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Abstract

The genetic, proteomic, disease and pharmacological studies have generated rich data in protein interaction, disease regulation
and drug activities useful for systems-level study of the biological, disease and drug therapeutic processes. These studies are facili-
tated by the established and the emerging computational methods. More recently, the network descriptors developed in other dis-
ciplines have become more increasingly used for studying the protein–protein, gene regulation, metabolic, disease networks. There
is an inadequate coverage of these useful network features in the public web servers. We therefore introduced upto 313 literature-
reported network descriptors in PROFEAT web server, for describing the topological, connectivity and complexity characteristics of
undirected unweighted (uniform binding constants and molecular levels), undirected edge-weighted (varying binding constants),
undirected node-weighted (varying molecular levels), undirected edge-node-weighted (varying binding constants and molecular
levels) and directed unweighted (oriented process) networks. The usefulness of the PROFEAT computed network descriptors is
illustrated by their literature-reported applications in studying the protein–protein, gene regulatory, gene co-expression, protein–
drug and metabolic networks. PROFEAT is accessible free of charge at http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi.
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Introduction

Quantitative analysis of biological networks is needed for more
extensive study of biological [1], disease [2] and pharmaco-
logical [3] processes. These analyses can be facilitated by the
knowledge of the network descriptors that characterize the con-
nectivity, organizational, robustness and stability properties of the
biological [1, 4, 5], disease [2, 6–8] and drug-targeted networks
[3, 9–11]. A number of network descriptors have initially been de-
veloped for describing network architectures and communication
phenomena in such areas as sociology and communications. For
instance, the centrality indices and betweenness represent the de-
gree of centralization of a network and the points of influence in
the network of sociological studies [12]; the clustering coefficient
models the structural trends and relations in interpersonal rela-
tionships [13]; and the compactness and stress indices character-
ize the internal structure of a communication network [14].

Some of these network descriptors have been applied for study-
ing biological, disease and drug-targeted networks, which to a large
extent share the same architectural features with other complex
networks [1]. So far, the established network theory or graph the-
ory, from the field of mathematics and computer science, has
facilitated to reveal enrichment patterns, systematic understand-
ings, high-level relationships and network-based clues in biological
networks [8, 15]. For instance, the betweenness centrality has been
used for the modularity analysis of interaction information in a
liver central carbon metabolism network [16] and for the assess-
ment of protein druggability based on the profiles of the drug tar-
gets in the human protein network [17]. The clustering coefficient
and topological coefficient have been used for analyzing the or-
ganizational properties of the human protein network [18]. The

neighborhood connectivity has been applied for measuring the
specificity and stability of the protein networks [19]. Nonetheless, a
substantial number of the network descriptors have not yet been
used but are potentially useful for the analysis of a more variety of
features of biological networks. For instance, the geographical indi-
ces for transportation systems [20] are potentially useful for
describing the spatial and structural features of a biological net-
work, and the topological robustness measurement for the social
networks [21] can be potentially used for measuring the robustness
or the alternative signaling capability of biological networks.

A number of resources are available for computing network
descriptors, particularly Cytoscape [22], NAViGaTOR [23], Gephi
[24], VANESA [25], Pajek [26], SpectralNET [27], PINA [28], Hubba
[29], GraphWeb [30], tYNA [31] and VisANT [32] that enable the
computation of approximately 23, 13, 10, 10, 9, 9, 8, 6, 4, 4 and 3
network descriptors, respectively (Table 1). Moreover, users
knowledgeable of the respective programming languages can
use Python library NetworkX [33], R packages igraph [34] and
QuACN [35] for computing �100 network properties. However,
these programming-based tools are hardly applicable for the
users without computation expertise [36]. Compared with the
literature-reported network descriptors (Tables 2 and 3), these
resources cover a limited number of network descriptors, and
some of the uncovered network descriptors have been applied
in systems biology studies. For instance, the PageRank central-
ity from Google search algorithm has been used for analyzing
the metabolic networks and gene regulatory networks [51, 52,
68]; the interconnectivity has been applied to prioritize the
disease-associated genes [41–43], and the weighted clustering
coefficient has been used to predict the significant genes in
gene co-expression network [56, 69].

