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Abstract: Traumatic brain injuries (TBIs) are a leading cause of death and disability.
Additionally, growing evidence suggests a link between TBI-induced neuroinflammation and
neurodegenerative disorders. Treatments for TBI patients are limited, largely focused on rehabilitation
therapy, and ultimately, fail to provide long-term neuroprotective or neurorestorative benefits.
Because of the prevalence of TBI and lack of viable treatments, new therapies are needed which
can promote neurological recovery. Cell-based treatments are a promising avenue because of their
potential to provide multiple therapeutic benefits. Cell-based therapies can promote neuroprotection
via modulation of inflammation and promote neurorestoration via induction of angiogenesis and
neurogenesis. Neural stem/progenitor cell transplantations have been investigated in preclinical TBI
models for their ability to directly contribute to neuroregeneration, form neural-like cells, and improve
recovery. Mesenchymal stem cells (MSCs) have been investigated in clinical trials through multiple
different routes of administration. Intravenous administration of MSCs appears most promising,
demonstrating a robust safety profile, correlation with neurological improvements, and reductions in
systemic inflammation following TBI. While still preliminary, evidence suggests cell-based therapies
may become a viable treatment for TBI based on their ability to promote neuroregeneration and
reduce inflammation.

Keywords: traumatic brain injury; stem cells; inflammation; neuroregeneration; mesenchymal stem
cells; neural stem cells

1. Introduction

Each year in the United States, traumatic brain injuries (TBIs) lead to 53,000 deaths [1].
Additionally, TBIs are the primary cause of disability for 5.3 million people within the United States,
making TBI the leading cause of injury-related death and disability [1]. TBI-related healthcare
expenditures cost the United States an estimated 60 billion dollars each year, largely attributed to
the costs of short- and long-term disability [2]. TBI-related disability is linked to the severity of
the initial injury and the following neuroinflammatory response which may persist long after the
initial injury [3]. TBI and the ensuing neuroinflammation, in addition to causing motor and cognitive
deficits, have been linked to increased risk of neurodegenerative disorders including Alzheimer’s
disease, Parkinson’s disease, amyotrophic lateral sclerosis, and chronic traumatic encephalopathy [4].
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Treatments to improve recovery after TBI are limited largely to rehabilitation, which may address some
deficits [5] but ultimately fail to provide neuroprotective or neurorestorative benefits. To ameliorate
the deficits caused by TBI, therapies must address the initial injury to the brain and the ensuing
inflammatory response.

TBI damage and break down of the blood brain barrier (BBB) enables infiltration of peripheral
immune cells [3]. The initial injury induces an inflammatory response in order to fight infection
and promote wound healing [6]. This response includes complement activation which accompanies
recruitment of inflammatory immune cells across the BBB [6,7]. Responding immune cells secrete
prostaglandins, free radicals, and proinflammatory mediators, which increase expression of chemokines
and cell adhesion molecules, leading to infiltration of activated immune cells into the brain
parenchyma [7,8]. Activated microglia manifest as different functional phenotypes [9], which on one
hand can mount a protective response following TBI that limits the spread of damage and promotes
recovery, but on the other hand, may become pro-inflammatory by releasing neurotoxic molecules
and proinflammatory cytokines resulting in secondary damage [10]. In addition, up-regulation
of pro-inflammatory cytokines by microglia increases BBB permeability and expression of cell
adhesion molecules and chemokines, further increasing immune cells infiltration and augmenting
the damaging consequences of the inflammatory response [11]. Microglia play a critical role in
driving neuroinflammation and may serve as a target both for monitoring and modulating the
neuroinflammatory response to TBI [12,13]. This inflammatory cascade, initiated by TBI, may persist
and become amplified in the brain, predisposing TBI patients to neurological decline and neurological
disorders [14,15].

