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Abstract
Background and aims Pulmonary hypertension due to left heart disease (PH-LHD) is the most frequent
form of PH. As differential diagnosis with pulmonary arterial hypertension (PAH) has therapeutic
implications, it is important to accurately and noninvasively differentiate PH-LHD from PAH before
referral to PH centres. The aim was to develop and validate a machine learning (ML) model to improve
prediction of PH-LHD in a population of PAH and PH-LHD patients.
Methods Noninvasive PH-LHD predictors from 172 PAH and 172 PH-LHD patients from the PH centre
database at the University Hospitals of Leuven (Leuven, Belgium) were used to develop an ML model.
The Jacobs score was used as performance benchmark. The dataset was split into a training and test set
(70:30) and the best model was selected after 10-fold cross-validation on the training dataset (n=240). The
final model was externally validated using 165 patients (91 PAH, 74 PH-LHD) from Erasme Hospital
(Brussels, Belgium).
Results In the internal test dataset (n=104), a random forest-based model correctly diagnosed 70% of PH-
LHD patients (sensitivity: n=35/50), with 100% positive predicted value, 78% negative predicted value
and 100% specificity. The model outperformed the Jacobs score, which identified 18% (n=9/50) of the
patients with PH-LHD without false positives. In external validation, the model had 64% sensitivity at
100% specificity, while the Jacobs score had a sensitivity of 3% for no false positives.
Conclusions ML significantly improves the sensitivity of PH-LHD prediction at 100% specificity. Such a
model may substantially reduce the number of patients referred for invasive diagnostics without missing
PAH diagnoses.

Introduction
Pulmonary arterial hypertension (PAH) has been defined haemodynamically by pre-capillary pulmonary
hypertension (PH), with a mean pulmonary arterial pressure (mPAP) ⩾20 mmHg and a pulmonary arterial
wedge pressure (PAWP) ⩽15 mmHg, measured at right heart catheterisation (RHC) [1]. If the PAWP is
higher than 15 mmHg, post-capillary PH is present and pulmonary hypertension due to left heart disease
(PH-LHD) should be considered. By contrast to PAH, PH-LHD is frequent and accounts for 60–80% of all
PH patients [2].
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Obtaining an accurate diagnosis of PAH can be challenging considering that PAH is relatively rare,
symptoms are nonspecific and potentially related to other cardio-pulmonary diseases. Moreover,
identifying the correct cause of PH is even more difficult in an ageing population with comorbidities.
Proper distinction between PAH and PH-LHD may be difficult, especially for idiopathic PAH (IPAH) and
PH due to heart failure with preserved ejection fraction (HFpEF), a common cause of PH-LHD. The final
differential diagnosis between pre- and post-capillary PH, i.e., between PAH and PH-LHD, relies only on
PAWP being lower or higher than 15 mmHg.

In practice, measuring and correctly interpreting PAWP can be difficult and must therefore be performed in
experienced centres. A correct differential diagnosis is important considering that the use of PAH-approved
therapies is not recommended in PH-LHD and can even be harmful [2]. Over the past years, increased PH
awareness and phenotype overlap of patients with PH-LHD and PAH have led to a higher number of
referrals of suspected PAH patients to PH centres, resulting in a significantly increased number of invasive
RHC procedures [2].

Considering the limited though potential risk of complications, invasiveness and costs of RHC procedures,
various prediction models to differentiate PAH from PH-LHD were developed to optimise the referral of
PAH patients [3–8]. However, currently existing prediction models are limited by restricted predictive
value, low number of predictors, inclusion of invasive predictors and lack of external validation. In
addition, these models are developed using logistic regression and are therefore limited by the assumption
that each predictor is linearly related to PH-LHD diagnosis, while practice indicates that more complex
relationships should be considered, although still unexplored [9–11].

We hypothesised that a machine learning (ML) prediction model based on noninvasive clinically available
variables would be a promising alternative and innovative method for the differential diagnosis of PAH
and PH-LHD, accounting for more complex interactions than currently existing logistic regression models.
Since PAH is a life-threatening disease with a mean survival of only 2.8 years if left untreated, a false
positive result implies that the model classifies the patient as having PH-LHD, overlooking PAH and
preventing the patient from benefitting from efficient PAH therapies.

