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Objective. Immunotherapy is a promising breast cancer treatment. Nonetheless, tumor heterogeneity and the interaction between
immune cells in the tumor microenvironment limit its effectiveness. Formononetin—extracted from the Chinese medicinal plant
Astragalus membranaceus—can inhibit tumor growth, induce apoptosis and angiogenesis, and reverse multidrug resistance.
However, its efficacy and mechanism of action on the immune cells in breast cancer remain unclear. Here, we screened immune-
related genes of breast cancer to determine the potential of formononetin as a therapeutic.Methods. GSE103512 and GSE139038
breast cancer microarray data and immune-related gene data were obtained from the GEO and ImmPort databases, respectively,
to analyze the differentially expressed immune-related genes (IRGs) in breast cancer tissues compared with normal breast tissues.
Protein-protein interaction (PPI) analysis was performed using the STRING database to screen differentially expressed IRGs
based on the topological parameters. *e Kaplan–Meier test was applied to detect differentially expressed IRGs associated with
breast cancer survival, and the interaction of formononetin with differentially expressed IRGs was analyzed using molecular
docking. Finally, the relationship between differentially expressed IRGs and breast cancer immune cell infiltration was analyzed
using the TIMER2.0 database. Results. A total of 29 differentially expressed IRGs of breast cancer were screened through GEO and
ImmPort databases and 10 key differentially expressed IRGs based on the topological parameters from the PPI network. Among
these, CXCL12, ESR1, IGF1, and FOS were associated with breast cancer survival. Furthermore, IGF1, ESR1, and CXCL12 were
found to have stable binding sites for formononetin. *ese genes were associated with substantial immune cell infiltration in
breast cancer tissues. Conclusion. In conclusion, formononetin may exert antitumor effects by acting on CXCL12, ESR1, and IGF1
and may have a potential synergistic effect with immune checkpoint inhibitors.

1. Introduction

Breast cancer is the most prevalent cancer worldwide with an
estimated 2.26 million new breast cancer cases in 2020,
accounting for about 11.7% of the total new cancer cases [1].
Breast cancer deaths account for approximately 15% of all
cancer deaths, making it one of the main causes of cancer-
related deaths [2]. Multimodal breast cancer therapies have
been documented. *ese include chemotherapy, surgery,
targeted therapy, hormone replacement therapy, radiation
therapy, complementary therapy, gene therapy, and stem
cell therapy [3]. However, advanced and recurrent breast
cancer are still difficult to cure.

In recent years, immunotherapeutic avenues have ad-
vanced the treatment of refractory cancers. *e immune
system, the main of defense in the human body, consists of a
variety of immune factors, including cells and tissues [4],
which are related to the standard treatment and long-term
survival of patients [5]. Breast cancer has been considered an
immunologically “cold tumor” due to the relatively low
levels of T cell infiltration and mutational load [6]. Recently,
the role of the immune system has been critically reevaluated
in breast cancer progression and treatment response, pro-
viding an opportunity for immunotherapy. *e expression
of the immune checkpoint protein—programmed cell death
protein 1 and its ligands (PD-1 and PD-L1)—in the tumor
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microenvironment supports the role of immune editing in
breast cancer [7, 8]. However, owing to the significant
differences in immune cell infiltration and immune response
in breast cancer, many patients with PD-1+ cancers fail to
show a long-pasting suppressive response to PD-1 [9, 10],
and overcoming this challenge continues to be a bottleneck
in cancer treatment.

Isoflavones are estrogen-like polyphenols with potent
anticancer properties [11]. Isoflavones exert anticancer effects
via nonhormonal mechanisms [12]. *ey can inhibit angio-
genesis, induce cell apoptosis, inhibit DNA topoisomerase,
and suppress cancer cell differentiation [13, 14]. For-
mononetin—an isoflavone extracted from the Chinese me-
dicinal plant Astragalus membranaceus—has multiple
pharmacological effects [15]. It can inhibit tumor growth,
induce apoptosis, prevent angiogenesis, and act against
multidrug-resistant tumors [16, 17]. In addition, for-
mononetin can regulate various transcription factors and
growth factor-mediated carcinogenic pathways. *erefore, it
can not only inhibit tumor growth but also alleviate the
chronic inflammation related to chemotherapy resistance [18].

