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Inference of copy number variation presents a technical challenge because variant
callers typically require the copy number of a genome or genomic region to be known
a priori. Here we present a method to infer copy number that uses variant call format
(VCF) data as input and is implemented in the R package vcfR. This method is based on
the relative frequency of each allele (in both genic and non-genic regions) sequenced
at heterozygous positions throughout a genome. These heterozygous positions are
summarized by using arbitrarily sized windows of heterozygous positions, binning the
allele frequencies, and selecting the bin with the greatest abundance of positions. This
provides a non-parametric summary of the frequency that alleles were sequenced at.
The method is applicable to organisms that have reference genomes that consist of
full chromosomes or sub-chromosomal contigs. In contrast to other software designed
to detect copy number variation, our method does not rely on an assumption of base
ploidy, but instead infers it. We validated these approaches with the model system of
Saccharomyces cerevisiae and applied it to the oomycete Phytophthora infestans, both
known to vary in copy number. This functionality has been incorporated into the current
release of the R package vcfR to provide modular and flexible methods to investigate
copy number variation in genomic projects.

Keywords: bioinformatics, computational biology, copy number variation (CNV), high throughput sequencing
(HTS), Phytophthora, ploidy, R package

INTRODUCTION

Investigations into the variation in the number of copies of genes, chromosomes, or genomes are
well-established research topics, yet they continue to present technical challenges to molecular
genetic analysis. Many examples provide evidence of how copy number affects the phenotype. For
example, schizophrenia in humans is thought to be caused by variation in copy number of certain
genes (Sekar et al., 2016). Presence of an additional chromosome (aneuploidy) results in Down
syndrome in humans (Hassold and Hunt, 2001). Existence of an extra copy of all chromosomes
(triploidy) is used in agriculture to produce sterile organisms such as seedless watermelons
(Varoquaux et al., 2000) or sterile salmon (Johnstone, 1992; Cotter et al., 2000). Whole genome
duplication (polyploidy) results in every chromosome being duplicated, a phenomenon observed
throughout plants, animals, and fungi (Todd et al., 2017; Van de Peer et al., 2017). Although this
phenomenon is well established, it presents a challenge to high throughput sequencing projects
in that most popular genomic variant callers, such as the GATK’s (DePristo et al., 2011) or
FreeBayes (Garrison and Marth, 2012), require the a priori specification of how many alleles to call.
While the inference of copy number may be an important precursor to point mutation discovery,
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many authors argue that copy number variation may be more
abundant throughout a genome than point mutations (Katju
and Bergthorsson, 2013) making it an important facet in the
investigation of genomic architectures.

Existing software for determining the number of copies at
a locus from high throughput sequencing data can be broadly
classified into two categories: copy number variation detection
and whole genome ploidy inference. The important difference
among these categories is the form of data they use. Copy
number variation detection software uses per position sequence
depth (Yoon et al., 2009; Abyzov et al., 2011; Klambauer et al.,
2012; Li et al., 2012) while whole genome ploidy inference
software uses the relative frequency of the two most abundant
alleles sequenced at a locus (Zohren et al., 2016; Gompert and
Mock, 2017; Weiß et al., 2018). Copy number variation detection
methods group the per position sequence depth into windows
and attempt to sort these into base-ploid (typical depth) windows
or windows that deviate from base-ploid. They generally require
the investigator to specify a priori what copy level the base-
ploid state is. If the research question is to determine how
many copies occur at the base-ploid state, these methods will
not be appropriate. Whole genome ploidy inference methods
use the frequency that the two most abundant alleles were
sequenced at for heterozygous positions, or allele balance, and
summarize this information throughout the genome. (Here we
use the term ‘allele balance’ where other authors have used ‘allele
frequency’ to distinguish the measure from the use of ‘allele
frequency’ in population genetics.) For example, for heterozygous
alleles we would expect to observe an approximate frequency
of one half for diploids, ratios of thirds for triploids, and ratios
of quarters for tetraploids (Figure 1). Whole genome ploidy
inference uses all of the genomic information to infer a single
copy number for the entire genome. A third hybrid method uses
allele balance (referred to as allelic ratio) and heterozygosity to

assign copy number to populations of data (McKinney et al.,
2017). However, if the research question is to explore copy
number variation within a population this method will not be
relevant. Therefore, there are at least two distinct approaches
to determine the number of copies present in genomes, and
more currently being proposed, each with different strengths and
limitations.