We therefore aimed to develop a more sensitive and highly specific prediction ML model for PH-LHD on
noninvasive parameters. Such a model could reduce the number of RHC in patients with a high pre-test
likelihood of PH-LHD and restrict RHC to a group with a higher pre-test likelihood of PAH.

Methods
Patient population
The target population consisted of all consecutive idiopathic, heritable and drug- or toxin-induced PAH
and PH-LHD patients diagnosed in alignment with the haemodynamic definition of the 2015 ESC/ERS
guidelines for the diagnosis and treatment of pulmonary hypertension at the University Hospitals of
Leuven (Leuven, Belgium) and documented within the PH database between January 2000 and March
2020 (supplementary figure S1). All included patients underwent invasive haemodynamic diagnosis in
accordance with the 2015 ESC/ERS guidelines for PH [12]. A complete echocardiographic examination
was performed [13]. The clinical diagnosis of PAH or PH-LHD was based on standard of care tests and a
final evaluation by the local PH team, resulting in a study cohort of 172 PAH and 172 PH-LHD patients.
If a PAWP was unmeasurable, we used left ventricle end diastolic pressure to diagnose PAH versus
PH-LHD. The study was approved by the Ethical Committee of University Hospitals of Leuven. This
cohort was used to develop and internally validate our prediction models.

Development of the prediction models
To develop the prediction models, a list of potential PH-LHD predictors was compiled after a literature
review. Parameters used in other predictive scores for HFpEF or PH-LHD were included [3–8]. The list
was adjusted based on the availability of the data, excluding parameters with a high percentage of missing
data or low availability in routine practice. Afterwards the list was reviewed independently by three experts
(two PH experts and one heart failure expert). The final list comprised demographics, medical history,
echocardiography, lung function tests, laboratory blood parameters and ECG variables (full list in table 1).
The predictors were recorded manually from electronic medical files from the University Hospitals of
Leuven. The final database comprised 64 500 values. Variables with >60% missing values were excluded
from the analysis. The dataset was randomly split (70:30) in a training dataset (n=240), for model
development and model selection, and an independent test dataset (n=104), for internal validation of the
selected model. After internal validation in the test set, the model was retrained on the entire Leuven
cohort (n=344) before external validation on the second cohort of the Erasme Hospital in Brussels (Belgium).
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TABLE 1 Characteristics of the University Hospitals of Leuven cohort

Clinical characteristics PAH PH-LHD p-value

Patients n 172 172
Age at diagnosis years, median (IQR) 54 (22) 67 (12) <0.001
Male 63 (37) 52 (30) 0.20
BMI kg·m−2 27±6 30±7 <0.001
NYHA class

I 8 (5) 14 (8) 0.20
II 44 (26) 56 (33)
III 91 (53) 81 (47)
IV 28 (16) 21 (12)

Medical history
Diabetes mellitus type II 50 (29) 72 (42) <0.001
Hypertension 76 (44) 112 (65) <0.01
Hypercholesterolaemia 53 (31) 79 (46) 0.03
Obesity 52 (30) 83 (48) <0.001
Valvular surgery without residual valve disease 4 (2) 12 (7) <0.001
Left heart disease 15 (9) 32 (19) <0.001
Smoking
Current smoker 8 (5) 7 (4) 0.65
Former smoker 52 (30) 60 (35)
Never-smoker 112 (65) 105 (61)

ECG parameters
Atrial fibrillation 45 (26) 114 (66) <0.001
SV1+RV6 mm 13±5 16±8 <0.001
R axis degrees 80±56 31±60 <0.001
PR interval ms 168±31 175±35 0.02
PRT axes degrees 54 ±21 51±20 0.10
QRS duration ms 98±17 103±28 0.02

Echocardiography parameters
Left atrial dilation worse than mild 16 (9) 59 (34) <0.001
Left valvular disease worse than mild 5 (3) 44 (26) <0.001
Left ventricle end diastolic diameter mm 37.8±7.1 44.3±7.8 <0.001
Mitral valve disease worse than mild 2 (1) 38 (22) <0.001
Mitral E/A ratio 1.0±0.5 1.9±0.9 <0.001
Mitral E V′max mm·s−1 66±25 104±41 <0.001
Mitral E/E′ ratio 9.6±5.7 10.7±9.7 0.03
Dilation of the right ventricle
Not dilated (qualitative) 26 (15) 46 (27) <0.001
Mildly dilated (qualitative) 43 (25) 28 (16)
Severely dilated (qualitative) 57 (33) 21 (12)