Many diseases, including cancers, have complex patho-
genesis and seldom respond effectively to a single treatment
forever [19]. *e small molecule compounds from herbal
medicines have the property of multiple target interventions
and great potential as drug candidates in complex and re-
fractory diseases. However, the lack of comprehensive
knowledge about the mechanism of drug action has hindered
the broader application of natural products in drug research
and development [20]. Bioinformatics analysis of microarray
data is a new approach for exploring disease-related gene
expression, predicting molecular interactions, determining
key regulatory pathways, and identifying targets for disease
therapy [21, 22]. Herein, we applied bioinformatics analysis
and molecular docking techniques to predict the compre-
hensive mechanism of action of the natural compound for-
mononetin in tumor immunity and provide a theoretical
reference for immunotherapy of breast cancer.

2. Materials and Methods

2.1. Data Source and Processing. Gene Expression Omnibus
database (GEO, https://www.ncbi.nlm.nih.gov/geo/) is a
public functional genomics database that provides array and
sequence-based data. *e original RNA detection in Homo
sapiens was searched using the keyword “breast cancer,” and
GSE103512 and GSE139038 were selected. GSE103512 came
from the GPL13158 (HT_HG-U133_Plus_PM Array Plate)
platform and included 65 breast cancer tissues and 10
normal breast tissues (data submitted on Sep. 05, 2017).
GSE139038 was obtained from the GPL27630 (Block_-
Column_Row ID) platform and included 41 breast cancer
tissues and 24 normal breast tissues (data submitted on Oct.
17, 2019).*e differentially expressed genes (DEGs) between
breast cancer tissues and normal breast tissues were screened
using GEO online analysis tool. DEGs with P< 0.05 and
(logFC)> 1 were regarded significantly differentially
expressed. *e DEGs shared by the two datasets were ob-
tained using Venny 2.0.2, and the heat map was generated

using the R ggplot2 package. *e Database for Annotation,
Visualization, and Integrated Discovery (DAVID: https://
david.ncifcrf.gov/) is a comprehensive functional annotation
tool and is used for gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis of DEGs. *e cutoff threshold was set as
P< 0.05.

2.2. Differentially Expressed IRGs Analysis and PPI Network
Construction. We obtained the list of IRGs from the Im-
munology Database and Analytical Portal (ImmPort,
https://www.immport.org/) database and used Venny 2.0.2
to obtain the differentially expressed IRGs that are common
between DEGs and IRGs. *e STRING database (https://
String-db.org/cgi/input.pl) and Cytoscape 3.5.1 software
were used to construct the protein-protein interaction (PPI)
network of differentially expressed IRGs in breast cancer
[23, 24]. CytoNCA performs network centrality analysis to
identify key genes in biological networks and includes a
variety of powerful visual analysis modules to generate
output in various forms, such as graphs, tables, and charts,
and to analyze the associations between all measures [25].
*e CytoNCA plug-in was used to analyze the topology of
the PPI network.*e primary nodes in the PPI network were
identified using topology analysis and regarded as the pri-
mary differentially expressed IRGs that can be considered as
biomarkers in breast cancer. GO and KEGG analyses ex-
plored significantly dysregulated pathways and biological
processes, cellular components, and molecular functions
related to differentially expressed IRGs using the DAVID
database. *e cutoff threshold was set as P< 0.05.

