significantly downregulated in the IDHmut-Codel molecular
subtype, indicating that FAM111A was associated with higher
malignant biologic processes. Additional, survival analysis was
A B

FIGURE 9 | Relationships between FAM111A expression and immune checkpoint markers. Correlation between FAM111A and immune checkpoints (PD-L1, PD-
L2, TIM-3, LAG3, B7-H3) was analyzed by Pearson Correlation Coefficient and visualized using circus plots in Chinese Glioma Genome Atlas (CGGA) (A) and The
Chinese Genome Atlas (TCGA) (B) dataset.
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consistent with this finding. Furthermore, after adjusting for
traditional clinical factors, FAM111A remained an independent
prognostic factor.

In order to elucidate the biological functions of FAM111A in
LGG, we performed GSEA analysis using the MSigDB hallmark
gene sets. The immune response-related gene signatures, including
“Hallmark interferon gamma response” were among the top
positively enriched pathways in the FAM111A high-expression
group. Interferon gamma (IFN-g), a pleiotropic cytokine regarded
as an important effector molecule of anti-tumor immunity, has
been involved in promoting immunosuppressive TME through
inducing immunosuppressive gene expression signature in cancer
cells (PD-L1, PD-L2, CTLA-4, etc.) (38). IL-6/JAK/STAT3 and
TGF-b signaling also participated in cancer inflammation and
immunity (39). Furthermore, to determine the immune response
that FAM111A was involved in, we explored the relationship
between FAM111A and seven immune-related clusters. We found
that FAM111A was positively correlated with T-cell and
macrophages mediated immune responses, but negatively
correlated with the B lymphocytes-related response.
Characterization of immune subpopulation infiltration by MCP
and ESTIMATE analysis indicated that FAM111A was
significantly related to monocytic lineage, CD8 T cells, myeloid
dendritic cells and fibroblasts. To make a step further, we carried
out CIBERSORT analysis, and detected a positive relationship
between FAM111A and M2 macrophages. Taken together, it is
most likely that FAM111A played a critical role in the tumor
immunity and may act as an immune suppressor in LGGs.

Six immune subtypes, from C1 to C6, characterize the gross
immune response patterns of several heterogeneous tumors.
LGG mainly consists of C4 (Lymphocyte Depleted) and C5
(Immunologically Quiet) subtypes. C5 exhibits fewer tumor-
associated immune cells and better outcome, with the enriched
CpG island methylator phenotype-high (CIMP-H), the 1p/19q
codeletion and pilocytic astrocytoma-like (PA-like) as well as the
IDH mutations. Nevertheless, the C4 subtype displays a more
prominent macrophage signature, with low lymphocytic
infiltrate and high M2 macrophage, which leads to an
immunosuppressed TME and a poor outcome. Our results
showed that FAM111A was overexpressed in the C4 subtype
and roughly in accord with immune characteristics of the C4
subtype, which revealed that FAM111A possibly referred to a
negative microenvironment. Moreover, conjoint analysis of
FAM111A expression may identify a more detailed
immunophenotype in LGGs. Interestingly, the C4 with high-
expression FAM111A expression group was also related to the
MHCs and immunostimulators, which might indicate the
activation of the interferon gamma response pathway and a
more complex relationship between FAM111A and tumor
immunity in LGGs.

Immunomodulatory therapies targeting immune checkpoint
molecules have revolutionized the treatment of solid tumor
malignancies (40, 41). Due to the significance of ICB therapy, we
evaluated the correlations between FAM111A and inhibitory
checkpoint molecules. The results showed that FAM111A was
tightly associated with PD-L2, TIM-3, and B7-H3, which was also
Frontiers in Oncology | www.frontiersin.org 12
confirmed by IHC. These results, taken together with previous
observations, suggested that FAM111A was closely linked to an
immunosuppressive phenotype and maybe a potential predictive
marker for ICB response.

In conclusion, as far as we know, this is the first study to
investigate the gene expression, clinical characteristics and biological
functions of FAM111A on large-scale samples of LGGs. FAM111A
revealed a significant association with immune response and an
immunosuppressive tumor microenvironment in LGGs. These
novel findings would provide a new perspective for cancer
immunotherapy, enabling more precise and personalized glioma
chemotherapeutic intervention in the future.
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