Our research presented us with the need to determine if
copy number varied throughout genomes, where we did not
have prior knowledge of what the actual base-ploidy might
be. We therefore combined the windowing functionality from
copy number variation detection methods with the allele balance
concept from whole genome ploidy inference methods. We use
a non-parametric approach to infer copy number given that
empirical explorations of available data indicated that common
distributions, particularly at low sequence depth, do not fit
well. Our method is implemented in a new update to the
package vcfR in the R software environment (R Core Team,
2018). R is an established and growing language facilitating
the analysis of population genetic and genomic data (Paradis
et al., 2017a,b). We demonstrate the utility of this method
using genomes from the model fungus Saccharomyces cerevisiae
and our ongoing work with the oomycete plant pathogen
Phytophthora infestans. Both of these organisms show variation
in ploidy across individuals as well as within regions within a
genome.

MATERIALS AND METHODS

Methodology
We developed new functionality added to the current release of
the vcfR package that can be used to infer copy number or ploidy
in R. We initially developed vcfR for VCF data import/export,

FIGURE 1 | Allele balance (e.g., the distribution of the frequency at which the most abundant allele and the second most abundant allele were sequenced) at
heterozygous positions in three Saccharomyces cerevisiae genomes. For each heterozygous genotype the frequency at which the most abundant allele was
sequenced at (light blue) and the frequency at which the second most abundant allele was sequenced at (dark blue) were recorded. This information was then
summarized with a histogram. Expectations for allele balance are 1/2 for diploids, 1/3 and 2/3 for triploids, and 1/4, 1/2, and 3/4 for tetraploids. This approach
provides a dominant copy number for each genome but no information about variation within each genome. Expectations and critical values for binning allele
balance information are presented below the histograms.
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quality control, visualization and general manipulation (Knaus
and Grünwald, 2017). vcfR now includes a range of new functions
useful for binning variants into windows, summarizing the
frequency that alleles were sequenced at, and assigning a closest
expected copy number value to these windows (Table 1).

Data from high throughput sequencing (HTS) projects on
populations typically results in calling variants that might include
single nucleotide polymorphisms (SNPs), indels, and inversions.
Output from popular variant callers is presented in files that
adhere to the variant call format (VCF) specification (Danecek
et al., 2011). This specification provides the option to include
counts for how many times each allele was sequenced for
each genotype. For example, in the GATK’s HaplotypeCaller
(McKenna et al., 2010) output includes allele depth (AD) as
a comma delimited string of counts. This VCF data can be
imported into R using our function read.vcfR(). Once any desired
quality control steps have been performed on the data (Knaus and
Grünwald, 2017), such as omitting variants of unusual sequence
coverage, this allele depth data can be extracted using the vcfR
function extract.gt(). We then use the function is_het() to set
homozygous positions in the allele depth matrices as missing
data (NA) so we can focus our analysis on the heterozygous
positions. The allele depth is reported as a comma delimited
string, the individual elements of which can be isolated with
the function masplit(). Dividing the count for each allele by
the sum of the counts for the two most abundant alleles,
results in the frequency at which each allele was sequenced, or
allele balance. This data can now be plotted as histograms for
visualization.

Determining copy number for sub-genomic regions requires
the genome to be divided into sub-genomic windows and,
because this typically results in many windows per sample, it
requires a numeric method of summarizing this data. This goal
is accomplished with the function freq_peak(). This function
takes as input a matrix of allele balance data, as described
above, a vector of chromosomal positions for each variant,
a window size, and a bin width for summarizing the allele
balance values. The vector of chromosomal positions is used
to assign variants to windows. The window size specifies how
large the genomic windows should be. This will in part be
based on the frequency of heterozygous positions observed in
the target sample as well as a balance between the conflicting
desires for small windows that provide fine scale resolution and

TABLE 1 | Functions available to analyze copy number variation and mixed copy
number data in the current release of vcfR.