Table 1. List of the network descriptors provided by the existing publically accessible tools that do not require programing skill

Tool name (no. of
provided descriptors) [Ref]

List of descriptors

Node level Network level

Cytoscape (23) [22] Degree, in/out-degree, number of self-loops, cluster-
ing coefficient, topological coefficient, neighbor-
hood connectivity, avg shortest path length,
eccentricity, radiality, closeness centrality, betwe-
enness centrality, stress

Number of nodes/edges/self-loops, density, diam-
eter, radius, centralization, heterogeneity, avg
number of neighbors, characteristic path length

NAViGaTOR (13) [23] Clustering coefficient, degree centrality, between-
ness centrality

Number of nodes/edges, density, min/avg/max de-
gree, diameter, avg clustering coefficient, charac-
teristic path length

Gephi (10) [24] Degree, clustering coefficient, betweenness central-
ity, closeness centrality, eigenvector centrality,
PageRank centrality, HITS

Diameter, density, avg clustering coefficient, avg
shortest path length

VANESA (10) [25] Degree, avg/max shortest path length Min/avg/max degree, avg shortest path length, dens-
ity, centralization, clustering coefficient

Pajek (9) [26] Degree, avg shortest path length, degree centrality,
closeness centrality, betweenness centrality

Diameter, degree centralization, closeness central-
ization, betweenness centralization

SpectralNET (9) [27] Degree, clustering coefficient, min/avg/max shortest
path length

Number of nodes, diameter, avg clustering coeffi-
cient, avg shortest path length

PINA (8) [28] Degree, shortest path length, clustering coefficient,
closeness centrality, betweenness centrality, de-
gree centrality, eigenvector centrality

Diameter

Hubba (6) [29] Degree, bottleneck, subgraph centrality, edge perco-
lation component, max neighborhood component,
density of max neighborhood

N.A.

GraphWeb (4) [30] Betweenness centrality Number of nodes/edges, density
tYNA (4) [31] Degree, clustering coefficient, eccentricity, between-

ness centrality
N.A.

VisANT (3) [32] Degree, shortest path length, clustering coefficient N.A.
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There is a need for the relevant web servers to provide more
comprehensive coverage and more user-friendly service in com-
puting the network descriptors. We therefore introduced a new
network descriptor module in PROFEAT (http://bidd2.nus.edu.sg/
cgi-bin/profeat2016/main.cgi), which was previously introduced
[70] and updated [71] as a web server for computing the structural
and physicochemical descriptors of proteins, peptides and pro-
tein–protein interaction (PPI) pairs. The new module supports the
computation of 173 descriptors (29 node level, 144 network level)
for an undirected unweighted network (un-oriented network
with uniform binding constants and uniform molecular levels),
303 descriptors (77 node level, 226 network level) for an undir-
ected edge-weighted network (un-oriented network with varying
binding constants and uniform molecular levels), 183 descriptors
(35 node level, 148 network level) for an undirected node-
weighted network (un-oriented network with uniform binding
constants and varying molecular levels), 313 descriptors (83 node
level, 230 network level) for an undirected edge-node-weighted
network (un-oriented network with varying binding constants
and varying molecular levels) and 20 descriptors (9 node level, 11
network level) for a directed unweighted network (oriented

network with uniform binding constants and uniform molecular
levels). The codes for computing these descriptors were tested
against the PPI data sets [72–74], and the performance evaluation
was conducted. Table 4 summarizes the number of network de-
scriptors, the list of supported network types, the network visual-
ization and some other features of PROFEAT in comparison with
the other 14 publically accessible tools. These network descrip-
tors were fully documented in Supplementary Section A and
Section E, and their applications in systems biology networks
were summarized in Tables 2 and 3.