2.3. Kaplan–Meier Test. Kaplan–Meier plotter (https://
kmplot.com/analysis/) was downloaded from GEO, EGA,
and TCGA with gene expression data, overall survival (OS),
and recurrence-free survival (RFS) information and pro-
cessed using the PostgreSQL server to integrate both gene
expression and clinical data [26]. It included 54,675 genes
affecting individual survival in 10461 cancer samples (5143
breast cancers, 1816 ovarian cancers, 2437 lung cancers, and
1065 gastric cancers). To analyze the prognostic values of
specific genes, patient samples were divided into two groups
based on the expression of various quartiles of the proposed
biomarkers. Univariate and multivariate Cox proportional-
hazards analyses were performed by Kaplan–Meier survival
plots to compare the two patient cohorts. *e risk ratios
were calculated with 95% confidence intervals and log-rank
P values. OS refers to the duration from the time of diagnosis
till death due to any cause. RFS refers to the time from lesion
clearance to tumor recurrence. *e Kaplan–Meier plotter
chi-square test was used to determine the relationship be-
tween differentially expressed IRGs and breast cancer sur-
vival. *e cutoff threshold was set as P< 0.05.

2.4. Molecular Docking. *e 2D structure of formononetin
was downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov). Water and ligands
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were removed from the protein using PyMOL 1.7.6 [27].
Protein crystal structures of differentially expressed IRGs
were downloaded from the PDB (https://www.rcsb.org/)
and stored in.pdb format. *e minimum energy was
calculated using the Chem3D Pro14 software and then
saved in.mol2 format. AutoDock, a suite of automated
docking tool designed to predict the binding of small
molecule substances to receptors with known 3D struc-
tures, was applied to add hydrogen to the target protein
and calculate Gasteiger charges. Differentially expressed
IRGs (as receptors) and formononetin (as a ligand) were
imported into AutoDock for molecular docking and vi-
sualized using PyMOL. *e conformation with the lowest
energy was regarded as the optimal candidate.

2.5. Correlation Analysis between Differentially Expressed
IRGs and Immune Cell Infiltration in Breast Cancer.
Tumor immune estimation resource (TIMER2.0) database
(https://timer.cistrome.org) is used for analyzing tumor im-
mune infiltration and visualizing the results [28]. *e TIMER
algorithm was used to investigate the infiltration levels of
CD4+ and CD8+ Tcells, B cells, dendritic cells, macrophages,
and neutrophils. *e relationship between differentially
expressed IRGs and the level of immune infiltration in breast
cancer was explored in “Gene” module. P< 0.05 was set as the
cutoff criterion. *e correlation between risk score and im-
mune infiltration was calculated using Pearson correlation.

3. Results

3.1. Differentially Expressed Gene Analysis. GSE103512 and
GSE139038 were downloaded from the NCBI-GEO database.
Based on GEO-GEO2R analysis, DEGs were identified by
setting P< 0.05 and (logFC)> 1. We screened a total of 163
DEGs from GSE103512 and GSE139038 employing Venny
2.0.2 (Figure 1). Among these, 142 were upregulated and 21
were downregulated. *e heatmap and volcano plot were
generated using the R ggplot2 package (Figures 2 and 3).

3.2. Gene and Pathway Enrichment Analysis of DEGs. *e
DAVID database was used to enrich the GO and pathways of
DEGs. We carried out GO enrichment analysis on 163
DEGs, based on categories of the molecular function, bio-
logical process, and cell components (P< 0.05). *ere were
45 terms of molecular functions, including heparin binding
(GO:0008201), chemokine activity (GO:0008009), peroxi-
dase activity (GO:0004601), transcription factor binding
(GO:0008134), and chemokine receptor binding (GO:
0042379); 28 terms were identified for cellular components,
such as extracellular exosome (GO:0070062), proteinaceous
extracellular matrix (GO:0005578), extracellular matrix
(GO:0031012), membrane raft (GO:0045121), and endocytic
vesicle lumen (GO:0071682); and 126 terms were identified
for biological processes, including cell chemotaxis (GO:
0060326), positive regulation of fibroblast proliferation (GO:
0048146), cellular response to interleukin-1 (GO:0071347),
and positive regulation of cell proliferation (GO:0008284).
*e KEGG pathway enrichment analysis was performed on

163 DEGs using the DAVID database, setting P< 0.05 as the
cutoff value. *e results gave eight pathways, including
proteoglycans in cancer (hsa05205), cytokine-cytokine re-
ceptor (hsa04060), pathways in cancer (hsa05200), che-
mokine signaling pathway (hsa04062), and choline
metabolism in cancer (hsa05231).

