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Purpose: The present study aims to investigate the role of ELF3-AS1 in oral squamous cell

carcinoma (OSCC).

Patients and methods: A total of 112 patients with OSCC were admitted in Guangdong

Provincial Stomatological Hospital from March 2016 to March 2019. RT-qPCR, cells and

transient transfections, cell proliferation rate measurements and Western blots were carried

out to analyze the samples.

Results: In the present study, we showed that ELF3-AS1 and glucose transporter 1 (GLUT1)

were both upregulated in OSCC tissues, and those two factors were positively correlated. In

OSCC cells, ELF3-AS1 overexpression resulted in upregulation, while ELF3-AS1 siRNA

silencing caused downregulated expression of GLUT1 and glucose uptake. ELF3-AS1 and

GLUT1 overexpression resulted in increased rate of OSCC cells, while ELF3-AS1 and GLUT1

siRNA silencing resulted in decreased proliferation rate of OSCC cells. In addition, GLUT1

siRNA silencing attenuated the effects of ELF3-AS1 overexpression.

Conclusion: Therefore, ELF3-AS1 promotes the proliferation of OSCC cells by reprogram-

ming glucose metabolism.
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Introduction
Malignances developed from head and neck account for about 5% of all malig-

nancies, and more than 90% of all head and neck cancer cases are oral squamous

cell carcinoma (OSCC).1 OSCC in most cases is diagnosed at advanced stages due

to the following reasons: 1) OSCC lack obvious symptoms at early stages2 and 2)

with cancer development, OSCC will show similar symptoms to other oral lesions,

such as denture-related traumatic ulcer.3 OSCC at late stages lack effective ther-

apeutic approaches, and prognosis is generally poor.4,5 In spite of efforts made on

OSCC treatment, the overall 5-year survival rate of OSCC is still below 50%.5

Therefore, novel therapeutic approaches are always needed.

Although the tumorigenesis of OSCC is closely associated with many risk

factors, such as smoking, alcohol abuse, areca consumption and HPV infection,6

genetic alterations are considered as the major players in new aspects of the

tumorigenesis and progression of OSCC.7,8 In spite of the lack of protein-coding

capacity, long (>200 nt) noncoding RNAs participate in diverse biological pro-

cesses through its roles in gene expression regulation.9 Altered expression of
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lncRNAs is frequently observed during cancer develop-

ment, and regulation of certain key lncRNAs may affect

cancer development by directly regulating the expression

of oncogenes or tumor suppressors.10,11 A considerable

number of differentially expressed lncRNA has been iden-

tified in OSCC.12 Most of the differentially expressed

lncRNAs are more tissue-specific than protein-coding

genes and interact with cancer-related pathways to pro-

mote or suppress the progression of OSCC.13 In a recent

study, Guo et al reported a novel lncRNA named ELF3-

AS1 as an oncogene in bladder cancer.14 This lncRNA

attracted our attention because preliminary microarray

data also showed its upregulation in OSCC and its positive

correlation with glucose transporter 1 (GLUT1), which is a

key player in glucose metabolism.15 The present study was

therefore carried out to investigate the role of ELF3-AS1

in OSCC.

Materials and methods
Research patients
A total of 112 patients with OSCC were admitted in

Guangdong Provincial Stomatological Hospital from

March 2016 to March 2019. This study selected 60 out of

those 112 patients. Inclusion criteria are as follows: 1)

newly diagnosed cases; 2) confirmed by histopathological

examinations; 3) no therapies were initiated before this

study. Exclusion criteria are as follows: 1) any therapies

were performed within 100 days before this study; 2) any

other obvious clinical disorders were observed. The 60

OSCC patients included 11, 21, 18 and 10 cases at

American Joint Committee on Cancer stages I–IV,16 respec-

tively. According to tumor location, there were 18 cases of

upper location, 24 cases of middle location and 18 cases of

lower location. According to tumor grade, there were 19, 24

and 17 cases at grades I, II and IV, respectively. All patients

were informed with the details of experimental designed

and this study was approved by the aforementioned hospital

committee before the admission of patients.

All patients were diagnosed through histopathological

biopsy. During biopsy, OSCC (cancer) tissues and noncancer

tissues within 3 cm around tumors were obtained from each

patient. All tissues were confirmed by at least 3 experienced

pathologists. Weight of biopsies ranged from 0.06 to 0.11 g.