Materials and methods

The PROFEAT computed network descriptors are broadly grouped
into two groups. The first group (Table 2, Supplementary Table S1
and Section E.1) consists of the node-level descriptors that repre-
sent the connectivity profiles to the immediate neighbors (degree
and triangle) and the next immediate neighbors (clustering coeffi-
cient), and the centrality measure based on the distance to all the
other nodes (closeness centrality) and the number of shortest
paths passing through the studied node (betweenness centrality).

Table 2. List of the node-level descriptors provided by PROFEAT and their typical applications in systems biology studies

Descriptor group Node-level descriptors Typical applications in systems biology

Connectivity to immediate
neighbors

Degree, scaled connectivity, number of self-
loops, number of triangles, Z score

Clustering coefficient used to illustrate the hierarchical archi-
tecture of metabolism [1, 37], identify the functional mod-
ules from genomic associations [38], and predict protein
function by network-based methods [39].Degree and clus-
tering coefficient used to validate if the experimental drugs
are more associated with existing proteins in the drug–tar-
get network [9], and predict candidate genes in coronary ar-
tery disease [40].Topological coefficient and clustering
coefficient used to identify high-confidence interactions in a
large-scale PPI network [18].Neighborhood connectivity
applied for measuring the specificity and stability of protein
networks [19].Interconnectivity applied to prioritize the dis-
ease-associated genes in drug target discovery [41–43].

Connectivity to next imme-
diate neighbors

Clustering coefficient, neighborhood connect-
ivity, topological coefficient, interconnec-
tivity, bridging coefficient

Distance relationships to all
other nodes

Average shortest path length, distance sum,
eccentricity, eccentric, deviation, distance
deviation, radiality

Eccentricity and distance deviation used to prioritize the
metabolic biomarkers in obesity [44].Radiality used to ana-
lyze gene regulatory networks [45].

Centrality measure based
on distance to all other
nodes

Closeness centrality (avg, sum) eccentricity
centrality, harmonic centrality, residual
centrality

Betweenness centrality, degree centrality, bridging centrality
and other centrality measures used to expose the relation-
ship between network topology and system function of pro-
teins [3, 40, 46–48], classify the important nodes in drug
discovery [49] and understand genes implicated in disease
[50].

Centrality measure based
on shortest paths passing
thru the studied node

Stress centrality, betweenness centrality,
normalized betweenness, bridging
centrality

Centrality measure based
on degree or/and neigh-
bors’ centrality

Degree centrality, page rank centrality, eigen-
vector centrality

PageRank centrality used to identify protein target in meta-
bolic networks [51], identify candidate marker genes for
prognostic prediction of pancreatic cancer patients
[52].Eigenvector centrality, together with other centralities,
were applied to predict the synthetic genetic interactions
[53, 54].

Edge-weighted descriptor Strength, assortativity, disparity, geometric
mean of triangles, edge-weighted local
clustering coeff (Barrat’s, Onnela’s,
Zhang’s, Holme’s)

The strength of the associations between genes was used as
the edge weight in gene co-expression analysis [55].Edge-
weighted clustering coefficient was used to predict the sig-
nificant genes in gene co-expression network [56], or a gen-
eral biology system [57].

Node-weighted descriptor Node weight, node-weighted cross degree,
node-weighted local clustering coeff.

Directed and unweighted
descriptor

In-degree, out-degree, directed local cluster-
ing coefficient, neighborhood connectivity
(only-in), neighborhood connectivity (only-
out), neighborhood connectivity (in and
out), average directed neighbor degree

In/out-degree have been applied for five directed biological
networks, to identify and ranks the regulators in the net-
works [58].
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These descriptors are illustrated in Figure 1. In detail, Degree degi

is the number of nodes directly connected to the studied node [1].