Clinical trials have yet to yield neuroprotective agents suitable for treating neuroinflammation in
TBI patients, likely because of the limited scope of drug-based approaches attempting to reduce single
components of the complex inflammatory cascade [16]. Even though persistent neuroinflammation is
associated with worse outcomes, the initial inflammation is necessary for healing, and so treatments
must aim to reduce the negative effects of inflammation while enhancing or at least not impeding upon
the healing effects [17]. Additionally, altering a single inflammatory component may not be enough
because of the complex and amplificatory nature of the neuroinflammatory response [16].

Cell-based therapies offer an alternative, with the potential to not only modulate systemic
inflammation but also provide multiple neurorestorative benefits by simultaneous promotion of
neurogenesis, angiogenesis, and neuroprotection at the site of injury [18]. Two prominent cell types,
neural stem/progenitor cells (NSPCs) and mesenchymal stem cells (MSCs), have demonstrated the
ability to improve neurological outcomes and recovery in preclinical trials investigating cerebral injury
models. NSPCs are thought to mediate their effects through cell replacement via differentiation into
neurons in the injured region, as well as through secretion of glial cell-derived neurotrophic factor and
other neuroprotective factors [19]. MSCs have been shown to improve neurological recovery in multiple
central nervous system (CNS) injury models as well, including TBI [16]. The therapeutic effects of
MSCs are linked to their ability to modulate the inflammatory response and secrete neurotrophic factors
which promote the protection and development of neurons [18]. Here, we explore both preclinical and
clinical work on NSPC- and MSC-based therapies for TBI.

2. Neural Progenitor Cell Therapy for TBI

Studies of embryonic stem cells demonstrated that fetal tissue could be used to derive NSPCs,
which had the ability to differentiate into neurons and innervate recipient brains, suggesting
fetal-derived NSPCs could be used to replace neurons lost to TBI and improve recovery [20]. In TBI
rat models, intracranial rat NSPC transplants survived and differentiated into functioning neurons,
which correlated with reductions in glial scar size and improved neurological motor functions [21].
The therapeutic effects of rat NSPCs and their contribution to the formation of additional neurons
following transplantation could additionally be enhanced through infusion of nerve growth factor [22]
or through seeding of NSPCs in a transplanted scaffold [23]. Studies in mice also demonstrated
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that mouse NSPC transplants could survive upwards of 14 months and contributed to long-term
improvements in memory [24].

Preclinical work using human NSPCs in TBI rat models showed that human NSPCs were capable of
surviving engraftment and differentiating into neurons which, in turn, correlated with improvements in
neurological recovery. Additionally, this work demonstrated that long-term cultured and cryopreserved
human NSPCs were suitable for transplantation and produced similar improvements in neurological
recovery [25]. While human NSPC transplants have shown the ability to alleviate motor deficits in
TBI models, long-term cognitive and memory improvements are lacking [26], suggesting room for
improvement. Although NSPC therapies have not been examined in clinical trials as a treatment for
TBI, the series of PISCES trials have explored NSPC therapy for treatment of ischemic stroke, which was
proven safe [27]. Based on promising results the PISCES III trial (NCT03629275) is now underway
to examine the efficacy of NSPC therapy for stroke patients. Because of the parallels between brain
damage caused by stroke and TBI, if NSPC therapy proves effective in stroke patients, it may be readily
translatable to patients suffering from deficits caused by TBI, as evidenced in stroke and TBI animal
models [28].