3.3. PPI Analysis of Differentially Expressed IRGs. Venny
2.0.2 was used to screen the genes shared by DEGs and IRGs
and 29 differentially expressed IRGs were identified. We
used the STRING database and Cytoscape software to
construct a PPI network with 26 nodes and 69 edges and to
quickly analyze the interaction of differentially expressed
IRGs. Cytoscape’s plug-in CytoNCA was used to perform
topology analysis of the PPI network (Figure 4). According
to the criteria, “BC,” “CC,” “DC,” “EC,” “LC,” “NC,” “SC,”
and “IC,” the top ten candidate nodes were selected, in-
cluding CXCL12, IGF1, EGFR, JUN, CXCL2, ESR1, FOS,
SAA1, CCL28, and TGFBR2 (Table 1).

3.4. Enrichment Analysis of Differentially Expressed IRGs.
*e DAVID database was used for GO and KEGG en-
richment analysis of 29 differentially expressed IRGs. Both
analyses used P< 0.05 as the cutoff value. Enrichment
analysis of these differentially expressed IRGs revealed
possible pathways involved in breast cancer immunity. GO
analysis revealed 21 terms for molecular function, 11 for
cellular components, and 73 for biological processes
(Figure 5(a)). KEGG pathway enrichment analysis of dif-
ferentially expressed IRGs identified 21 pathways
(Figure 5(b)) and among them were positive regulation of
fibroblast proliferation, inflammatory response, positive
regulation of ERK1 and ERK2 cascade, lymphocyte che-
motaxis, estrogen signaling pathway, MAPK signaling
pathway, NF-kappa B signaling pathway, Ras signaling
pathway, and TNF signaling pathway associated with PD-1/
PD-L1-mediated immune escape.

3.5. Survival Analysis of Differentially Expressed IRGs. To
further elucidate whether these differentially expressed

GSE139038

GSE130512

2551 163 152

Figure 1: Overlapping 163 DEGs identified from two datasets. *e
blue area represents GSE139038. *e red area represents
GSE103512. *e intersection means the DEGs shared by the two
datasets.
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Figure 2: *e heatmap of DEGs. *e color from blue to red represents a trend from low expression to high expression.
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IRGs contributed to the survival period in patients with
breast cancer, we analyzed OS and RFS for differentially
expressed IRGs utilizing Kaplan–Meier plotter. *e results
showed that CXCL12, ESR1, IGF1, and FOS were signifi-
cantly associated with the survival of breast cancer. In
addition, we found that high expression levels of six dif-
ferentially expressed IRGs were associated with poor RFS
and OS in breast cancer patients, suggesting the remaining
four differentially expressed IRGs can be used as bio-
markers for breast cancer (Figure 6).

3.6. Molecular Docking Model. Molecular docking is an
efficient auxiliary screening method to study the interac-
tion between ligands and proteins and locate the best
binding mode. Molecular docking has wide application
prospects in the field of basic research on effective sub-
stances in traditional Chinese medicine. In this study, to

further explore the interaction mechanism of for-
mononetin with the four differentially expressed IRGs, a
molecular docking model was constructed. IGF1 (PDB ID :
1GZR, binding energy: −6.05 kcal/mol), ESR1 (PDB ID :
1AKF, binding energy: −7.72 kcal/mol), and CXCL12
(PDB ID :1SDF, binding energy: −6.77 kcal/mol) had a
stable binding point with formononetin small molecular
model, where the residue interacts via hydrogen bonds
(Figure 7).