Number of Triangle ‘tri i ¼ 1
2

PN
j¼1
PN

k¼1Aij AikAjk’implies the level of

segregation, and it is the basis for measuring the network transi-
tivity [60]. Clustering Coefficient clusteri of node i is locally defined

as ‘clusteri ¼ 2ei
degiðdegi�1Þ ’and the global clustering coefficient clusterG

is ‘clusterG ¼ 1
N

PN
i¼1clusteri’, where N is number of nodes, ei is the

number of connected pairs among all neighbors of node i and
ei¼ 0 if a node has less than two neighbors [75]. The global average
clustering coefficient characterizes the overall tendency of the
nodes to form groups or clusters in the network [1]. Closeness
Centrality of a node is defined as the reciprocal of its average
shortest path length in the graph, which is a measure of how fast
information spreads from a given node to the other reachable

nodes in the network [76]. ‘centralityClosenessi ¼ 1
1
N

PN

j¼1Dij

’, where Dij

represents the shortest path length between node i and node j,
computed based on the Dijkstra’s algorithm [77]. Betweenness

Centrality ‘centralityBetweennessi ¼
P

s 6¼i 6¼trstðiÞ
rst

0 indicates the number

of times a node i serves as a linking bridge along the shortest path
between two nodes s and t, where node s and node t are different
from node i in the network, rst (i) is the number of shortest paths
from s to t passing through i, and rst is the number of shortest
paths from s to t [16, 78].

The second group (Table 3, Supplementary Table S2 and
Section E.2) includes network-level features, including the net-
work connectivity descriptors (degree centralization and hetero-
geneity) [59], the eigenvalue-based network complexity descriptor
(graph energy) [79] and the entropy-based network complexity de-
scriptor (information content of degree equality) [80]. Connectivity
Centralization (or namely degree centralization) is useful for

Table 3. List of the network-level descriptors provided by PROFEAT and their typical applications in systems biology studies

Descriptor group Network-level descriptors Typical applications in systems biology

Global connectivity
profiles

Number of nodes/edges/self-loops, max/min connectiv-
ity, avg number of neighbors, total adjacency, net-
work density, average clustering coefficient,
transitivity, heterogeneity, degree centralization, cen-
tral point dominance

Density, heterogeneity, degree centralization and
global clustering coefficient used to compare and
study the PPI networks between drosophila and
yeast [59].

Network measure based
on shortest paths

Total distance, diameter, radius, shape coefficient, char-
acterisitc path length, network eccentricity, avg ec-
centricity, network eccentric, eccentric connectivity,
unipolarity, integration, variation, avg distance, mean
distance deviation, centralization, global efficiency

Characteristic path length and global efficiency used
to describe the brain neuro-connectivity network
[60].

Topological index based
on connectivity

Edge complexity index, randic connectivity index, atom-
bond connectivity index, Zagreb index (1, 2, modified,
augmented, variable), Narumi index, Narumi geomet-
ric index, Narumi harmonic index, alpha index, beta
index, pi index, eta index, hierarchy, robustness, me-
dium articulation

Randic connectivity index and Zagreb indices
applied to access the complexity in chemistry and
biology [61, 62].Medium articulation evaluated for
measuring the graph features of PPI, genetic inter-
action, and metabolic networks [63].

Topological index based
on shortest paths

Complexity index (A, B), Wiener index, hyper-wiener,
Harary index (1, 2), Compactness index,
Superpendentic index, Hyper-distance-path index,
BalabanJ index, BalabanJ-like indices (1, 2, 3),
Geometric arithmetic indices (1, 2, 3), product of row
sums, Topological index (Schultz, Gutman), Szeged
index, efficiency complexity

Wiener index, BalabanJ index and Graph complexity
index used to access the complexity in chemistry
and biology [61, 62].BalabanJ index used to classify
the metabolic networks from three domains of life
[64].Efficiency complexity assessed for measuring
the graph features of PPI, genetic interaction and
metabolic networks [63].