Function Description

extract.gt() Isolate data from the delimited VCF genotype fields.

freq_peak() Windowize and identify peaks of density.

is_het() Identify heterozygous variants.

masplit() Isolate values from a matrix of delimited data.

peak_to_ploid() Convert peaks of density to an expected copy number.

freq_peak_plot() Visualize results from freq_peak().

rePOS() Convert chromosomal positions to genomic
(non-overlapping) positions.

genetic_diff() Calculate genetic differentiation (GST).

large windows that provide a large number of variants (i.e.,
support) for a determination. Within each window the allele
balance values are summarized by bins from 0 to 1 and of the
width specified by the bin width parameter. The bin with the
greatest number of variants is selected as the peak location.
Here, again, a balance must be found between resolution (small
bins) and support (large bins). Default values are provided based
on what we have determined to work in our study systems,
but we highly encourage adjusting the parameters based on
the specifics of each project. These parameters are expected
to be context specific to each study system. This function
returns three matrices, one containing the window coordinates,
one containing the peak locations and one containing the
count of variants that resulted for each window. The matrix
of variant counts per window can be used to help determine
optimal window size and to censor windows that resulted in
a low number of variants. The peaks can then be assigned to
their nearest expected value (1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5)
using the function peak_to_ploid(). This is accomplished by
using critical values that are half way between each expected
value (Figure 1). Once a copy number has been assigned its
confidence is measured by creating a distance from expectation.
The distance from expectation is the observed value subtracted
by the expectation it was assigned to which is then divided
by the critical value on the side of the expectation where
the observed value was (Figure 1). Dividing the critical value
scales the difference from expectation from zero (exactly at our
expectation) to one (half way between expectations). This can
also be used to remove border cases where observed value is
intermediate to the expected values and we therefore have low
confidence in the determination. The results from the function
freq_peak() can be visualized using freq_peak_plot(). This last
function was inspired in part by BAF plots (Laurie et al.,
2010).

Theoretical population genetics is based largely on haploid
and diploid organisms. Investigations into populations that
consist of higher ploidy individuals, or populations with a
mixture of copy numbers, present a methodological challenge
in that few applications are available to analyze them. We
have extended Nei’s GST (Nei, 1973, 1987) and Hedrick’s G’ST
(Hedrick, 2005) to address this challenge. These measures of
population subdivision are based on ratios of heterozygosity.
Because heterozygosity is based on the number and type
of alleles found in a population it provides a convenient
way to analyze populations of mixed copy number. Our
implementation is inspired by the implementation in adegenet
(Jombart, 2008) which weights the heterozygosities by their
sample size. This is an attempt to correct for unbalanced
sample sizes, situations where a different number of individuals
were sampled from different populations. We instead weight
the heterozygosities by the observed number of alleles in each
population to correct for both unbalanced samples as well
as instances where individuals may vary in copy number as
well. An unbalanced design occurs when different amounts
of data are collected for different populations. For example,
one sample may have consisted of 20 individuals while
another may have only consisted of 10. This imbalance may
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have occurred due to logistical reasons or technical issues
in sample preparation. When copy number is unknown, the
investigator may sample the same number of individuals in
the populations, but if one population turns out to have
four copies where the other has only two, the population
with four copies will have twice as much information as
the other. Weighting each population by the number of
alleles observed is an attempt to mitigate these issues.
The function genetic_diff() uses a vcfR object and a factor
that indicates population membership (VCF data typically
does not include population information) and returns a
table including heterozygosities, Nei’s GST, and Hedrick’s
G’ST.

Example Data
To demonstrate our method, we tested it on three data sets.
The first data set consisted of three samples of Saccharomyces
cerevisiae (CBS7837, CBS2919, and CBS9564) from Zhu et al.
(2016) that were reported as diploid, triploid and tetraploid
by Weiß et al. (2018). We also included an additional
sample (YJM1098) that was reported by Zhu et al. (2016) as
being predominantly diploid but demonstrating aneuploidy for
chromosome XII. These samples represent an organismal system
where the genome is of relatively small size (12 Mbp), high quality
(in its 64th revision; Engel et al., 2014) and where the samples
were sequenced with a goal of attaining 80X sequence depth with
Illumina GAII reads.

