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Abstract
Expensive and extensive studies on the epidemiology of excessive Na intake and its pathology have been conducted over four decades.
The resultant consensus that dietary Na is toxic, as well as the contention that it is less so, ignores the root cause of the attractiveness of salted
food. The extant hypotheses are that most Na is infiltrated into our bodies via heavily salted industrialised food without our knowledge and that
mere exposure early in life determines lifelong intake. However, these hypotheses are poorly evidenced and are meagre explanations for the
comparable salt intake of people worldwide despite their markedly different diets. The love of salt begins at birth for some, vacillates in infancy,
climaxes during adolescent growth, settles into separate patterns for men andwomen in adulthood and, with age, fades for some and persists for
others. Salt adds flavour to food. It sustains and protects humans in exertion, may modulate their mood and contributes to their ailments. It may
have as yet unknown benefits that may promote its delectability, and it generates controversy. An understanding of the predilection for salt
should allow a more evidence-based and effective reduction of the health risks associated with Na surfeit and deficiency. The purpose of this
brief review is to show the need for research into the determinants of salt intake by summarising the little we know.
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It took 85 % of the time life has existed on earth for animals
to emerge onto dry land, and that occurred only when they
could take with them the 0·9 % salty water that mimicked the
primordial sea they relinquished(1–3). Hence, for terrestrial
animals, Na, the part constituent of common salt, is an indispen-
sable, irreplaceable, life-supporting cation. In many animals,
the means for acquiring and retaining it have evolved, respec-
tively, Na appetite and kidneys. Indeed, Na demarcates the
two forms of life by its motility, essential for animals but absent
in plants.

For humans, salt may have initiated trade and urbanisa-
tion surrounding salt mines (European). Salt also serves
religion and ceremony, and into the 20th century, its use for
conserving food prevented starvation in both cold and hot
climates(4–6).

Today, worldwide, salt is consumed daily, repeatedly, total-
ling an amount that is in excess of that required to preserve life,
which many hold to increase society’s disease burden, vascular
and cancerous, significantly and cause three million deaths
annually(7). Obesity is estimated to cause four million deaths(8),
but a million of those may be due to salt intake(9–11), so that while
the two may be similarly deadly, the causes of obesity are
researched incomparably more(12,13). The reason for this is not
clear, but it may be that obesity is prominently visible, whereas
salt is allied to a silent killer, hypertension(13).

The sole methods proposed to regulate salt intake are based
on meagre evidence and their efficacy is dubious. It stands to
reason that, if we knew the causes of salt intake, we could regu-
late it better(14). The purpose of this brief review is to highlight
the need for research into the determinants of salt intake by
summarising the little we know.

Critique of causes of salt intake and intervention

Thedeterminants of our excessive salt appetite havebeen scarcely
researched and, consequently, are scarcely understood(14–18).
Research has been primarily into the consequences of salt intake,
primarily comprising large-scale studies, which have engendered
the consensus that salt is toxic, along with a nuanced contention
that it is less so(7,9–11,18–27).

The extant hypotheses about the causes of excess salt intake
are that mere exposure to salt early in life, together with Na infil-
trated without our knowledge into our bodies via heavily salted
processed food, determines our lifelong intake(20,23,26,28,29). Yet,
shoppers and diners may choose comparatively heavily salted
food because salt enhances the flavours, rather than for its taste
per se(29,30), and salt intake is similar or greater where food is less
industrialised(7,24). Similarly, the evidence for early exposure as a
determinant of later salt intake is poor, and many animal experi-
ments have failed to confirm it(15,16,31,32). The opposite is better
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evidenced: early Na restriction increases lifelong intake(31–39).
Moreover, growing children and adolescents ingest and prefer
more salt than they were ever previously exposed to(16,39,40)

(Fig. 1). Hence, both extant hypotheses are meagre and
unproven suppositions for a phenomenon as potent, pervasive
and persistent as similar ingestion of salt across people with
widely differing diets(7,24,41).

Nevertheless, these hypotheses engender the prime methods
advocated to regulate salt intake, advisory, admonitory and
supervisory(23). They are adopted widely, but selected instances
have attained extraordinarily diverse results as measured over
years (from an increase of 0·5 to a decrease of 4·8 g/d salt per
individual(23)). However, long-term intervention studies and
metanalyses included no comparison groups, provided no data
on prior trends and rarely reported concomitant dietary and BMI
changes which may determine Na intake. Moreover, they were
confounded by sex, regional, and socio-economic differences,
epochs of increases during intervention, different samples
before and after intervention and changes in energy intake
and diet(23,41–46). Therefore, it is moot whether reduction is
intervention-related any more than the parallel decrease in total
energy intake, to which Na intake is inextricably linked(45,46).
Further, failures and contradictory data for the same countries
in line with global increases or stability have also been
reported(14,18–28,42,47–51).