Entropy-based
complexity

Shannon’s entropy-derived information content of (de-
gree equality/edge equality/edge magnitude/distance
degree/distance degree equality), radial centric infor-
mation index, distance degree compactness, distance
degree centric index, graph distance complexity, in-
formation layer index, Bonchev information index (1,
2, 3), Balaban-like information index (1, 2)

Radial centric information index used to classify the
metabolic networks from three domains of life
[64].Bonchev indices, and some other entropy-
based measures evaluated for possible use in
areas of biology and chemistry [65, 66].

Eigenvalue-based
complexity

Graph energy, laplacian energy, spectral radius, Estrada
index, Laplacian Estrada index, Quasi-Weiner index,
Mohar index (1, 2), graph index complexity, 50
Dehmer’s eigenvalue properties based on matrices of
(adjacency/Laplacian/distance/distance path/aug-
mented vertex degree/extended adjacency/vertex
connectivity/random walk Markov/weighted struc-
tural function 1/weighted structural function 2)

Dehmer proposed a set of 50 eigenvalue-based de-
scriptors, which possess high discriminative
power to capture structural information of graphs,
to predict biological and pharmacological proper-
ties [67].Graph index complexity was discussed in
measuring the graph features of real-world sys-
tems, including PPI network, genetic interaction
network and metabolic network [63].

Edge-weighted
descriptors

Weighted transitivity, edge-weighted global clustering
coeff (Barrat’s, Onnela’s, Zhang’s, Holme’s)

Weighted transitivity used to describe the brain
neuro-connectivity network [60].

Node-weighted
descriptor

Total node weight, node-weighted global clustering
coeff

Directed and un-
weighted descriptor

In-degree (max, avg, min), out-degree (max, avg, min),
directed global clustering coefficient

In/out-degree applied for directed biological net-
works, to identify and rank the regulators in the
networks [58].
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distinguishing such characteristics as highly connected networks
(e.g. star shaped) or decentralized networks, which have been
used for studying the structural differences of metabolic networks
[81]. Heterogeneity measures the variation of the connectivity dis-
tribution, such that reflecting the tendency of a network to have
hubs. This heterogeneity index is biologically meaningful, as bio-
logical networks are usually heterogeneous with some central
nodes highly connected and the rest of the nodes having few con-
nections in the network. These two descriptors are computed as

follows: network density variable is defined as ‘densityG ¼ 2�E
N N�1ð Þ ’,

where E is the number of edges. Then the connectivity centraliza-

tion is calculated by ’centralizationG ¼ N
N�2

maxðdegGÞ
N�1 � densityG

� �
’and

the heterogeneity is calculated by ’heterogeneityG ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�
PN

i¼1 degi
2ð ÞPN

i¼1degi

� �2 � 1

s
’ [59]. Graph Energy of a network is defined as the

sum of the absolute value of all nonzero eigenvalues {k1, k2 . . . kk}

based on the adjacency matrix ’EnergyG ¼
Pk

i¼1jkij’[79].
Information Content of Degree Equality measures the probability

distribution of vertex degree ’IvertexDegree ¼ �
Pkd

i¼1
Nd

i
N � log2

Nd
i

N

� �
’,

where Nd
i is the number of nodes having the same degree, and kd

is the maximum of degree [80].

To support the analysis of biological networks with varying
binding constants and varying molecular levels, PROFEAT also
supports the computation of the edge/node-weighted descrip-
tors. For instances, the edge-weighted clustering coefficient
[56, 69], the node-weighted cross degree, the node-weighted
local clustering coefficient [82] and the directed local clustering
coefficient [60]. Edge-Weighted Clustering Coefficient has been
applied to the prediction of the significant genes in gene co-
expression network [56, 69] and it is given by ‘cluster EWi ¼PN

j¼1

PN

k¼1
bW ij
bW ik
bW jkPN

k¼1
bW ij

� �2
�
PN

k¼1
bW ij

2 ’, where the normalized edge weight is

defined as ‘cWij ¼
Wij

maxfWg ’. Node-Weighted Cross Degree and

Node-Weighted Local Clustering Coefficient [82] are useful for
analyzing the networks with heterogeneous node weights,
which has been recently derived for Earth’s spatial network and
international trade network study. These descriptors are com-
puted by the following procedure: first, the extended adjacency
matrix ‘ExtAij¼Aijþ dij’ is computed, where Aij is the adjacency
relationship between node i and node j, and dij is Kronecker’s
delta constant. The node-weighted cross degree is calculated by