Pulmonary function test parameters
FVC L 3±3.1 2.6±2.5 0.05
FEV1 L 2.1±0.7 2.0±0.7 <0.001
FEV1/FVC ratio 74±11 75 ±8 0.44
Peak expiratory flow L·s−1 6±5 6±2 0.11
DLCO 4.4±1.7 4.4±1.8 0.69

Laboratory blood tests
Haemoglobin g·dL−1 16±2 14±1 0.87
Haematocrit % 43±9 37±10 0.49

Haemodynamic parameters
Right atrial pressure mmHg 8±5 14±6 <0.001
Systolic PAP mmHg 78±20 66±19 0.66
Diastolic PAP mmHg 32±10 27±8 0.01
Mean PAP mmHg 49±12 41±11 <0.001
CO L·min−1 3.7±1.2 4.9±1.7 <0.001
CI L·min−1·m−2 2.11±0.68 2.59±0.85 <0.001
SvO2

% 61±10 65±9 0.59
PVR Wood Units 12±26 5±3 <0.001
PVR dynes·s·cm−5 958±504 377±280 <0.001
PAWP mmHg 9±3 22±6 <0.001

Values are expressed as n (%) or mean±SD unless indicated otherwise. PAH: pulmonary arterial hypertension;
PH-LHD: pulmonary hypertension due to left heart disease; IQR: interquartile range; BMI: body mass index;
NYHA class: New York Heart Association functional class; SV1+RV6: sum of the S deflection in V1 and R
deflection in V6 in millimetres on ECG; Mitral E/A: the peak early diastolic (E), atrial systolic (A) transmitral flow
velocities for evaluation of left ventricle diastolic function; Mitral E V′max: peak E mitral flow velocity; Mitral E/E′:
ratio of early diastolic mitral inflow velocity to early diastolic mitral annulus velocity for the evaluation of left
ventricular filling pressure; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s; FEV1/FVC: Tiffeneau
index; DLCO: diffusing capacity of the lung for carbon monoxide; PAP: pulmonary arterial pressure; CO: cardiac
output; CI: cardiac index; SvO2

: mixed venous oxygen saturation; PVR: pulmonary vascular resistance; PAWP:
pulmonary arterial wedge pressure.
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Logistic regression model
We first developed a logistic regression model, in which the effect of each predictor variable was evaluated
by univariate logistic regression in the training dataset. Variables with a p-value <0.10 were imputed in a
multivariable logistic regression model with stepwise forward method, which determined the final model.
The performance of the model was studied according to clinical performance and compared to the Jacobs
score in the independent test dataset.

Machine learning model
To develop an ML model, we explored different classification models (k-nearest neighbours, support
vector machine, random forest and gradient boosting). For each model, the hyperparameters were
optimised using grid search and 10-fold cross-validation [14]. The latter allowed us to obtain a better
estimate of generalisation performance by iterating over 10 different folds of the training set. To reduce the
risk of false positives, this entire procedure was repeated using bootstrapping (random sampling with
replacement [15], n=240) with 100 samples [16] of the training set, resulting in 100 trained models for
each algorithm (supplementary figure 2). In a voting fashion, a subject was then classified as PH-LHD if
and only if at least 95% of the bootstrap models predicted a probability of at least 0.5; allowing for 5%
outlier models that might have been trained on extreme variations of the training set during bootstrapping.
We used sensitivity as optimisation metric, excluding models with positive predicted value (PPV) <100%
in the training set. The algorithm that performed best over this entire procedure (highest sum of sensitivity
and 100% specificity) was selected for validation on the independent test set. For the selected algorithm,
we analysed its performance in function of the number of parameters to reduce the number of required
parameters in clinical practice. We selected the features based on feature importance provided by the model
and domain knowledge by the PH specialists, and selected the number based on the results during a new
iteration of 10-fold cross-validation. The Shapley additive explanations (SHAP) methodology [17] was
used to explain the predictions of the ML model on an individual level and facilitate the interpretation of
model results.