3. Mesenchymal Stem Cell Therapies for TBI

MSCs are a promising cellular therapy due to their properties of multipotency and self-renewal,
as well as ease of isolation and propagation [29]. MSCs can be found in most tissues and are typically
harvested from adipose tissue, peripheral blood, the umbilical cord, or bone marrow, with the latter
predominating investigation for clinical use [30]. Bone marrow mesenchymal stem cells (BMSCs) are
a heterogenous population of cells which provide support for hematopoietic cells and contain stem
cells capable of differentiating into bone, cartilage, adipocytes, and hematopoietic supporting cells [29].
Based on their differentiation potential and accessibility, BMSCs were first explored in transplant
studies to treat ischemic stroke rat models under the hypothesis that transplanted BMSCs would
differentiate into neurons and reconstitute damaged regions of the brain. Intracerebral transplantation
of BMSCs into the infarct region of ischemic stroke rat models led to improvements in functional
recovery. However, only a fraction of transplanted cells survived, of which only a small number
displayed neuronal-like markers, indicating functional recovery was not linked to the generation of
new replacement neurons from the BMSCs [31,32]. BMSC intracranial transplants showed a similar
ability to improve functional recovery in TBI rat models, but again yielded few surviving neuronal-like
cells, implicating another mechanism of action [33].

Because the effects of BMSCs seemed independent of their ability to form new neurons in the
damaged region of the brain, researchers began exploring the trophic and neurotrophic effects of
BMSC. In treating TBI, re-establishing blood flow to the injured area is critical for cellular growth and
recovery. Endothelial progenitor cells (EPCs) promote angiogenesis through tissue repair and can be
mobilized under various stimulating factors, including vascular endothelial growth factor (VEGF) [34].
However, VEGF and other vascular growth factor levels are reduced following TBI [35]. A multitude
of studies have demonstrated that BMSCs have an angiogenic effect in promoting neurologic recovery
in TBI animal models. Hu et al. found that BMSC transplantation increased the number of EPCs in
the peripheral blood of rats with TBI 24 hours after injury, which correlated with improved modified
neurological severity scores (mNSS) compared to controls [34]. This effect was also investigated by
Guo et al., who demonstrated that BMSCs administered intravenously post-TBI upregulated VEGF and
angiogenin-1 levels in a rat controlled cortical impact (CCI) TBI model. These changes were correlated
with the formation of microvessels [35]. These results emphasize the importance of angiogenesis in
improving neurologic outcome after TBI and the role BMSCs play in facilitating this restorative process.

In addition to promoting angiogenesis, BMSCs have been shown to ameliorate neuronal
dysfunction induced by TBI through the production of neurotrophic factors, which promote survival
and normal growth of surviving neurons. Although neuronal cell death is a major contributor to poor
neurologic outcome post-TBI, surviving neurons have been shown to exhibit changes in dendritic
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morphology, decreased dendritic branches, decreased density of dendritic spines, and decreased
density of synapses in a mouse CCI TBI model [36]. Addressing this cellular dysfunction in surviving
neurons can help improve neurologic recovery. A study by Feng et al. found that administration
of BMSCs via tail vein injection in a weight-drop rat TBI model promoted neuromotor recovery via
upregulation of neurotrophic factors (VEGF and BDNF) and synaptic proteins (synaptophysin) in
the brain. Thus, BMSCs not only helped restore the synaptic function of surviving neurons but also
promoted neuroregeneration [37].

In regards to long-term therapeutic efficacy of BMSCs, Mahmood et al. found that rat BMSCs
injected intravenously one week post-TBI in a rat model survived in the recipient animal three
months post-treatment. In addition, functional improvements and growth factor production continued
to be observed at three months post-BMSC administration [38]. Because improvements persisted
despite declining numbers of BMSC, this study highlights that functional recovery may not be directly
correlated with BMSC graft survival.

Researchers have also investigated the migration-capabilities of BMSCs in order to understand
where the cells home to and whether BMSCs can be therapeutically applied through techniques
less invasive than intracranial transplants. Early work showed that following intra-arterial infusion
in rats with TBI BMSCs migrated to the brain, but no functional recovery was observed. The lack
of therapeutic effect was attributed to the route of administration, where ligation of the internal
carotid artery may have induced hypoperfusion, unintentionally exacerbating the initial injury [39,40].
Exploring an alternative route, using intravenous delivery in a TBI rat model, BMSCs also migrated
to the parenchyma of the injured brain and, in this study, were associated with functional recovery
including improved mNSS and rotarod performance [41]. Work exploring the mechanism of BMSC
migration revealed that inflammatory cytokines and chemokines generated by cerebral injury recruited
BMSCs from the periphery. Human BMSCs have also been tested in TBI rat models where they were
found to demonstrate similar migration patterns and improve functional recovery [40]. Based on
the success of rodent and human BMSCs in improving neurological recovery in TBI animal models,
efforts are now underway to evaluate BMSCs in the clinic.