3.7. Correlation between IGF1, ESR1, CXCL12, and Immune
Cell Infiltration in Breast Cancer. *e TIMER2.0 database
was used to analyze the relationship between the three
differentially expressed IRGs and immune cell infiltration in
breast cancer. As shown in Figure 8, the abnormal ex-
pression of all three differentially expressed IRGs was cor-
related with massive infiltration of immune cells. *e
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Figure 3: *e volcano plot of DEGs. Red points represent upregulated DEGs, and blue points represent downregulated DEGs.
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horizontal coordinates in the graph represent the abundance
of immune cells and the vertical coordinates represent the
gene expression levels, where P< 0.05 indicates a significant
correlation between abnormal gene expression and immune
cell infiltration.

4. Discussion

Breast cancer is among the most common and deadly
malignancies found in women worldwide and is charac-
terized by highly heterogeneous biological and clinical
features [29]. *e development of breast cancer is influ-
enced by the interaction between cancer cells, the micro-
environment, and the immune system [30]. In this study,
GEO and ImmPort databases were used to identify key
immune-related genes in breast cancer as novel therapeutic
targets and to predict the key signaling pathways in which
they are involved. Using bioinformatics analysis, we
screened a total of 29 differentially expressed IRGs and
performed GO and KEGG pathway enrichment analyses to
identify key pathways in breast cancer immunity. *e
results revealed that differentially expressed IRGs in breast
cancer were associated with PD-1/PD-L1-mediated im-
mune escape, such as positive regulation of fibroblast
proliferation, inflammatory response, positive regulation of
ERK1 and ERK2 cascade, lymphocyte chemotaxis, estrogen
signaling pathway, MAPK signaling pathway, NF-kappa B
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Figure 4: PPI protein interaction network diagram of differentially expressed IRGs. *e nodes in the diagram change from yellow to red,
indicating that the “degree” is larger.

Table 1: Top ten differentially expressed immune-related genes
(IRGs) identified by topology analysis of the protein-protein in-
teraction (PPI) network analysis.

No. Gene Degree Betweenness Closeness
1 CXCL12 14 186.85239 0.6756757
2 IGF1 13 134.64285 0.65789473
3 EGFR 11 94.86667 0.6097561
4 JUN 8 23.89762 0.5681818
5 CXCL2 8 15.726191 0.5102041
6 ESR1 7 26.288095 0.5555556
7 FOS 6 12.604762 0.5208333
8 SAA1 8 79.080956 0.5319149
9 CCL28 6 4.5833335 0.49019608
10 TGFBR2 6 30.180952 0.54347825
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signaling pathway, Ras signaling pathway, and TNF sig-
naling pathway.

PD-1 is a member of the B7-CD28 family which was
discovered during activation-induced programmed cell
death in a T cell hybridoma cell line [31]. *e PD-1 gene is
located on human chromosome 2q37, expressed as a
monomer on the surface of the cell membrane, and involved
in transmitting negative signals to activated Tcells [32]. PD-
1 is mainly expressed in activated CD4+ and CD8+ T cells,
activated B cells, natural killer cells, natural killer T cells,
dendritic cells, and activated monocytes [33]. Of the two
ligands of PD-1—PD-L1 and PD-L2—PD-L1 is the main
ligand, upregulated in many malignancies [34]. *e inter-
action between both ligands on tumor cells with PD-1 on
tumor-infiltrating lymphocytes (TILs) is considered as the
main mechanism by which immune escape occurs in tumors
[35]. *e binding of PD-1 and PD-L1 in activated T cells
induces tyrosine phosphorylation in the immunoreceptor
tyrosine-based switch motif structural domain of PD-1 that
in turn causes dephosphorylation of downstream protein
kinases Syk and PI3K, inhibiting the activation of down-
stream AKT, RAS, ERK, and other pathways.*is ultimately
inhibits the transcription and translation of genes and cy-
tokines required for T cell activation, negatively regulating
Tcell activity [36]. Cancer-associated fibroblasts (CAFs) play

a key role in shaping the tumor immunosuppressive mi-
croenvironment in breast cancer. CAFs induce differentia-
tion of recruited monocytes into M2-like macrophages,
which are able to exert their immunosuppressive effects
through the PD-1 axis [37].