The Jacobs score as benchmark
The Jacobs score, an existing risk score based on a logistic regression model, was used as benchmark to
compare performance of the prediction models [4]. The Jacobs score includes four predictors: left heart
disease in medical history (yes/no), sum of the S wave deflection in V1 and R wave deflection in V6 on
the electrocardiogram (ECG), left atrial dilation on transthoracic echocardiography (TTE) (yes/no) and left
ventricle valve disease worse than mild on TTE (yes/no) [4]. As suggested by the authors, risk score
cut-off ⩾72 (range of the score: 0–96 points) was used to identify patients with PH-LHD [4].

First, as means of external validation for the Jacobs score itself, the performance of the score was validated
in the entire retrospective Leuven cohort (n=344). We evaluated the clinical performance based on area
under the receiver operating curve (AUC-ROC), sensitivity, specificity, PPV and negative predicted value
(NPV) for the prediction of PH-LHD. Secondly, the performance of the logistic regression model and the
ML model was compared to the Jacobs score in the internal independent test dataset (n=104). The best of
the two models was then externally validated on the external validation dataset of Brussels (n=165) and
compared to the Jacobs score.

External validation population
To determine the reproducibility and generalisability of the Jacobs score and our model to new and
different patients, data from a cohort from Erasme Hospital Brussels were collected to externally validate
the final model. All consecutive patients with an invasive diagnosis from 2000 onwards were eligible for
inclusion. The same parameters as the subjects from University Hospitals of Leuven were manually
recorded. A final diagnosis was based on the international PH guidelines, invasive haemodynamics and
clinical interpretation of >two PH specialists at Erasme Hospital Brussels. Characteristics were compared
between two cohorts.

Statistical analysis
The continuous variables are presented as mean±SD or median with interquartile range, while categorical
variables are shown as counts and percentages. The Shapiro–Wilk test was used to test for normality. If
significant, t-test was used to compare means, otherwise we applied the Mann–Whitney U test. Fisher’s
exact test was used to test differences in proportions for dichotomous variables and Chi-square test for
categorical variables. Missing data were handled by multivariate imputation by chained equations (MICE)
[18], during cross-validation. Bayesian ridge regression was used as estimator in the MICE method for
imputing missing values. Variables of which the missingness was systematically related to unobserved data
were excluded from the analysis. Categorical variables were encoded using one-hot encoding. The statistical
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analyses were performed using SPSS 25.0 (IBM) or Scipy and Statsmodels for Python 3.8. Python was also
used for the ML model. All p-values were two-sided and significance level was set at 0.05.

Results
Study population
Patient characteristics for the University Hospitals of Leuven cohort are presented in table 1. The median
age of PH-LHD patients (n=172) was 67 years and significantly higher than that of PAH patients (n=172;
54; p<0.001). Haemodynamic parameters including right atrial pressure, mPAP, PAWP, cardiac index and
pulmonary vascular resistance were significantly different between the two groups. The median body mass
index (BMI) was 27±6 for PAH and 30±7 for PH-LHD. A medical history of diabetes, hypertension,
obesity, valvular surgery without residual valvular disease and left heart disease were significantly more
present in patients with PH-LHD. The number of participants with missing values per variable are
presented in supplementary table S1.

Validation of the Jacobs score
Using the Jacobs score with a risk score cut-off value of ⩾72 on the whole University Hospitals of Leuven
cohort (n=344), PH-LHD was diagnosed in 19%, with a PPV of 100%, a NPV of 55% and 100%
specificity. When applied to the internal validation cohort (n=104), it identified 18% (n=9 out of 50) of
the patients with PH-LHD without false positives. Specificity was 100%, PPV 100% and NPV 55%.