In addition to treatment using BMSCs, MSCs have been harvested from other tissue sources in
efforts to explore whether the tissue source of MSCs impacts their therapeutic effects. MSCs have
been derived from human peripheral blood that were shown to produce neurotrophic factors and
when administered to a TBI rat model, reduced apoptosis due to injury [42]. Compared to autologous
bone-marrow-derived treatments, MSC derived from peripheral blood offers a less invasive autologous
treatment. However, peripheral-blood-derived MSCs have yet to demonstrate improvements to
cognitive function in TBI models [42], a significant hurdle which must be cleared before replacing
BMSC as a viable therapeutic alternative.

Of growing interest are MSCs derived from human umbilical cord blood (hUCB). hUCB,
when administered intravenously, was able to reduce motor and neurological deficits in TBI rat
models [43]. Further examination of hUCB revealed populations of MSCs with anti-inflammatory
properties [44]. MSCs derived from hUCB have since been tested as treatments for stroke where
they demonstrated the ability to reduce injury infarct volume and improve neurological recovery,
which correlated with reductions in both systematic and neuroinflammation [45,46]. The ability
for human hUCB MSCs to modulate inflammation and improve recovery in cerebral injury models
suggests it may be a promising avenue to explore for the treatment of TBI patients.

3.1. Autologous MSC Therapies in Clinical Research

Based on the results of preclinical work, autologous BMSC therapies for cerebral injuries have
slowly made their way into clinical trials, first in stroke, and now TBI. In both adults and children with
TBI, intravenous administration of autologous BMSCs was proven to be safe [47–49]. There were no
adverse events related to collection or administration of BMSCs, however, dose-related pulmonary
toxicity was observed in adults when administering more than 9 × 106 cells/kg [49], suggesting a limit
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which must be accounted for in future trials assessing efficacy. Additional routes for autologous
BMSC treatments have been explored, including lumbar puncture and intracerebral transplantation.
Trials investigating BMSC administration via lumbar puncture and intracerebral transplantation
showed no serious adverse events during collection and administration of BMSCs or during follow-up,
providing support for autologous BMSCs as a safe treatment for TBI [47,50].

While autologous BMSC therapy for TBI has proven safe, the small number of trials limits
conclusions about efficacy. Combinatorial BMSC therapy for seven patients, using intracerebral
transplantations and intravenous injections, showed improvements in recovery via improved Barthel
index scores, a measure for daily living and functional independence, over the course of six
months [47]. Intravenous injection of BMSCs alone has also been correlated with improved recovery,
as well as a reduction in systemic inflammatory markers in the blood, including TNF-α, IL-1β,
IL-10, and IFN-γ [48,49]. No significant improvement in long-term recovery was observed after
autologous BMSC therapy via lumbar puncture in TBI patients [50]. Based on the limited clinical
data, intravenous BMSC therapy appears to be the most promising route for treating TBI because of
its safety, relatively low level of invasiveness, and correlation with improved recovery and reduced
inflammatory biomarkers [49].