A second data set consisted of two samples of the plant
pathogen Phytophthora infestans (99189 and 88069) that were
reported by Weiß et al. (2018) as being diploid and triploid. The
P. infestans system represents a more modestly sized genome
(240 Mbp) that remains in its first draft (Haas et al., 2009), but
where the samples were sequenced with the intent of attaining
100X sequence depth for each haplotype using Illumina HiSeq
3000 sequencing (Weiß et al., 2018).

The third dataset included 17 samples of P. infestans and one
sample of P. mirabilis collected from the literature, subset to
Supercontig_1.50, and made available as an R package (Knaus
and Grünwald, 2017). This represents a set of samples that were
of more typical sequence depth for genomics projects than we
might expect from investigations that were specifically interested
in copy number.

For the first two datasets, the data were downloaded from
the NCBI sequence read archive and FASTQ data were extracted
using the sratoolkit. These reads were mapped to the yeast
genome (S288C) or the P. infestans genome (T30-4) using bwa
0.7.10-r789 mem (Li, 2013). The resulting SAM file had mate
pair information updated, was sorted and converted to BAM
format using samtools 1.3.1 (Li et al., 2009). Duplicates were
marked using picard-tools-2.5.0 and the files were indexed using
samtools. For each sample, a g.VCF file was created from its
BAM file using the GATK’s (3.5-0-g36282e4) HaplotypeCaller
(McKenna et al., 2010). Read processing for the pinfsc50 was
described previously (Knaus and Grünwald, 2017). Briefly, the
reads were mapped using bwa mem and variants were called
using the GATK’s HaplotypeCaller resulting in VCF data. The
g.VCF and VCF data were processed in vcfR (Knaus and

Grünwald, 2017) using the methods described above using the
functions freq_peak(), peak_to_ploid(), and freq_peak_plot().
For the S. cerevisiae samples, a window size 40 kbp was used
while a window size of 200 kbp was used for the P. infestans
samples.

Performance
We assessed performance of our method over a range of genome
sizes. Data used for the benchmarking were subset from the
99189 P. infestans sample including the entire data set (240 Mbp
genome) and subsets of this dataset to represent genomes of 100,
10, and 1 Mbp. Each data set was processed 20 times and this
processing was implemented using an R markdown script. The
use of R markdown, as opposed to a pure R script, likely incurred
a performance cost as our timing included the compilation of the
R markdown to a web page. We advocate that using tools like
R markdown should be considered a best practice and hope that
this will characterize typical use. Benchmarking was performed
on an Intel© CoreTM i7-4790 CPU at 3.60 GHz with 32 GB
of RAM running Ubuntu 16.04 LTS. Results were visualized in
R and a linear regression was performed using the R function
stats::lm().

RESULTS

Implementation
A new update for the R package vcfR was recently released
including several new functions (Table 1). The function
freq_peak() returns the peaks called for each window as well
as diagnostic information. The data in VCF files only includes
information for the variable positions. This means that all
positions in a window will not be present in VCF data.
A lookup table is created and returned that includes the genomic
coordinates for each window, the row number of the first and
last rows of VCF data that were analyzed, and the genomic
position of the first and last variant in each window. This
information is intended to coordinate comparisons among data
extracted from VCF files and genomic windows. A matrix
of variant counts per sample and window is also provided.
Because heterozygosity may not be known and some windows
may have mapping issues (e.g., high variant counts) or regions
of loss of heterozygosity or a high number of missing or
ambiguous nucleotides in the reference (low variant counts),
this information can be used to help determine optimal window
size for a particular organism. Furthermore, this approach can
help identify anomalous regions in the genome that may require
further scrutiny. Lastly, a matrix of frequencies of allele balance
is generated.

Results of the above process can be visualized and post-
processed to obtain copy number calls and quality assessment.
The function freq_peak_plot() can be used to visualize the
combined VCF derived data and the results of the windowing
and peak calling operations. Because the result is a simple data
structure (a list of matrices) the universe of R packages that can
be used with matrix data are also available to explore the data. The
data can also be post processed with the function peak_to_ploid()
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FIGURE 2 | The distribution of sequence depth at variable positions in Saccharomyces cerevisiae. While each genome was sequenced at close to 100X, each
genome also had long tails for variants that were sequenced at very high and low coverage. These tails are typically observed for high throughput sequencing data.