Logistic regression model
Several predictors were significant (p<0.10) in the univariate logistic regression model (supplementary
table S2). The final multivariate logistic regression model included four parameters shown as odds ratio
and 95% confidence interval: history of left heart disease, including either coronary artery disease or left
valvular heart disease that was worse than mild (OR=12.8, 95% CI 5.2–31.3), left atrial dilation measured
by TTE (OR=3.2, 95% CI 1.5–7.1), peak early diastolic (E) flow velocity (mitral E V′max) measured by
TTE (OR=1.1, 95% CI 1.0–1.1) and presence of moderate and severe mitral valve regurgitation measured
by TTE (OR=16.5, 95% CI 3.8–71.9). The logistic regression model was validated in the independent test
set and PH-LHD could be diagnosed in 42% (n=21 out of 50) of the patients, with a PPV of 100%, a
NPV of 64% and 100% specificity.

Machine learning model
The best predictive accuracy and AUC-ROC was obtained with the bootstrapped random forest model
(figure 1) using 10-fold cross-validation and grid search (parameter grid in supplementary table S3). All
potential predictors were used as input for the ML algorithm. Figure 2 shows a plot of the overall accuracy
versus the number of features, to visualise the variation of accuracy with respect to the number of features.
It has been observed that the accuracy quickly increases for the first few features; more specifically, the
accuracy quickly increases from 65% to >80% by using the 10 most important parameters only, and
stabilises as more features are added. In consultation with the local PH team, the set of input features was
reduced to the 20 most important ones. The complete list of these features, ranged according to their Gini
impurity-based importance, is shown in supplementary table S4, indicating that higher mitral E V′max

measured by TTE, higher mitral valve E/A ratio and the presence of left valvular heart disease worse than
mild on echocardiography are the most important predictors for PH-LHD on group level. Other important
predictors, listed in the top 15, include the lower haemoglobin level, lower R axis on ECG, lower PRT
axes on ECG, higher age, higher left ventricle end diastolic diameter, left atrial dilation worse than mild,
lower forced vital capacity and signs of atrial fibrillation on ECG. Additionally, lower forced expiratory
volume in 1 s, left valvular disease worse than mild, longer PR interval and higher BMI were included in
the top 15 features.

The random forest model, with the reduced set of 20 features, was internally validated in the independent
test set. PH-LHD could be correctly diagnosed in 70% (n=35 out of 50) of the patients, with a PPV of
100%, a NPV of 78% and 100% specificity.

To improve the interpretation and the explanatory power of the output from the ML model, the SHAP
methodology was used. Figure 3 shows personalised analyses of the model in three exemplative patients.
As it performed superior to the logistic regression model, this model was chosen for external validation
after being retrained on the entire Leuven cohort.

External validation
Data from 165 subjects were collected from Erasme Hospital Brussels, 91 of whom had PAH and 74
PH-LHD. Their characteristics can be found in table 2. Missing values are reported in supplementary table S1.
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In the external validation cohort, the Jacobs score (cut-off ⩾72) obtained a sensitivity of 3%, PPV of
100%, NPV of 56% and 100% specificity, while the ML model had a sensitivity of 64%, PPV of 100%,
NPV of 78% and 100% specificity.

Discussion
To the best of our knowledge, this is the first study investigating noninvasive prediction of PH-LHD with
supervised ML, based on the random forest algorithm, and showing that ML significantly improves the
sensitivity of PH-LHD prediction at 100% specificity, with the possibility to decrease the number of patients
undergoing non-essential invasive diagnostics by 3-fold or more. Out of the 124 included PH-LHD patients
(50 in Leuven cohort and 74 in Brussels cohort), 82 were correctly diagnosed (66%) by the ML model
meaning that one-third (82 out of 269) of RHCs could have been avoided without therapeutic consequence.
With the Jacobs score, 11 out of the 124 PH-LHD patients (9%) were correctly identified.
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The difficult differential diagnosis between PAH and PH-LHD may be attributed to two aspects [19]. First,
various registries showed that 1) the median age of PAH patients at diagnosis is about 65 years or higher
and 2) PAH patients are frequently obese and often display comorbidities such as hypertension, diabetes
mellitus type II, ischaemic heart disease and atrial fibrillation [20–22], also considered as risk factors for
HFpEF. Second, PAWP measurement is fluid dependent, meaning that changes in fluid volume may
influence its accurate measurement [23, 24]. Thus, diagnostic decisions exclusively based on PAWP
(current gold standard) may be biased.