Chinese herbal medicine and natural medicine—with
their low toxicity and strong anticancer and chemo-
protective properties—have long been used to treat tumors,
either alone or as combination therapy [38]. Chinese herbal
medicine and natural medicine contain multiple active in-
gredients that can act simultaneously on multiple targets,
producing cumulative or synergistic effects [39]. For-
mononetin, a natural drug and the active component of the
herb Astragalus membranaceus, can inhibit the migration
and invasion of breast cancer cells by inhibiting MMP-2,
MMP9, and PI3K/AKT signaling pathways [40]. Based on
our results obtained using GEO disease data and molecular
docking analysis, we suggest that the intervention of for-
mononetin in breast cancer may be achieved by regulating
IGF1, ESR1, and CXCL12.

Chemokine (C-X-C motif) ligand 12 (CXCL12) is a
homeostatic chemokine secreted by fibroblasts, macro-
phages, and endothelial cells [41] and is highly expressed in
different organs such as the liver, lungs, brain, lymph nodes,
and bone marrow [42, 43]. CXC-chemokine receptor 4
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Figure 5: GO and KEGG functional enrichment analysis of differentially expressed IRGs. (a) Top 20 biological processes, cellular
components, and molecular functions for DEGs (P< 0.05). (b) KEGG pathways for DEGs (P< 0.05).
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Figure 6: Kaplan–Meier curves of four prognostic differentially expressed IRGs in BC. (a) FOS. (b) ESR1. (c) CXCL12. (d) IGF1. *e
criterion is that when the P values of RFS and OS are <0.05, it is considered that DEGs are associated with the survival of BC.
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Figure 7: Continued.
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(CXCR4) is the only known CXCL12 receptor, and the
biological axis system formed by the two plays an important
role in targeted metastasis of various malignancies including
breast cancer, prostate cancer, hepatocellular carcinoma,
and neuroblastoma [44, 45]. Breast cancer cells with high
CXCR4 expression can metastasize to specific organs with
CXCL12 chemotaxis, resulting in organ-specific metastasis.
*e CXCL12/CXCR4 axis also regulates cell proliferation,
chemotaxis, migration, and adhesion by activating a series of
intercellular signaling pathways and effectors [46, 47].

Insulin-like growth factor 1 (IGF1) is an important
regulator of mammary gland development and tumori-
genesis, enhancing mitosis, regulating the synthesis and
secretion of hormones in the body, and influencing cell
chemotaxis, immunity, andmigration. It not only acts on the
stroma of breast cells but also stimulates estrogenic activity
in breast cancer patients and promotes ovarian excitation,

thereby increasing the estrogen levels in the body. IGF1
synergizes with estrogen to promote the proliferation of
breast cancer cells and increase their metastatic potential
[48]. IGF1 binds to tyrosine kinase membrane receptor
IGF1R, activates tyrosine kinase, recruits and phosphory-
lates insulin receptor substrate proteins, and activates in-
tracellular signaling pathways involved in a variety of
cellular activities, including proliferation, apoptosis, and
migration [49, 50]. Studies have shown that formononetin
can inhibit the proliferation of MCF-7 cells by inactivating
the IGF1/IGF1R-PI3K/Akt signaling pathway [51]. More-
over, formononetin could reduce the expression of ESR1 in
osteosarcoma and inhibit cell proliferation [52].

Estrogen receptor (ER), encoded by estrogen receptor 1
(ESR1), is a target for endocrine therapy. Alterations in the
ESR1 like point mutations, gene amplification, and rear-
rangements cause conformational changes in the ER that can

(c)