Excess salt intake has been related to many severe diseases,
and yet it is uncertain how its use can be limited because too little
salt may also contribute to ill health. People and communities
differ so much that epidemiological studies, the mainstay of
the Na–disease correlation, may swamp diversity, which may
range from strong positive relationships to none or inverse
relationships, even within the same study(19,25–27,41,42,52–54).
A J-shaped curve has been proposed to account best for the
data(19).

Wide acceptance of the infiltration and early exposure
doctrines may divert us from efforts to understand the causes
of high salt intake.

Salt appetite and need

Salt appetite in animals, that is, its determinants and mecha-
nisms, has been well studied. Studies have revealed that bodily
Na deficit rapidly transforms the perception of the taste of even
concentrated salt from repulsive to desirable. The transforma-
tion is mediated by extensive brain circuits, neurohormones
and hormones(2,55–57). Consistent with the benefit suggestion,
salt consumption to alleviate a deficit frequently engenders a
lifelong enhancement of salt appetite. It has been proposed that
this is adaptive, prioritising salt by increasing its hedonic attrac-
tion, and hence salience, and storing Na sources in memory, all
as increased protection to prevent hyponatraemic challenge,
which has now become a proven hazard. The hazards have
been suggested to be ecological (Na-scarce environments),
constitutional or pathological (tendencies for, and individual
causes of, dehydration and hyponatraemia)(58–68).

While these physiological systems exist in humans too,
the behaviour differs markedly. The remedial hedonic transfor-
mation is vestigial at best in humans and poorly evidenced.
In fact, no reliable study of salt-deficient humans wanting
salt spontaneously exists, and the studies that have been con-
ducted failed to demonstrate it convincingly(69–74), but see
Leshem et al.(75) andWald & Leshem(76). Indeed, in contradiction
to studies in animals, even neonates(59,77), studies in humans
have found that they do not crave, seek or ingest salt when in
need and can die from its lack in the body with salt at hand(78).

In contrast to animals, whose salt consumption can be
remedial, which is absent in humans, humans take pleasure from
consuming salt with almost every food andmeal. Daily it pleases
all the inhabitants of the planet. Salt is invariably takenwith food,
which it enhances in many ways, increasing saltiness, sup-
pressing bitterness, promoting taste where it is understated
and imbuing it where absent, modifying texture and preserving,
frequently when its own taste is covert(15–17,56,79,80). Although this
is consistent with the infiltration hypothesis as a cause of high salt
intake, before acceding to it, recall the issue: why has our sense
of taste evolved to respond in this way? It seems to be no coinci-
dence because while the infinite variety of tastes and flavours is
served by four taste receptors on the tongue, reinforced by olfac-
tion, there is one more, unique among taste receptors in that it is
dedicated solely to one ion –Na, the salt taste receptor (to which
olfaction cannot contribute). There may even be one or two
more, less specific, backup receptors(81,82). No other nutrient,
taste molecule or ion is awarded such specificity in humans or
animals. These receptors, in addition to the taste of salt, also
mediate some of its effects on other tastes via peripheral (oral)
or brain-mediated neural activity(81,83). Indeed, Na deficiency
can impair other taste sensations(71).

Thus, human salt appetite does not appear to be remedial as it
is in animals, but it may be beneficial in other ways that enhance
its taste to promote its intake.

Acquisition of salt appetite

As already mentioned, it is generally believed that early expo-
sure to salt in food determines lifelong intake, but the evidence
is poor, and therefore, I shall detail what we do know.
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Fig. 1. Salt preference in teens (r 0·64, P< 0·02). From Leshem(16).
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The precocious rat pup brain has the salt appetite already at
birth. By 12 d of age, the pup will lick salt if it requires it and, by
weaning, it develops the ability to pinpoint Na among cations,
possibly paralleling the process in the human fetus(59).

Many preterm (about 10 % of babies) and some full-term
babies are at risk of hyponatraemia and receive Na supplemen-
tation to ensure proper growth and neurological and cognitive
development(31,84–87). The severity of the obligatory neonatal
dehydration and Na loss predicts the Na content of the diet
we will compose in childhood and possibly beyond(36–38,88)

(Fig. 2).
Only some babies have a liking for salt(34), in part dependent

on birth weight, blood pressure(37,89–91) and the severity of their
mother’s morning sickness(33–36). The severity of the mother’s
morning sickness also has a long-term effect, increasing salt
appetite in her offspring in their infancy, adolescence and
adulthood(33–36). Then, in infancy, childhood vomiting and diar-
rhoea contribute further to the perinatal influences increasing
later salt appetite(35–37,88) (Fig. 3). It is assumed that vomiting,
whether maternal during pregnancy or in the child, and diar-
rhoea cause Na loss, thereby engaging the protective enhance-
ment mentioned above.