FIGURE 3 | Genomic distribution of heterozygous positions in Saccharomyces cerevisiae genomes. Each genome was divided into 40 kbp windows, the number of
variants was counted within each window, and this count was divided by the window size. While most windows had a typical number of heterozygous positions (2–8
per kbp) there were a substantial number of windows that contained very few heterozygous positions. Note that these are raw variants from the VCF file produced by
the variant caller (in our case, GATK HaplotypeCaller). Because most variant callers take an aggressive perspective on variant calling, the values presented are likely
an over-estimate of heterozygosity.

that converts the allele balance frequency data to an integer copy
number as well as distances from expectation:

Distance from expectation =

observed allele balance− expected value
critical value

The distance from expectation is the observed allele balance
frequency subtracted by the frequency expected based on the
final determination. This value is then divided by its bin width
(Figure 1) in order to scale it from zero to one where zero
represents an allele balance that is exactly on our expectation
(e.g., 1/4, 1/3, 1/2, etc.) and one is half way between two
expectations. This value can then be used as a measure of
confidence in our copy number determination and to omit border
cases (instances where the observed allele balance is close to
one).

Saccharomyces cerevisiae Dataset
Analysis of the Saccharomyces cerevisiae dataset validated
previous reports and revealed new features. The S. cerevisiae
samples were sequenced at about 100X at variable positions
(Figure 2) making it a high coverage dataset. The samples were
determined to consist of individuals that were predominantly
diploid (CBS7837), triploid (CBS2919), and tetraploid
(CBS9564), confirming previous reports (Figure 1; Weiß
et al., 2018). The samples had a heterozygosity of around
0.003–0.008 heterozygous positions per site (Figure 3). Because
the variant caller (the GATK’s HaplotypeCaller) tends to
aggressively call variants, this estimate may include false
positives and therefore may be an overestimate of the true
biological value. We have previously discussed strategies we
feel may improve the quality of called variants to attain a
production data set (Knaus and Grünwald, 2017). Current
functionality in vcfR allowed for convenient reproduction of
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FIGURE 4 | Reproduction of Figure 7 from Zhu et al. (2016). The upper panel demonstrates the concept of base ploidy where most of the genome is of one ploidy
however, we do not know how many copies this base ploidy consists of. The lower panel demonstrates how allele balance is predominantly what we would expect
for a diploid, allowing us to assign a copy number to the base ploid. Chromosome XII demonstrates a change in copy number that is evident as a change in base
ploidy and allele balance.

figures previously reported (Figure 4; Zhu et al., 2016) that
indicated intragenomic variation in copy number. This copy
number variation was demonstrated to be minor relative to the
entire genome (Figure 5), indicating that while sample YJM1098
may be predominantly diploid, it still contains variation that
would not be apparent from whole genome summaries. The
use of the vcfR functions freq_peak() and peak_to_ploid()
provided a sliding window analysis that revealed intragenomic
variation in copy number. Figure 6 demonstrated the results
of the function freq_peak_plot() that revealed a sample that
appeared diploid, but contains regions of low heterozygosity
such that inferences cannot be made (CBS7837 chromosome
XI at around 200 kbp and around 350 kbp). The sample
CBS2919 appeared predominantly triploid, consistent with
previous findings (Weiß et al., 2018), but also included a
region on chromosome VII from its origin to around 400 kbp
that appeared to have four copies. The sample CBS9564 was
reported by Weiß et al. (2018) to be tetraploid, which is in
agreement with our results, but also appeared to have regions
on chromosome IX that had three or five copies. These findings
confirm previous reports and also reveal that new information
can be found by investigating specific regions within each
genome.

Phytophthora infestans Dataset
The two P. infestans samples were sequenced at almost 200X
(99189) and 300X (88069) or approximately 100X per expected
chromosome (Figure 7; Weiß et al., 2018). The genomes had
heterozygosities of around 0.003–0.006 heterozygous positions
per site (Figure 8). Because the variant caller tends to aggressively
call variants, this estimate may include false positives and
therefore may be an overestimate of the true biological value.