‘ crossdegNW
i ¼

PN
j¼1ExtAij �NWi’, where the NWi is the node

weight of node i, and the node-weighted local clustering coeffi-

cient is then computed by the formula ‘clusterNW
i ¼ 1

crossdegNW
i
2PN

j¼1

PN
k¼1ExtAij �NWj � ExtAik� NWk� ExtAjk’, which works only if

the node-weighted cross degree is not zero, otherwise the local
clustering coefficient will be assumed to be zero. Directed Local
Clustering Coefficient has been introduced to measure the brain
connectivity, as the neuro-connection is considered as a dir-

ected link [60]. This descriptor is defined by ‘clusterD
i ¼

1
2

P
j;h2NðAijþAjiÞðAihþAhiÞðAjhþAhjÞ

degi
þþdegi

�ð Þ degi
þþdegi

��1ð Þ�2
P

j2NAij �Aji
’, where deg�i and degþ i repre-

sents the in-degree and out-degree of node i, respectively.

Results

To facilitate more extensive use of network descriptors in sys-
tems biology studies, we added the biological network descrip-
tor computational module in PROFEAT web server at (http://
bidd2.nus.edu.sg/cgi-bin/profeat2016/network/profnew.cgi).

Table 4. The number of network descriptors, the list of network types and visualization features of PROFEAT and other publically accessible
tools

Tool name Number of
descriptors

Network Types Auto-split
multiple

networks?

Program
skills

required?

Network
visual

interfaceUnweighted Edge
weighted

Node
weighted

EdgeNode
weighted

Directed

PROFEAT up to 313 � � � � � � x x
NetworkX [33] �100 � � x x � x � x
igraph [34] �100 � � x x � x � x
QuACN [35] �100 � x x x x x � x
Cytoscape [22] �23 � x x x � x x �

NAViGaTOR [23] �13 � � x x x x x �

Gephi [24] �10 � x x x x x x �

VANESA [25] �10 � � x x � x x �

Pajek [26] �9 � � x x x x x �

SpectralNET [27] �9 � � � � x x x �

PINA [28] �8 � x x x x x x �

Hubba [29] �6 � � x x x x x �

GraphWeb [30] �4 � � x x � x x �

tYNA [31] �4 � x x x � x x �

VisANT [32] �3 � x x x x x x �

Figure 1. Graphic illustration of the network descriptors degree, triangle, cluster-

ing coefficient, closeness centrality and betweenness centrality in a hypothetic

network. A colour version of this figure is available at BIB online: https://aca

demic.oup.com/bib.
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PROFEAT network descriptor module is composed of five data
input fields, each for computing one of the five network types
(undirected unweighted, undirected edge-weighted, undirected
node-weighted, undirected edge-node-weighted and directed
un-weighted networks). Given an input network file, each type
of network descriptors can be computed by uploading the file in
a particular input field followed by the click of the ‘Submit’ but-
ton at the bottom of the input fields. Once the job is submitted,
the network is read and the adjacency matrix is stored in hash-
able dictionary data type for faster data access. The deep-first-
search is then carried out to check and split the disconnected
networks if any. The adjacency-based shortest path lengths and
the edge-weighted shortest path lengths are computed and also
stored in hashable data matrices, and followed by the calcula-
tion of each descriptor according to its computation algorithm
(Supplementary Section E). The output can be retrieved in two
ways. For the jobs of smaller network sizes, the output is dir-
ectly displayed at the automatically popup PROFEAT output
window, with a download bottom to save the output file. For
the jobs of larger network sizes the output is directed to a file
stored at a URL such as http://bidd2.nus.edu.sg/cgi-bin/pro
feat2016/network/profeat-result.cgi?uid¼net-x, where (x ¼ 0, 1,
2,. . .) is a uniquely assigned network id for each individual job,
which is accessible to view and save the output descriptors
sometime later. The flowchart for computing the network de-
scriptors is given in Figure 2, and the examples of the input and
output of different network types are provided in Figure 3 and
Supplementary Tables S3–S9.