As it develops, the human child increasingly has a predilection
for salt, marginally related to early dietary experience(32,92,93), but
significantly related to neonatal hyponatraemia and to
growth(16,31,32,36–40,88,89). It is important to note that this increase
in later salt appetite occurs with no experience of salt taste, a
phenomenonestablished in rats(2,58,65,66,94); in babies, the neonatal
Na supplementation is administered intravenously which may
not condition a salt preference(95). In fact, it may be that the
consequent increase in dietary Na of such children (aged
10–15 years) is unaccompaniedby a preference for the taste of salt
per se(37) (but see Liem(89)), a knowndissociation(80,89,96). Finally, in
the adolescent growth spurt, Na intake outstrips the intake of
energy content, other macronutrients and electrolytes, together
suggesting a unique developmental or maturational require-
ment(39,40,84–86,97,98).

These observations, particularly that children’s salt intake is
greater than adults’ salt intake, and boys’ salt intake greater than

girls’ salt intake(39), contradict the pervasive notion that ‘mere
exposure’ to dietary salt, specifically early exposure, determines
the subsequent attraction for salt and its intake. ‘Mere exposure’
is difficult to confirm in humans, but many studies in which rats
were exposed to high dietary salt from gestation to adolescence
have generally failed to reveal a systematic, Na-specific, relation-
ship to long-term salt preference(16,89).

Thus, in humans, its enhancement by early Na loss, restriction
or deficiency is the most substantiated determinant of long-term
salt appetite. The extent of the salt intake that is thus determined
remains to be investigated, but morning sickness may affect
33 % of pregnancies(33,99) and in a small study, increased salt
intake in 50 % of adolescents was due to putative perinatal
Na losses, a phenomenon consistent with other early metabolic

Fig. 2. Correlations of neonatal serum and dietary sodium in children by (a) ethnicity and (b) sex. Black symbols and continuous lines, Arabs and boys, respectively;
white symbols and dashes, Jews and girls, respectively. Correlations: Arabs, r 0·333 (NS, but without outlier, r 0·470*); Jews, r 0·520*; boys, r 0·549*; girls, r 0·400*. *
P> 0·05. Data from forty-one children aged 10·5 (SEM 0·2) years. From Shirazki et al.(37), with permission.

Fig. 3. Relation of history of mineralofluid loss (maternal vomiting during
pregnancy, infantile vomiting and diarrhoea) and avidity (sum of all test
measures) for the taste of salt or sugar (the mean values with their standard
errors for salt are higher than for sweet because they include scores for
salting of food and dietary NaCl). 0= no history of mineralofluid loss, 3= highest
incidence of mineralofluid loss. ** P> 0·01, different from 0. * P< 0·01, different
from 3. The data are from fifty (8, 15, 18, 9 by mineralofluid loss score) girls
and boys aged 14 (SEM 2) years, and their mothers. From Leshem(36) with
permission. , NaCl; , sugar.
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programming(31,32,36,85) (Figs. 2 and 3). Together, these could
suggest a significant contribution to high salt intake in the
population.

Adult salt intake

However, in adults, Na loss, restriction or deficiency no longer
enhances salt appetite(100).

Adult salt intake is lower and settles into different patterns for
men and women. Men take more salt per kg of body weight than
women by about 20 %, possibly because men sweat more and
have a greater lean mass(16,76). Men’s higher intake also possibly
protects them from depression because low dietary Na can
contribute to depression, and women suffer more from
depression(39,101) (Fig. 4). In rats, low Na also indicates depres-
sion, and antidepressant treatmentmay reduce salt intake(102,103).
The relationship of salt intake and mood is examined briefly
below.

Salt and the elderly

Unlike other pleasures, sensations and tastes, such as thirst and
hydration thatwanewith age, the taste for salt probably does not.
Older people continue to relish their salt, and it may therefore be
useful in maintaining their nourishment in age-related anorexia
and hyponatraemia(39,104–106). Older people are frequently
hypertensive and hence routinely recommended to restrict Na
intake, although some researchers have suggested the opposite
advice might be given(22,53). Cognitive impairment related to
salt intake in the elderly has been studied, but the results are
currently indeterminate(105–109).