Cells and transient transfections
This study included two OSCC cell lines, SCC090 and

SCC25 (ATCC, USA). Cell culture medium was Eagle’s

Minimum Essential Medium (ATCC® 30–2003™, USA)

containing 10% fetal bovine serum (FBS, Sigma-Aldrich,

USA), 100 U/mL penicillin and 100 μg/mL streptomycin.

Cells were cultivated under conditions of 5% CO2 and

37°C. Cell subculture was performed by 0.05% trypsin

digestion followed by cell suspension preparation. ELF3-

AS1 (Accession: NR_146472.1) and GLUT1 (Accession:

KR711970.1) expression vector were constructed using

pcDNA3 vector by Sangon (Shanghai, China). ELF3-

AS1 (5ʹ- GCCUCUUUGUGGCUGAAUCUC-3ʹ) and GL

UT1 siRNA (5ʹ-GCUCAGCAGCGUGGGCCACAG-3ʹ)

as well as negative control siRNA (5ʹ-UCUCUGAUU

GUAACUGGGAUA-3ʹ) were designed and synthesized

by GenePharma (Shanghai, China). SCC090 and SCC25

were collected for transient transfections when cell con-

fluence reached 70–90%. Lipofectamine 2000 (Invitrogen,

CA, USA) was used to transfect 10 nM ELF3-AS1 or

GLUT1 expression vector, or 10 nM empty pcDNA3

vector (negative control, NC), or 40 nM ELF3-AS1 or

GLUT1 siRNA, or 40 nM negative control siRNA (nega-

tive control, NC) into 105 cells. Control group (C) of this

study included cells with no transfections. Subsequent

experiments were performed using cells harvested at 24

hrs after transfections.

RT-qPCR
Ribozol reagent (VWR Life Science, USA) was mixed

with 105 cells or 0.03 g tissue (ground in liquid nitrogen

before use) to perform total RNA extractions. Following

DNase I digestion, AMV Reverse Transcriptase XL

(Clontech, USA) and Luna® Universal One-Step RT-

qPCR Kit (NEB, USA) were used to perform reverse

transcriptions and prepare qPCR reaction mixtures. With

18S rRNA or GAPDH as endogenous control, expressions

of ELF3-AS1 and GLUT1 mRNA were detected and

expression levels were normalized based on g2−ΔΔCT

method. Primer sequences were as follows: 5ʹ-TGAAGT

CATCACGAACCGC-3ʹ (forward) and 5ʹ-GGAGCCCCA

AGTTAATGCG-3ʹ (reverse) for ELF3-AS1; 5ʹ-AGGTGA

TCGAGGAGTTCTA-3ʹ (forward) and 5ʹ-TCAAAGGAC

TTGCCCAGTTT-3ʹ (reverse) for GLUT1; 5ʹ-CCAGG

GCTGCTTTTAACTCT-3ʹ (forward) and 5ʹ-GGACTC

CACGACGTACTCA-3ʹ (reverse) for GAPDH; 5ʹ-CTA

CCACATCCAAGGAAGCA-3ʹ (forward) and 5ʹ-TTTTTC

GTCACTACCTCCCCG-3ʹ (reverse) for human 18S

rRNA. Three replicates were set for each experiment.
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Glucose uptake assay
Before glucose uptake assay, Krebs–Ringe–-HEPES

(KRH) buffer was prepared. KRH contains 25 mM

HEPES (pH 7.4), 1.3 mM CaCl2, 120 mM NaCl, 1.3

mM KH2PO4, 1.2 mM MgSO4 and 5 mM KCl. SCC090

and SCC25 cells were collected at 24 hrs posttranscrip-

tions, and 5×105cells were washed with KRH buffer. After

washing, cells were mixed with fresh KRH buffer supple-

menting with 1 μCi of [3H]-2-deoxyglucose (Perkin Elmer

Life Sciences). Cells were cultivated for 30 mins at 37°C,

following by adding 3 volumes of ice-cold KRH to halt

glucose uptake. Finally, a liquid scintillation spectrometry

was used to measure radioactivity. Glucose uptake was

represented by disintegrations per minute.