Over the past years, several prediction scores and a prediction table for PAH or PH-LHD have been
developed [1, 2, 4–6, 8, 25]. A common approach to predict PAH or PH-LHD is using logistic regression.
However, these models are limited by insufficient predictive value [5, 6], and only two models were
prospectively validated [4, 5]. The predictive performance of the Jacobs score in our dataset was similar to
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FIGURE 3 Individual results of the model in three exemplative patients. Patients 1, 2 and 3 have 1%, 93% and 54% probability, respectively, of
having pulmonary hypertension due to left heart disease (PH-LHD), according to the machine learning model. Most contributing factors for this
evaluation are displayed on the graph. BP: blood pressure; LAD: left atrial dilation; LV: left ventricular; LVD: left valvular disease; Mitral E/A: mitral
valve E/A ratio; Mitral E V′max: the peak early diastolic (E) flow velocity; SHAP value: Shapley Additive Explanations value.
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TABLE 2 Characteristics of Erasme Hospital Brussels cohort

Clinical characteristics PAH PH-LHD p-value

Patients n 91 74
Age at diagnosis years, median (IQR) 54 (16) 62 (15) 0.003
Male 33 (36) 31 (42) 0.42
BMI kg·m−2 31.6±41.7 27.3±7.0 0.38
NYHA class
I 0 (0) 1 (1) 0.55
II 26 (28) 22 (30)
III 59 (64) 40 (55)
IV 7 (8) 10 (14)

Medical history
Diabetes mellitus type II 15 (17) 23 (32) 0.04
Hypertension 32 (36) 47 (64) <0.001
Hypercholesterolaemia 28 (31) 40 (55) 0.002
Obesity 20 (22) 12 (16) 0.43
Valvular surgery without residual
valve disease

1 (1) 1 (1) 1.0

Left heart disease 7 (8) 44 (60) <0.001
Smoking
Current smoker 14 (16) 5 (7) 0.03
Former smoker 30 (33) 16 (22)
Never-smoker 46 (51) 51 (71)

ECG parameters
Atrial fibrillation 2 (2) 14 (19) <0.001
SV1+RV6 mm 9.4±4.9 12.0±5.7 0.006
R axis degrees 85.5±65.0 39.9±67.0 <0.001
PR interval ms 169.9±36.3 175.5±37.9 0.40
PRT axes degrees 56.0±20.6 48.8±38.5 0.18
QRS duration ms 93.6±18.7 107.1±31.6 0.002

Echocardiography parameters
Left atrial dilation worse than mild 11 (12) 13 (18) 0.37
Left valvular disease worse than mild 1 (1) 8 (11) 0.01
Left ventricle end diastolic diameter mm 41.9±7.0 55.7±12.4 <0.001
Mitral valve disease worse than mild 1 (1) 7 (10) 0.005
Mitral E/A ratio 0.9±0.4 1.9±0.9 <0.001
Mitral E V′max mm·s−1 57.7±19.9 94.9±27.9 <0.001
Mitral E/E′ ratio 7.9±4.4 15.9±5.6 <0.001
Dilation of the right ventricle
Not dilated (qualitative) 12 (13) 39 (55) <0.001
Mildly dilated (qualitative) 40 (44) 25 (35)
Moderately dilated (qualitative) 8 (9) 0 (0)
Severely dilated (qualitative) 31 (34) 7 (10)

Pulmonary function test parameters
FVC L 2.8±1.0 2.4±0.9 0.01
FEV1 L 2.2±0.8 1.8±0.7 0.02
FEV1/FVC ratio 76.8±12.4 78.9±8.1 0.27
Peak expiratory flow L·s−1 5.2±1.8 4.5±1.6 0.05
DLCO

# NA NA
Laboratory blood tests
Haemoglobin g·dL−1 15.0±2.0 12.9±2.0 <0.001
Haematocrit % 45.7±6.1 38.8±6.6 <0.001

Haemodynamic parameters
Right atrial pressure mmHg 8.6±5.2 11.3±6.2 0.003
Systolic PAP mmHg 82.2±39.2 59.4±16.5 <0.001
Diastolic PAP mmHg 35.8±10.4 29.6±12.4 <0.001
Mean PAP mmHg 50.2±11.2 39.9±10.8 <0.001
CO L·min−1 4.0±1.2 4.3±2.3 0.37
CI L·min−1·m−2 2.2±0.6 2.2±0.7 0.75
SvO2