Sodium deficiency

Dietary Na deficiency is rare, occurring in extreme cases of
eating or drinking disorders(110). Hyponatraemia, especially
frequent among the institutionalised, hospitalised and the
elderly, is associated with multiple pathologies, including of
mood, and with mortality, and it is due to multiple fluid and

electrolyte disorders(111,112). Hyponatraemia is also frequent in
physical exertion, due to Na loss in sweat or overhydration
that leaches Na, particularly among less trained athletes.
Nevertheless, athletes can be in mortal danger of hyponatraemic
crisis because its diagnosis requires astute health work-
ers(78,111,112). These counsellors are necessary because unlike
animals, humans seek salt to please their palate, but not to save
their life(78). Hence, many sports authorities recommend Na
supplementation for safety, as well as to maintain athletic perfor-
mance and accelerate recovery after it(78,113–115). Such effects
could condition a salt preference and contribute to its intake(76).

Substantive findings suggest that low dietary Na contributes to
CVD, whether in general or only in vulnerable individuals, as
in the case of high Na intake, is not however known(19,22,25,27,53,54).
If Na intake alleviates the discomfort caused by these diseases,
its taste may become preferred, and thus, its intake may be
increased.

Are there benefits supporting excess salt intake?

Na intake is essential to all bodily functions and to all organs, tis-
sues, and cells, their membranes and contents, but current
physiological knowledge indicates that a pinch a day suffices
(about 1·3 g salt or 500mg Naþ), our intake far exceeds this
amount. Evolutionary rationale suggests that prominent charac-
teristics, such as perceiving the taste of salt as delectable, are
readily explainable as adaptations, but it is not known how
our excess salt intake may be beneficial(15–17,39). Might there
be benefits yet to be discovered driving this excessive
intake(39,116)?

Benefits would tend to promote the inheritance of an
increased salt appetite, whereas ailments such as hypertension,
stroke and cancer would not tend to restrain it because evolu-
tionary rationale biases for the inheritance of properties that
are effective prior to reproductive age (the benefits), rather
than after it (the ailments). Further, some of the maladaptive
effects of Na may be adaptive in other circumstances(62,116–118).
Nevertheless, currently there is little evidence that salt appetite
is inherited(119–121).

Fig. 4. Relationship of weight-adjusted dietary sodium (a) and adding salt (b) to depression. Men, line; women, dashes. Both variables are adjusted for dietary energy.
The relationships are significant for women. From Goldstein & Leshem(39).
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Another suggested determinant is addiction. This implies that
all 7·6 billion of humans are addicted to salt, despite the obvious
fact that pure crystalline salt is not craved, ingested, injected or
inhaled, even by people in putativewithdrawal on a low-Na diet.
This also dissociates animal studies that proposed that brain Na
appetite substrates also serve other addictions(2,122). Moreover,
an addiction that is a norm might be a contradiction in terms,
and dealing with it is rather daunting, considering our failure
with other addictions, all of them together comparatively
imperceptible(123,124).

Conditioning salt preference through exertion, mood,
health and disease

Many physiological changes, modifying salt appetite or modified
by it, may have little to dowithmaintaining Na homoeostasis. On
the other hand, they may condition subsequent Na intake, if
when Na is lost, salt intake alleviates some discomfort. This
may underlie the increased acceptability of isotonic drinks in
athletes and exercisers and in patients with Na-wasting diseases
who discover salt to be prophylactic, and for the relief of
hyponatraemia(35,68,76,125).

In animal studies, salt was found to mitigate stress and
facilitate social behaviour, which are useful effects, while
low Na and its related hormones were found to indicate
depression(2,55,102,103,126). The human data are less consistent.
Hostile male medical students seem to prefer salt(127), and low
dietary Na contributes to depression in Japanese men and
marginally in American women, who may self-medicate with
salt to improve their mood(39,101). Other research has failed to
relate the two or indicated cultural and dietary dependence,
and yet other studies suggested salt may increase anxiety and
even panic(127–132).

Before or after exertion, many athletes drink Na-containing
fluids and some swallow salt pills, and salt can aid recovery after
exertion and condition a preference(76,113–115). However, it is not
known whether this generalises to the athlete’s dietary intake.

Desert dwellers relish salt, possibly to support hydration.
They trade in salt and preserve their food in it, and it sustains their
crucially important livestock and features prominently in their
folklore(118).