Figure 7: Molecular docking diagram of formononetin and three differentially expressed IRGs molecules. (a) IGF1. (b) ESR1. (c) CXCL12.
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Figure 8: Correlation between three differentially expressed IRGs and immune cell infiltration.
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activate ER transcription function through a nonestrogen-
dependent pathway and promote tumor cell growth [53, 54].
Chemokine (C-C motif ) ligand 28 (CCL28) is secreted by
epithelial cells. It is prominently found expressed in salivary,
parotid, mammary glands, trachea, gastrointestinal tract,
and prostate and to a lesser extent in leukocytes of peripheral
blood and other mucosal tissues. CCL28 promotes breast
cancer cell proliferation andmetastasis through activation of
the MAPK signaling pathway, upregulation of antiapoptotic
protein Bcl-2, and inhibition of cell adhesion protein
β-catenin. Moreover, it participates in the breast cancer
progression and metastasis through ERK/MAPK-mediated
antiapoptotic and metastatic signaling pathways [55]. *e
ER signaling pathway negatively regulates PD-L1 gene ex-
pression. In ER-negative breast cancers, high PD-L1 ex-
pression may lead to immune escape, while in ER-positive
breast cancers, immune surveillance function may remain
preserved due to low PD-L1 expression [56].

Currently, immunotherapy has been used to treat breast
cancer via activating mechanisms of innate and adaptive
immunities [57, 58]. Immunosuppression is closely related
to the development of malignant tumors [59], making
immunotherapy a promising treatment option for breast
cancer. *e various immunotherapies include engineered
immune cells (CAR-T cell therapy), as well as checkpoint
inhibitors (PD-1, PD-L1, and CTLA4) [60]. However, the
majority of patients do not benefit these therapies, and up to
85% of patients are either innately resistant or have acquired
resistance to immune checkpoint inhibitors [61]. If the
patients do not derive the therapeutic benefit from immu-
notherapy, it not only delays treatment but also imposes a
significant financial burden on them. *erefore, improving
the efficacy of immune checkpoint inhibitors is crucial for
effective immunotherapy of breast cancer.

Our study found a strong correlation between three
differentially expressed IRGs and immune cell infiltration,
and accumulating evidence suggests that they may interact
with immune checkpoint inhibitors. Studies have demon-
strated that CXCR4 inhibition promotes Tcell accumulation
and synergizes the antitumor effect of immune checkpoint
inhibitors [62, 63]. Chen and colleagues reported that
CXCR4 inhibition improved fibrous tissue proliferation,
increased T-lymphocyte infiltration, and increased the ef-
fectiveness of immunotherapy in a metastatic breast cancer
mouse model [64].*e results of several clinical studies have
shown that the combination of CXCR4 antagonists and
immune checkpoint inhibitors has good clinical results in
patients with colorectal, pancreatic, and gastrointestinal
cancers [65, 66]. IGF1R signaling negatively impacts im-
mune surveillance in breast cancer patients, as evidenced by
IGF1R phosphorylation resulting in slight CD8+ CTL in-
filtration, significant infiltration of FOXP3+ regulatory
Tcells, immunosuppressive CD163+macrophages, and poor
prognosis [67]. IGF1R and its downstream signaling mol-
ecules are susceptible to pharmacological inhibition by the
immune system. Recent studies have shown that for-
mononetin can inhibit PD-L1 expression by interfering with
the interaction between MYC and STAT3, while enhancing
the activity of CTLs and restoring their ability to kill tumor

cells [68]. *erefore, formononetin, in combination with
immune checkpoint inhibitors, is a promising therapeutic
strategy in oncology.

Although our study identified possible pathological roles
for IGF1, ESR1, and CXCL12 in breast cancer and a potential
synergistic effect of formononetin with immune checkpoint
inhibitors in breast cancer immunotherapy, the limitation of
this study is that it is only a data analysis-based prediction.
Further clinical and experimental validations are planned to
explore the specific synergistic mechanism of formononetin
with immune checkpoint inhibitors.

5. Conclusions

In conclusion, our findings predict that IGF1, ESR1, and
CXCL12 may be effective targets of formononetin as a
therapeutic for breast cancer. More importantly, for-
mononetin might be synergistically combined with other
therapeutics such as immune checkpoint inhibitors to in-
crease the efficacy of immunotherapy by effective targeting
of IGF1, ESR1, and CXCL12.
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