Cell proliferation rate measurement
SCC090 and SCC25 cells (3×104 cells collected at 24 hrs

after transfections) were mixed with 1 mL Eagle’s

Minimum Essential Medium (10% FBS) to prepare sin-

gle-cell suspensions. Cells were cultivated in 96-well

plates with 0.1 mL cell suspension per well, and cell

culture conditions were 5% CO2 and 37°C. Cells were

collected at 24, 48, 72 and 96 hrs after the beginning of

cell culture. CCK-8 solution (10 μL, Sigma-Aldrich, USA)

was added into each well at 2 hrs before cell collection.

Finally, OD (450 nm) values were measured using

SmartReader 96 Microplate Absorbance Reader for 96

Well Plate (Alkali Scientific, USA) to reflect cell

proliferation.

Western blot
SCC090 and SCC25 cells (2×105 cells collected at 24 hrs

after transfections) were mixed with 1.5 mL RIPA Buffer

(Sangon, Shanghai, China) to extract total protein. Protein

samples were denatured and electrophoresis was then per-

formed using 10% SDS-PAGE gel. Following gel transfer

(PVDF membrane) and blocking (2 hrs in 5% nonfat milk

at room temperature), GLUT1 (1: 1200, ab15309, Abcam)

or GAPDH (1: 1200, ab8245, Abcam) primary antibodies

(rabbit polyclonal, overnight at 4°C), and IgG-HRP (1:

1000, MBS435036, MyBioSource) secondary antibody

(goat anti-rabbit, 2 hrs at room temperature) were used to

incubate with the membranes sequentially. ECL (Sigma-

Aldrich, USA) was used to develop signals and signals

were normalized using Image J v1.46.

Statistical analysis
All data presented in this paper were mean values,

which were calculated using data from 3 biological

replicates. Differences between two types of tissues

were analyzed by performing paired test. Differences

among different cell treatment groups were explored

using ANOVA (one-way) and Tukey test. Correlations

were analyzed by linear regression. p<0.05 was statisti-

cally significant.

Results
ELF3-AS1 and GLUT1 were upregulated

in OSCC
ELF3-AS1 and GLUT1 mRNA in two types of tissues

were detected by performing RT-qPCR. Expression data

were compared between two types of tissues by perform-

ing paired t-test. It was observed that expression levels of

ELF3-AS1 (Figure 1A) and GLUT1 mRNA (Figure 1B)

were both significantly higher in OSCC tissues comparing

to noncancer tissues (p<0.05).
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Figure 1 ELF3-AS1 and GLUT1 were upregulated in OSCC. RT-qPCR analyzed by paired t test showed that expression levels of ELF3-AS1 (A) and GLUT1 mRNA (B) were
both significantly higher in OSCC tissues comparing to noncancer tissues. (*p<0.05).
Abbreviations: OSCC, oral squamous cell carcinoma; ELF3-AS1, E74 like ETS transcription factor 3-antisense RNA 1; GLUT1, glucose transporter 1.
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ELF3-AS1 and GLUT1 were positively

correlated in OSCC
Correlation between ELF3-AS1 and GLUT1 was analyzed

by performing linear regression. The results showed that, in

OSCC tissues, ELF3-AS1 and GLUT1 were positively and

significantly correlated (R square=0.7633, p<0.0001;

Figure 2A). However, ELF3-AS1 and GLUT1 were not sig-

nificantly correlated in noncancer tissues (R square=7.009e-

005, p=0.9494; Figure 2B).

ELF3-AS1 positively regulated GLUT1

expression and glucose uptake in OSCC

cells
CC090 and SCC25 cells were transfected with ELF3-AS1

expression vector and ELF3-AS1 siRNA. Compared to C

and NC two controls, ELF3-AS1 expression was signifi-

cantly altered at 24 hrs after the transfection of ELF3-AS1

expression vector or ELF3-AS1 siRNA (Figure 3A).

Moreover, compared to two controls, ELF3-AS1 overexpres-

sion resulted in upregulated (Figure 3B), while ELF3-AS1

siRNA silencing caused downregulated (Figure 3C) expres-

sion of GLUT1 and glucose uptake (p<0.05).

ELF3-AS1 positively regulated OSCC cell

proliferation through GLUT1
GLUT1 expression vector and ELF3-AS1 siRNA were

also transfected into SCC090 and SCC25 cells, and trans-

fections were confirmed by RT-qPCR (data not shown).