% 61.7±11.1 60.3±11.8 0.48
PVR Wood Units 11.4±5.3 4.4±2.6 <0.001

Continued
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the results of their own prospective validation [3]. The Jacobs score was recently updated in the OPTICS
score, a priori excluding patients with valve disease, and based on BMI ⩾30, diabetes mellitus type II,
atrial fibrillation, dyslipidaemia, history of valvular surgery, sum of SV1 (deflection in V1 in millimetres)
and RV6 (deflection in V6 in millimetres) on ECG, and left atrial dilation [26]. The sensitivity for the
detection of PH-LHD in our dataset was only 20%, with a specificity of 96% with the OPTICS score. The
presently constructed logistic regression model included similar predictive variables as the Jacobs score
and had only slightly better predictive performance. This could be expected since our cohort had similar
demographic characteristics as the development cohort of the Jacobs score.

When complex relationships between predictors are not captured using conventional regression-based
analysis, ML is an appropriate alternative. The random forest model incorporates a larger number of
predictors, which are all commonly measured in clinical practice. The model maximised the predictive
accuracy and statistical robustness even in a small dataset and can be rapidly performed. The black-box
problem, which is commonly seen as an important limitation of the clinical applications of ML, is tackled
by using the SHAP methodology. This visualisation method improves understanding of the algorithm by
explaining individual predictions by computing the contribution of each feature to the prediction.

Our results are consistent with existing prediction scores, integrating comparable features, including
measurements of right and left heart chamber dimensions with estimates of right ventricle and left ventricle
filling pressures to discriminate between pre- and post-capillary PH [4, 6, 8]. The emergence of decreased
haemoglobin as an important predictor of PH-LHD was more surprising, although iron deficiency is
recognised to be common and detrimental in heart failure [27, 28]. Accordingly, BRITTAIN et al. [29]
showed higher cell-free haemoglobin in patients with PAH, compared with patients with pulmonary
venous hypertension due to ischaemic and non-ischaemic cardiomyopathy with a mPAP >25 mmHg and a
PAWP >15 mmHg.

Despite significant differences in patient characteristics between Leuven and Brussels cohorts, including
mitral E V′max (first ML predictor; higher in Leuven), the history of left heart disease (third predictor; more
common in Leuven) and haemoglobin level (fourth predictor; lower in Leuven), the sensitivity from
internal to external validation only dropped by 6 percentage points (from 70% to 64%), showcasing both
reproducibility and generalisability for the ML model.

The Jacobs score performed poorly in the external validation set with a sensitivity of 3%, while it did
maintain a sensitivity of 19% in the complete University Hospitals of Leuven cohort. A possible
explanation for the lower predictive power of the Jacobs score in the Brussels cohort could be the
differences in population characteristics. While the patient characteristics of the Jacobs cohort were similar
to the characteristics of the Leuven cohort, significant differences were observed when comparing
characteristics with the Brussels cohort. The Jacobs score therefore showed good reproducibility but proved
to have a lower generalisability to different populations. Despite the limited size of the Leuven cohort
(n=344), which was smaller than the cohort used for developing the Jacobs score (n=380), the ML model
outperformed the Jacobs score by a significant amount during internal validation (70% versus 19%
sensitivity) and external validation (64% versus 3% sensitivity). Finally, we also applied the H2FPEF score
to the Leuven patient cohort. The H2FPEF score is a predictive tool estimating the probability of HFpEF in

TABLE 2 Continued

Clinical characteristics PAH PH-LHD p-value

PVR dynes·s·cm−5 910.7±425.4 352.1±206.7 <0.001
PAWP mmHg 9.6±3.5 22.6±6.5 <0.001