Input files

The input network file can be in either Simple interaction file
(SIF) or Nested network file (NET) format, which have been
widely used for storing biological interaction and network data
in such databases as the Pathway Commons [72] and by such
software as Cytoscape [22] and Pajek [26]. Specifically, the SIF

format (illustrated in Figure 3) is tab-delimited, specifying the
two interacting nodes in each column, with another column of
relationship type in between the two node columns, i.e. [node
A] tab [relationship] tab [node B]. In the NET format (also illus-
trated in Figure 3), the input data are in three sections, the *ver-
tices section lists all the nodes, the *edges section contains all
the undirected interactions between two nodes with an optional
edge weight in the third column and the *arcs section includes
all the directed interactions pointing from the earlier node to
the later node. The output file is in a tab-delimited text file for-
mat composed of (1) the header section with each row starting
with the character ‘!’ followed by the network name, total num-
ber of networks, nodes and edges respectively, (2) the node-
level descriptors section with each row showing the descriptor
index, name and value for every node in the network (the node
label is provided in the first row) and (3) the network-level de-
scriptors section with each row showing the descriptor index,
name and value. The input of a sample network in the SIF and
NET format and the typical output are provided in Figure 3. The
descriptor indices are described in Supplementary Section A,
and the descriptor algorithms are given in Supplementary
Section E.

Required information

The required information for computing the network descrip-
tors is as follows: First, for an undirected unweighted network,
only adjacency information is needed, and only unweighted de-
scriptors are generated. Second, an undirected edge-weighted
network requires a fourth column specifying the edge weight in
the input: [node A] tab [relationship] tab [node B] tab [edge weight],
where the numerical edge weight can be kinetic constant, bind-
ing affinity, gene co-expression level, interaction confidence
level or other measurements of the strength of the interacting
nodes. Note that, edge length is inversely related to edge
weight, as higher weight typically represents stronger

Figure 2. The computational flowchart of PROFEAT network descriptors, where ‘node:’ gives the number of node-level descriptors and ‘net:’ gives the number of net-

work-level descriptors. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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interaction and closer relation [60]. Such that the weighted-
distance-related descriptors are calculated based on the recipro-
cal of edge weights. Third, the undirected node-weighted net-
work needs an additional node weight file as [node label] tab
[node weight], where the node label should be correctly
matched to the network file, and the node weight could be gene
expression level, protein/metabolite level, etc. Fourth, the un-
directed edge-node-weighted network requires the edge-
weighted network file and the node weight file together to cal-
culate the network descriptors. For all weighted networks, the
weight normalization is carried out, such that weighted features
will be calculated based on both the original weight and the nor-
malized weight. Lastly, consider a directed unweighted net-
work, the SIF file is differently defined: for the two interacting

nodes in each line, the earlier one points to the latter one: [node
A] tab [relationship] tab [node B] gives (A!B). Additionally, if there
are multiple disconnected networks included in one single in-
put file, PROFEAT is able to automatically detect each connected
network, rank them by the number of nodes and output the de-
scriptors for each one, respectively. An illustrative example for
such case study is given in the Supplementary Section B.8 and
Supplementary Table S9.