3.2. Non-Autologous MSC Therapies in Clinical Research

While MSC-based therapies have typically utilized MSCs isolated from bone marrow,
researchers have also investigated using MSCs derived from other sources, including hUCB. A recent
clinical trial evaluated whether allogeneic hUCB MSCs could be used to treat patients with sequelae
from TBI. Forty patients were randomly assigned to receive hUCB MSCs via lumbar punctures or no
medical treatment (control) and were followed for six months. Compared to controls, the hUCB MSCs
treatment group showed significant improvements in Fugl–Meyer Assessment scores, which assess
motor function and balance, as well as significant improvements in Functional Independence Measures,
which assess self-care and communication abilities. No serious adverse events were noted. This study
demonstrated allogeneic hUCB MSC administration via lumbar injection was safe and may be able
to alleviate chronic motor deficits in TBI patients [51]. While trials have been limited, an allogeneic
MSC-based therapy would provide an “off the shelf” treatment compared to autologous MSC therapies,
and assuming similar safety and efficacy profiles, provide a more accessible treatment for patients.

The application of hUCB-based treatments has also been applied in the context of stroke patients,
whose neurological damage and deficits often mirror those of TBI. Recently, a phase 1 study treated
adult stroke patients with non-HLA-matched hUCB. Patients receiving hUCB all showed improved
neurological function and the study yielded no serious treatment-related adverse events suggesting
hUCB treatment was safe and potentially efficacious [52]. Based on these results, hUCB-based therapies
may provide readily available treatments for neurological injuries providing support for continued
investigation into the use of hUCB for treating TBIs.

4. Immune Cell Therapies for TBI

While many cell-based approaches have harnessed stem cells for their immunomodulatory
properties, researchers have also investigated the use of immune cell transfers as a treatment for
modulating neuroinflammation [53]. Approaches investigating the direct transfer of immune cells
have homed in on the role and use of regulatory T cells and B cells. In a mouse TBI model, depletion of
regulatory T cells leads to an increase in T cell infiltration of the parenchyma following injury, which
coincides with increased interferon-γ expression and reactive gliosis, as well as worse motor deficits [54].
Therapies which transfer or enhance endogenous regulatory T cells may be a viable treatment option
for reducing T-cell-associated neuroinflammation following TBI.

Recently the role of B cells in wound healing and dampening inflammation has also been
brought to light in the context of TBI. Based off observations that B cells secreted factors which
could modulate macrophage and microglia behavior [55], as well as promote the growth of nerves at
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scar tissue [56], researchers investigated whether B cells could alleviate inflammation and promote
healing following TBI. Intracranial injection of B cells immediately prior to TBI in mice led to
improved cognitive performance and reduced lesion volume compared to saline-treated controls.
Additionally, administered cells persisted for approximately two weeks, indicating transferred cells
fail to proliferate and are unlikely to contribute long-term effects (negative or positive) [57]. While still
in the preclinical stages, cell-based approaches using immune cells may offer a more direct way of
modulating the inflammatory response in TBI patients in order to reduce neuroinflammation and
improve outcomes.

5. Improving Cell-Based Therapies for TBI

NSPC- and MSC-based therapies have proven beneficial in improving functional outcome
in preclinical TBI models and safe in early clinical trials. However, neuroinflammation remains
a significant, unaddressed contributor to TBI-induced functional and cognitive decline. Current research
efforts have largely evaluated the angiogenic, neuroregenerative, and neuroprotective properties
of cell-based therapies, overlooking immunomodulatory effects. Growing evidence, however,
suggests that modulation of the immune system may be a key mechanism through which cell-based
therapies improve neurological function and recovery following TBI. Work by Cox et al. has now
shown increased levels of inflammatory cytokines following TBI in humans, including TNF-α, IL-1β,
IL-10, and IFN-γ, which are reduced after treatment with BMSCs [49]. Additionally, work in TBI animal
models has highlighted the effectiveness of improving cell-based therapies for TBI by enhancing their
immunomodulatory effects.