FIGURE 5 | The distribution of allele balance values for an entire sample of
Saccharomyces cerevisiae and the distribution for just chromosome XII. Note
the y-axis for each plot. The distribution on the right is contained within the
distribution of the entire sample on the left so that this variation in copy
number is hidden in plain sight.

Examination of the genomic distribution of allele balance values
confirmed the report of Weiß et al. (2018) that isolate 99189 was
predominantly diploid while 88069 was predominantly triploid
(Figure 9). However, through windowing across the supercontig,
we were able to observe that while isolate 99189 does appear to
be predominantly diploid, a large portion of its supercontig_1.29
appears to have three copies (Figure 10) demonstrating
previously uncharacterized intragenomic variation in copy
number.

Pinfsc50 Dataset
The pinfsc50 dataset provides an opportunity to evaluate data
with more moderate and more typical lower read depths. This
data represents samples for a population of P. infestans at
supercontig 50 that were sequenced between ca. 10X to 70X
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FIGURE 6 | The chromosomal distribution of heterozygous positions and their allele balance. Each plot represents one chromosome. At each variable position along
the chromosome there is a pair of dots: a light blue dot above 1/2 and a darker blue dot below 1/2. These dots are the allele balance for each variant. Horizontal lines
represent windows where the width is the user specified window size and the elevation is the summarized allele balance for the window. The marginal histogram
summarizes the entire chromosome. The top plot is chromosome XI from sample CBS7837 and represents a diploid example. Regions at 230 and 350 kbp are
regions that exhibit low levels of heterozygosity and the lack of a horizontal line indicates that these regions were omitted from the results. The middle panel is from
chromosome VII of sample CBS2919. This chromosome appears to consist of four copies from its origin to around 400 kbp where it changes to three copies. The
bottom panel is chromosome IX from sample CBS9564. This chromosome appears to consist of regions that have three copies as well as regions with five copies.

coverage (Figure 11). The distribution of allele balance values
for these samples (Figure 12) demonstrated a range of copy
numbers from diploid (e.g., strain P17777us22) to triploid (strain
P13626). However, several samples (e.g., strains P1362 or t30-
4) appeared to be ambiguous as to their copy number. This
demonstrates that not all samples that have been sequenced from
typical sequencing projects may be of suitable quality for copy
number determination.

Population Differentiation
The function genetic_diff() calculates genetic differentiation
for mixed copy number populations (Table 2). It retains the
chromosome and position information from the VCF data
to maintain the coordinate system. Heterozygosities as well

as the number of alleles observed in each population are
returned. If the number of alleles in data are unknown,
this latter information may be used to summarize this
information. For larger data sets, quantiles can be calculated
to identify loci of unusual allele counts. The function reports
GST, maximum heterozygosity, maximum GST and uses these
to calculate G′ST. The returned data structure is a simple
data.frame which should easily facilitate further analysis and
presentation of this information with the universe of R
functionality.

Performance
Regression analysis revealed that execution time scaled linearly
with genome size (Figure 13). There was a highly significant
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FIGURE 7 | The distribution of sequence depths at variable positions for
P. infestans samples produced by Weiß et al. (2018). These plots are similar to
the S. cerevisiae plots in that most of the genome appears to have been
sequenced at a base ploidy level, but long tails indicate that regions above
and below this level exist.

FIGURE 8 | Genomic distribution of heterozygosity among genomic windows
for the two P. infestans samples sequenced by Weiß et al. (2018). Each
genome was divided into 200 kbp windows, the number of heterozygous
positions were counted, and this count was divided by the window size. The
P. infestans genome consists of 4,921 supercontigs, many of which were
below the size of these windows. In order to mitigate this, only supercontigs
that resulted in at least two windows are summarized here. Note that these
are raw variants from the VCF file produced by the variant caller (in our case
GATK HaplotypeCaller). Because most variant callers take an aggressive
perspective on variant calling, the values presented are likely an over-estimate
of heterozygosity.

relationship between execution time and genome size (Table 3)
indicating that our benchmarking may be a good predictor of
how the method will perform with other genomes.

FIGURE 9 | The distribution of allele balance frequencies for samples
sequenced by Weiß et al. (2018). This graphically validates the ploidy levels
reported by Weiß et al. (2018).