Values are expressed as n (%) or mean±SD unless indicated otherwise. PAH: pulmonary arterial hypertension;
PH-LHD: pulmonary hypertension due to left heart disease; IQR: interquartile range; BMI: body mass index;
NYHA class: New York Heart Association functional class; SV1+RV6: sum of the S deflection in V1 and R
deflection in V6 in millimetres on ECG; Mitral E/A: the peak early diastolic (E), atrial systolic (A) transmitral flow
velocities for evaluation of left ventricle diastolic function; Mitral E V′max: peak E mitral flow velocity; Mitral E/E′:
ratio of early diastolic mitral inflow velocity to early diastolic mitral annulus velocity for the evaluation of left
ventricular filling pressure; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s; FEV1/FVC: Tiffeneau
index; DLCO: diffusing capacity of the lung for carbon monoxide; NA: not available; PAP: pulmonary arterial
pressure; CO: cardiac output; CI: cardiac index; SvO2

: mixed venous oxygen saturation; PVR: pulmonary vascular
resistance; PAWP: pulmonary arterial wedge pressure.
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patients with unexplained dyspnoea [30, 31], and even though this tool was not designed to distinguish
PH-LHD, it has been suggested for this purpose. It includes six predictors: obesity, atrial fibrillation, age
>60 years, treatment with two or more antihypertensives, echocardiographic E/E′ ratio >9 and
echocardiographic pulmonary artery systolic pressure >35 mmHg. Risk score cut-offs ⩽1, 2–5 and ⩾6 are
used to stratify patients into low, intermediate and high HFpEF probability, respectively (range of the
score: 0–9 points). Using a cut-off ⩾6/9, the H2FPEF score identified PH-LHD with a sensitivity of 48%,
PPV of 77%, NPV of 62% and specificity of 85%, which is by far inferior to our ML model.

Future investigations are needed to demonstrate efficacy in routine clinical practice. In particular, the
potential impact of a web or cloud-based application in secondary care hospitals to reduce the numbers of
diagnostic RHC will depend on the pre-test probability of PAH and PH-LHD, which may vary between
regions and countries. At this stage we determined only 20 important input features originating from five
easily accessible axes (clinical characteristics, laboratory, echocardiography, ECG and spirometry) which
are part of the standard clinical workup in such a setting. With the generation of new data, once embedded
in clinical practice, the model can be recalibrated to improve upon existing prediction models and suit
external populations even better.

Conclusion
The current study demonstrated that a random forest ML model using routinely collected health data is
largely superior to existing risk scores and logistic regression models in identifying patients with PH-LHD.
With a 100% specific but much more sensitive noninvasive detection tool of PH-LHD, one could avoid
numerous invasive RHC in patients with a high pre-test likelihood of PH-LHD, while also improving the
positive detection yield for PAH in patients with a predicted likelihood of PAH. The clinical
implementation of such tools may decrease burden to patients, change referral strategies to PH centres and
reduce economic costs substantially.

Study limitations
Firstly, the used datasets are of limited size, 344 subjects for the Leuven cohort and 165 for the Brussels
cohort, given the large number of predictors. However, we have reduced the number of predictors required
in order to avoid overfitting, and the results show that even the sizes of the datasets were sufficient to
make reliable predictions. A second limitation is that the final diagnosis (PAH versus PH-LHD) was based
on the clinical gestalt of the local PH team, considering not only the RHC results but also the clinical
characteristics, and echocardiographic and laboratory results. This adds a subjective factor to the diagnostic
process, increasing the risk of bias especially in patients with overlapping phenotypes. However, we
believe that it is unavoidable to include an expert opinion since the interpretation of (borderline) PAWP is
complex and influenced by many factors, such as fluid intake, diuresis, respiration and zeroing levels. Only
a few patients were classified differently than indicated by PAWP after the review by our PH team (see
supplementary table S5). Finally, the ML model was designed in a selected patient population using
retrospective data. Patients with PAH and PH-LHD were balanced in the Leuven cohort to counter the
real-life imbalance that would heavily bias the prediction model [32]. Instead of oversampling the minority
class (synthetic data) or undersampling the majority class (loss of data), we chose to use real-life data to
balance the classes. Similar to the University Hospitals of Leuven, Erasme Hospital Brussels is a tertiary
centre, which explains the over-representation of patients with PAH, and therefore not reflecting a
real-world situation. Before recommending the avoidance of RHC in patients with a low likelihood of
PAH, a prospective multicentric study will be conducted in referring centres with a normal PAH
prevalence to validate the model.
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