Efforts to enhance cell-based therapies have investigated strategies which augment the transplanted
cells by providing additional anti-inflammatory molecules or which stimulate the transplanted cells
to become more active or mobile. Inhibitors of apoptosis and inflammation have been shown to
enhance neurological recovery when combined with cell-based therapies. Calpain, one of the first
pro-inflammatory cytokines upregulated following neurotrauma, mediates necrotic and apoptotic
cell death, contributing to axonal degeneration and oligodendrocyte, as well as motor neuron
death. MDL28170, a calpain inhibitor, used as therapy for TBI (in a weight drop rat TBI model),
in combination with BMSCs, reduced neuroinflammation and grafted cell apoptosis, improved graft
survival, and ultimately improved functional recovery compared to control animals [58].

Because hUCB MSCs have shown strong immunomodulatory properties, researchers have also
investigated ways to increase their activity and migration. Granulocyte-colony stimulating factor
(GCS-F) activates hematopoietic cells [59] and the use of G-CSF-activated hUCB cells to treat a TBI rat
model led to a greater reduction in neuroinflammation and improvement in motor recovery when
compared to TBI rats treated with hUCBs alone [60].

Rather than administer cells and immunomodulatory molecules as a cocktail, researchers have
also investigated whether cells could be genetically engineered to enhance their immunomodulatory
and neuroprotective properties. Viral transfection of MSCs has been preferentially used for research
purposes because of the ability for viruses to deliver long-term stable transgene expression with high
transduction efficiency [61]. In a CCI rat TBI model, lentiviral transduction to induce IL-10 expression
in the administered MSCs led to reduced inflammation and improved functional recovery [62].
A study in a mouse ischemic injury model assessing the intranasal application of genetically modified
MSCs highlighted the complexities of overexpressing factors normally associated with growth and
development. MSCs were transduced with adenoviruses containing BDNF, EGFL7, PSP, or SHH.
While MSC-BDNF improved motor function, decreased lesion volumes, and induced cell proliferation
when compared to controls (MSC-empty vectors), the other modified MSC treatments either failed
to provide improvements or even contributed to a decline in motor function. While promising,
the complex interplay between the inflammatory cascade and introduction of genetically engineered
MSCs secreting increased levels of immunomodulatory, growth, and other trophic factors requires
further work to determine viable gene targets or combinations of genes for modification [63].
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Augmentation of cell-based therapies, specifically the enhancement of their anti-inflammatory
properties, has proven effective in treating preclinical TBI models, supporting the need for further work
on cell types which demonstrate robust immunomodulatory capabilities. Genetically modified
MSCs are growing in popularity and have been proven to be beneficial in animal models,
warranting urther investigation.

6. Conclusions

Over the past decade, a series of clinical trials have begun to investigate the safety and efficacy
of cell-based therapies in treating brain damage caused by TBI. These treatments appear to be safe
and have demonstrated the ability to improve neurological and motor functions in human TBI
patients. However, the mechanisms by which these improvements are mediated remain unknown.
Evidence from TBI animal models suggests that reductions in inflammation may lead to recovery,
but supporting evidence in human patients is limited. Additional therapeutic mechanisms could
include the promotion of angiogenesis and neurogenesis through the secretion of neurotrophic and
other factors, or for intracerebral transplantation, differentiation of transplanted cells into new neurons.
Although the therapeutic mechanisms remain unclear, these results are promising and suggest that
current trials may yield considerable clinical improvements for TBI patients. Moreover, clinical trials
using stem cell therapies for other cerebral injuries, such as stroke, are ongoing as well. If successful,
these therapies may be translatable to TBI patients because of the parallels in mechanisms of damage
and recovery between cerebral injuries like TBI and stroke.

Future studies are needed to elucidate the mechanisms by which stem cell therapies promote
recovery following TBI, as well as evaluate the effectiveness of these therapies. In addition, it will
be important to test the effects of immune system modifiers administered with stem cells, as this
combined approach could further reduce neuroinflammation and aid recovery. Ultimately, the goal of
these studies should be to determine whether existing therapies are capable of protecting the brain and
restoring function following TBI.
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