FIGURE 10 | Supercontig_1.29 of P. infestans isolate 99189 appears
predominantly triploid in contrast to the rest of its genome that appeared to be
diploid (compare with Figure 9). Values of 0 (no read support for the allele)
and 1 (all reads support one allele) are expected to be homozygous calls.
Because this is an analysis of heterozygous positions these have been
omitted from this plot.

AVAILABILITY

Version 1.7.0 of the package vcfR had been released at the
time of submission of this manuscript and contains all of
the novel features described here. This version is available on
CRAN (https://CRAN.R-project.org/package=vcfR) and at the
Grünwald lab’s GitHub site (https://github.com/grunwaldlab/
vcfR). More information and example code can be found at:

FIGURE 11 | The distribution of sequence depths at variable positions for P. infestans samples from the pinfsc50 dataset with variants called for supercontig 50.
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FIGURE 12 | The distribution of allele balance values for variants from supercontig_1.50 of P. infestans. These samples are of a more typical read depth than the
other samples presented here. Note that some samples may not have a copy number that is easily determined. This illustrates the importance of providing numerical
summaries as well as visualizations for the data that demonstrate edge cases as well as methods to address poor quality (e.g., removal of data based on read depth
thresholds).

https://knausb.github.io/vcfR_documentation/. Data and scripts
used to produce figures in this manuscript are available at the
project’s Open Science Framework site (Knaus and Grünwald,
2018).

REQUIREMENTS

• R version 3.0.1 or greater and vcfR 1.7.0.

INSTALLATION

At the R console, vcfR can be installed from CRAN as follows:
install.packages(‘vcfR’)
library(‘vcfR’)

DISCUSSION

Numerous studies have used high throughput sequencing to
study genetic diversity in populations based on genotypes, or
single nucleotide polymorphisms, inferred by variant callers. To
our knowledge there is currently no variant caller that can infer
the number of alleles to call. Instead, the investigator must specify
the number of alleles to call a priori. Here we present novel
methodologies to infer genomic and subgenomic copy number
using HTS data as well as to visualize these data in the R
environment.

Our method builds on existing methods by using a sliding
window approach to infer copy number based on the frequency
that the most abundant and second most abundant alleles were
sequenced at. While we designed this method to work with VCF
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TABLE 2 | Genetic differentiation as reported by the function genetic_diff().

CHROM POS Hs_a Hs_b Ht n_a n_b Gst Htmax Gstmax Gprimest

Supercontig_1.50 2 0.42 0.42 0.4650 20 20 0.096 0.710 0.408 0.237

Supercontig_1.50 246 0.42 0.42 0.4632 20 30 0.093 0.698 0.399 0.234

Supercontig_1.50 549 0.42 0.42 0.4600 20 40 0.0870 0.678 0.380 0.229

The chromosome (CHROM) and position (POS) are retained from the VCF data. Heterozygosities for each population (a and b) and total heterozygosity are reported. The
number of alleles (n_a, n_b)_observed in each population are reported. Lastly, GST, maximum heterozygosity (Htmax), maximum GST (Gstmax) and G′ST (Gprimest) are
calculated.

FIGURE 13 | Performance of the method expressed as execution time
(seconds) as a function of genome size (Mbp). The Genome of P. infestans
99189 was used and subsampled at 100, 10, and 1 Mbp. Performance
appears to scale linearly with the 240 Mbp genome being processed in just
over 3 min.

data (Danecek et al., 2011) using the R package vcfR (Knaus
and Grünwald, 2017), we feel an important role of our method
is to help make this data available to the existing universe of
R packages. VCF data only includes information on variable
positions within the genome. We therefore produce a lookup
table to identify which genomic windows variants belong to.
Other functions convert the VCF data into numeric matrices.
In theory, this information could be used to implement other
functionality, such as applying mixture models (Leisch and
Gruen, 2012; Fraley et al., 2012) to the data. It also means that
other visualization tools available to the R environment can
be used beyond those provided here. Because characterization
of copy number may be challenging in certain regions of
the genome, e.g., regions rich in transposable elements or
problematic assemblies, we provided the count of heterozygous
positions for each window as well as the distance from
expectation. These metrics provide tools to help judge whether
certain regions may have well predicted copy numbers or which
regions may require further investigation.