In some salt-wasting diseases, such as congenital adrenal
hyperplasia, children frequently prefer salt to medication. It
may ameliorate their affliction acutely and so may become
favoured, whereas medication requires persistence and compli-
ance, and even though its therapy is more comprehensive, long
delayed effects condition poorly(95).

Salt may mitigate pain(132): dietary Na has an inconclusive
direct relation to headache, is inversely related to migraine(133)

and may alleviate certain forms of fibromyalgia(134,135). There
is even a hypothesis that our high salt intake crucially protects
us in the case of the many desiccating diseases(62).

A long-standing issue of whether Na can be stored in the
body has been resolved with the discovery of hypertonic Na
in subcutaneous skin andmuscle(136). More importantly, immun-
ity may be compromised by high salt intake, although some
immune protection may be reduced with reduced salt(137,138).

Such beneficial effects might condition a preference for the
taste of salt, contributing to its intake(35,76,123). Similar ideas have
been considered for food intake, where palatability is central to
the reinforcement hypothesis contributing to food intake and
obesity(2,125,139). Salt, of course, contributes greatly to palatability.

It is also possible that short-term negative effects condition
reduced salt intake(76), but their potential for regulation of salt
intake has not been explored.

Humans dislike salt and do not eat it

A very significant and frequently overlooked observation is that
animals eat salt(94,140), whereas humans do not(16). Surprisingly,
the delectability of salt for humans is unrelated to its taste. Very
few people eat pure salt (an observation that militates against the
addiction hypothesis).

Pure salt is inedible not merely because of it being concen-
trated (and activating aversive signalling taste receptors(82,83)),
given that it is also aversive at low concentrations in water.
This may bemore than an issue of hedonism; it may be a physio-
logical response because salt in solution is emetic(141). Indeed,
there are no salty drinks. Paradoxically, the same concentration
(about 1 %) in an adulterated aqueous solution, such as tomato
soup or beef broth, is relished(16,56).

In contrast, animals lick rock salt, do not like salt in food
(wherein its intake cannot be regulated(142,143)), prefer it in sol-
ution (wherein its intake can be regulated to the required
0·9 %(143)) and relish it most in the 0·9 % physiological concentra-
tion (like a saline drip). Hyponatraemic humans, however,
require health workers to both diagnose their condition and
administer Na(68,78,111–114). Further, Na-deficient animals recog-
nise Na in any mineral form(67), whereas humans do not, taking
only the single form, table salt (NaCl), suggesting that Na, the life-
essential ion, is not the target cation taste as it is for animals(16).

The comparison with the animal research is instructive
because the animal behaviour, as outlined above, defines the
behavioural requirements for the maintenance of Na homoeo-
stasis, each of which humans abrogate, suggesting strongly that
the humans’ love of salt in food does not stem from physiological
Na requirement.

The causes must therefore be behavioural, with the caveat
that there may well be specific requirements during early devel-
opment and growth.

Limitations

Confirmation, but particularly further research, of the determi-
nants of salt intake is clearly required. Specifically, the signifi-
cance of conditioning to excess Na intake is indeterminate.
Research of this underrepresented science is limited at present,
but resources for its encouragement should be found. The alter-
native notion that the excess salting of food has no palpable
cause is not tenable.

Conclusions

Throughout life, our love of salt peaks and dips. Salt flavours our
food and promotes its consumption and thus possibly obesity; it
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sustains and protects us in physical exertion, may occasionally
be remedial, contributes to our growth and ailments and gener-
ates controversy(27).

Nonetheless, salt itself is inedible.
The attribution of this complexity to early dietary exposure

and processed food is unsubstantiated, as well as inadequate.
The fundamental question persists of why we love the taste

of salt.
An understanding of the predilection for salt taste should

improve evidence-based intervention for effective reduction of
the health risks associated with both Na surfeit and deficiency.
For example, individual control of salt intake could benefit from
counselling focused on children born to mothers who had high
rates of nausea and vomiting during pregnancy, were hypona-
traemic as neonates, or suffered Na losses in infancy, people
with mood issues, and dissociating salt for exertion and diet
for athletes. None of this is currently applied, and probably little
known among thoseworking to regulate Na intake. Note that salt
need not be the direct cause of its associated effects, but can
serve as the sensory marker for them as a ‘conditioned stimulus’
in conditioning theory.

However, most critical and promising are the determinants of
salt intake, the discovery of which is surely awaiting novel and
creative approaches in this crucial domain of human behaviour,
nutrition and illness.

As astonishing science prepares to launch our first space-
ship to Mars, it has yet to unravel the reasons for our daily
80 000-tonne sprinkle of salt(41). Despite not knowing why
we need so much salt, the ship will be supplied with it(144).
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