Cell proliferation data were compared among different cell

transfection groups by performing ANOVA (one-way) and

Tukey test. Compared to two controls (C and NC),

ELF3-AS1 and GLUT1 overexpression resulted in a

significantly increased proliferation rate of OSCC cells

(p<0.05). In contrast, the proliferation rate of OSCC cells

was significantly decreased after ELF3-AS1 and GLUT1

siRNA silencing (p<0.05). In addition, GLUT1 siRNA

silencing attenuated the effects of ELF3-AS1 overexpres-

sion (Figure 4, p<0.05).

Discussion
The expression pattern and functionality of ELF3-AS1

have been investigated in the present study. We observed

that ELF3-AS1 was upregulated in OSCC and may pro-

mote the proliferation of OSCC cells by upregulating

GLUT1, which is a key player in glucose transport.15

Due to the rapid growth and proliferation nature of cancer

cells, altered glucose metabolism in cancer is necessary to

provide sufficient energy to support the activities of cancer

cells.17 GLUT1 is a key player in glucose metabolism by

mediating the transport of glucose across plasma membranes

and to be metabolized in cells.18 Therefore, GLUT1 is

usually overexpressed in cancer cells compared to normal

cells.19 Consistently, our study observed the upregulated

GLUT1 expression in OSCC. In addition, GLUT1 positively

regulated the proliferation of OSCC cells. Those data further

confirmed the oncogenic role of GLUT1 in OSCC.

Recent studies have identified a big number of differen-

tially expressed lncRNAs in OSCC.12,13 These lncRNAs may

interact with one or multiple signaling pathways to participate

in the pathogenesis of OSCC.12,13 Previous studies have

shown that lncRNAs are also critical players in glucose meta-

bolism in cancer cells. LncRNAs regulate multiple down-

stream targets involved in glucose metabolism, such as

glucose transporters (GLUT1 and GLUT4), enzymes (pyru-

vate carboxylase, G6P and so on), oncogenes (c-Myc) and so

A B
R square=0.7633
P<0.0001
Y=0.7904*X + 0.3150

R square=7.009e-005
P=0.9494
Y=-0.008341*X + 2.3976

4

2

8

0
0 2 4 6 8 0 1 2 3 4 5

R
el

at
iv

e 
G

LU
T1

 m
R

N
A

 le
ve

l

6

4

2

8

0R
el

at
iv

e 
G

LU
T1

 m
R

N
A

 le
ve

l

Relative ELF3-AS1 level Relative ELF3-AS1 level

Figure 2 ELF3-AS1 and GLUT1 were positively correlated in OSCC. Linear regression showed that ELF3-AS1 and GLUT1 were positively and significantly correlated in

OSCC tissues (A), but not in noncancer tissues (B).
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Figure 3 ELF3-AS1 positively regulated GLUT1 expression and glucose uptake in OSCC cells. After transfection of ELF3-AS1 expression vector and ELF3-AS1 siRNA, ELF3-

AS1 expression was significantly altered at 24 h comparing to C and NC groups (A). Moreover, ELF3-AS1 overexpression resulted in upregulated (B), while ELF3-AS1

siRNA silencing caused downregulated (C) expression of GLUT1 and glucose uptake (*p<0.05).
Abbreviations: ELF3-AS1, E74 like ETS transcription factor 3-antisense RNA 1; GLUT1, glucose transporter 1.
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on.20 In liver cancer, lncRNA NBR2 regulates the expression

of GLUT1 to modulate the sensitivity of cancer cell to

phenformin.21 In another study, GLUT1 was proven to be

involved in the HOTAIR-induced glycolysis in many types

of cancer.22 In the present study, we showed that ELF3-AS1

positively regulated the expression of GLUT1 mRNA and

protein, as well as glucose uptake in OSCC cells. LncRNAs

can regulate the expression of genes at posttranscriptional or

translational levels.9 Therefore, ELF3-AS1 may affect the

stability of GLUT1 to affect glucose uptake in OSCC cells.

However, the molecular mechanism is still hardly known.

More experimental studies are still needed.

Conclusion
In conclusion, ELF3-AS1 was upregulated in OSCC, and

ELF3-AS1 may positively regulate GLUT1 to promote the

proliferation of OSCC cells.
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