TABLE 3 | Coefficients resulting from the linear regression of execution time
(seconds) as a function of genome size (Mbp).

Coefficient Estimate Standard error t-value P-value

Intercept −1.085 1.010 −1.075 0.286

Slope 0.805 0.008 103.663 <2e-16

The intercept was not significantly different from zero while the slope was highly
significantly different from zero.

The existing methods most similar to ours include those of
Zohren et al. (2016), Gompert and Mock (2017), and Weiß
et al. (2018) because they are all based on the frequency that
alleles were sequenced at. Zohren and colleagues used allele
balance (which they referred to as allelic ratio) and fit beta-
binomial distributions to model diploid individuals and beta-
binomial mixture models (the fitting of multiple distributions to
a population of data) to model triploid and tetraploid individuals.
Likelihoods for each ploidy model were compared using AIC
(Akaike, 1974), resulting in a single ploidy call for each sample. R
code to implement their method is available at Dryad. Gompert
and Mock model the ratio of the abundance of the non-
reference allele (from biallelic SNPs) to the total number of
reads sequenced at each variant using binomial distributions in
a Bayesian framework resulting in a single ploidy call for each
sample. Their method is implemented in R using rjags (Plummer,
2016) and is available on CRAN as the package gbs2ploidy. The
method of Weiß and colleagues is similar to that of Zohren
and colleagues in that it employs mixture models; however, it
differs in that it uses Gaussian components. It also differs in
that it is written in C and designed to work on the BAM files
as opposed to heterozygous positions determined by a variant
caller. Because it is implemented in a compiled language it is very
fast relative to the R implementations. It is also unique in that
it employs a uniform noise component. The sample CBS7837 in
Figure 1 has a well-defined peak, yet the base of the peak varies
almost from zero to one indicating a substantial amount of data
that deviates from any of our expectations. Similarly, the sample
CBS2919 in Figure 1 has two well defined peaks but the data
does not go to zero between these peaks. This phenomenon can
be seen in Zohren and colleagues’ Figure 2 and Yoshida et al.
(2013) Figure 8 and is part of our justification for the use of
a non-parametric method. Weiß and colleagues fit this uniform
component in an attempt to capture the noise in the data leaving
the putatively cleaner data for their Gaussian mixture model.
Their software is available on GitHub in the repository named
nQuire.
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The method presented has been designed to work with
VCF data (Danecek et al., 2011) that contains the number of
times each allele was sequenced for each variant. In theory,
any method that produces a valid VCF file, or the counts of
times the most abundant and second most abundant allele were
sequenced in a format that can be read into R, can be analyzed.
While the examples presented here are based on whole genome
sequencing our method should be applicable to data generated
with reduced representation libraries. For example, we’ve also
used the method with genotyping-by-sequencing data (Elshire
et al., 2011) processed with TASSEL (Bradbury et al., 2007).
However, there are some practical matters to consider. This is
an analysis of heterozygous positions. Homozygous positions will
appear similar regardless of copy number and are uninformative.
Organisms that are inbred or have a mode of reproduction that
includes selfing may have a low density of heterozygous positions
making inferences using our method challenging. The use of
reduced representation libraries may also contribute to a lower
number of observed heterozygous positions requiring use of
larger windows ultimately resulting in a lower resolution to the
inference of copy number variation.

There is currently a diversity of methods available for the
analysis of high-throughput sequencing that demonstrates a
diversity of performance. This diversity in performance exists in
de novo assembly software (Earl et al., 2011; Bradnam et al., 2013),
variant callers (Pabinger et al., 2014), copy number variation
callers (Duan et al., 2013; Pabinger et al., 2014), and metagenomic
pipelines (Edgar, 2017). This diversity is likely due to the nascent
nature of the data and methods used to analyze it. We hope

our method will contribute to the analysis of CNV, but also
hope it will stimulate the development of new tools or the
integration of these existing methods into new tools to explore
copy number variation. Perhaps future improvements can be
found by integrating sequence coverage and allele balance data
as some authors have already done graphically (Zhu et al., 2016).
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