Evaluation of the performance of PROFEAT

We evaluated the CPU time of PROFEAT in computing the com-
plete set of network descriptors for 30 GO biological process-
specific PPI networks of five different network types and various

Network Input in SIF Format Input in NET Format 

Output 

Figure 3. The input and output of a sample undirected unweighted network, where (A, B . . . K) are the labels of individual nodes.
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sizes (Table 5). These networks were constructed as follows:
first, the human PPIs were collected from HPRD (Human Protein
Reference Database) [74]; second, the GO annotation informa-
tion for each protein was extracted from UniProt Database [83];
third, the proteins and the PPIs were mapped against the biolo-
gical process annotations from GOslims Gene Ontology [84]; and
finally, the human PPI network associated with each specific GO
biological process was constructed. We selected 30 GO biological
process networks with varying number of nodes from 52 to 2616
and different number of edges from 51 to 4664. Each of the 30
networks was constructed into five different types. The first
four types are undirected unweighted, edge-weighted, node-
weighted and edge-node-weighted networks with the edge
weights or node weights randomly generated. The fifth type is
the directed unweighted network with the direction of each
edge tentatively assigned from the left node to the right node in
the input of SIF Format.

The CPU time of the tested networks, measured on a Dell
OptiPlex9010 Intel Core i7-3770 3.4 GHz CPU, are summarized in
Table 5 and Figure 4. Specifically, the CPU time for the
unweighted network is within 1 min for a network having no
more than 500 nodes or 600 edges, the CPU time is <5 min if the
network size is less than 1000 nodes or 1300 edges, while the
CPU time increases to >80 min if the network gets larger than
2600 nodes or 4600 edges. On the other hand, the CPU time for
the edge-weighted network is <50 min if the network size is no

more than 1200 nodes or 1700 edges, and it takes >400 min if
the network size is bigger than 2600 nodes or 4600 edges.

We further evaluated the PROFEAT computed values of a se-
lected set of network descriptors and the job execution times in
comparison with those of the three popular tools NetworkX,
Cytoscape and Gephi. The evaluated network descriptors are
degree, number of triangles, local/global clustering coefficient,
closeness centrality, betweenness centrality, connectivity cen-
tralization and heterogeneity. These descriptors were computed
for three undirected unweighted networks, which are (1) PPI
network for GO:0030705 cytoskeleton intracellular transport
with 107 nodes and 123 edges, (2) PPI network for GO:0009790
embryo development with 390 nodes and 415 edges and (3) PPI
network for GO:0007267 cell–cell signaling with 1202 nodes and
1737 edges. Because it was difficult to directly measure the CPU
time on the three popular tools, we used the job execution time
(from the time of file input to the time of file output, which is
roughly CPU time plus 3 s on PROFEAT) for the measurement.
The comparative results are presented in Table 6,
Supplementary Section C and Supplementary Tables S10–S12.
The PROFEAT computed values of all the evaluated network de-
scriptors for the three networks are in good agreement with
those computed from the three popular tools. The job execution
time of PROFEAT for the first two networks are comparable with
those of the three popular tools (5 s versus 5–30 s, and 30 s ver-
sus 10–40 s). But the job execution time of PROFEAT for the third

Table 5. CPU time in computing the complete set of network descriptors for 30 GO biological process-specific human PPI networks of five differ-
ent network types

PPI network GO ID GO biological process Network size CPU time (Minutes) for different network types

Number
of nodes

Number
of edges

Unweighted Edge
weighted

Node
weighted

EdgeNode-
weighted

Directed

GO:0002376 Immune system process 52 51 0.006 0.010 0.007 0.011 0.004
GO:0008219 Cell death 76 81 0.009 0.020 0.011 0.022 0.004
GO:0030705 Cytoskeleton intracellular transport 107 123 0.014 0.044 0.019 0.048 0.005
GO:0006091 Generation of metabolites and energy 125 134 0.022 0.070 0.030 0.077 0.005
GO:0006259 DNA metabolic process 141 152 0.025 0.093 0.035 0.104 0.005
GO:0006913 Nucleocytoplasmic transport 197 219 0.055 0.236 0.084 0.267 0.005
GO:0048646 Anatomical structure formation 242 246 0.092 0.423 0.147 0.446 0.006
GO:0006629 Lipid metabolic process 271 353 0.130 0.602 0.205 0.666 0.006
GO:0000902 Cell morphogenesis 347 377 0.288 1.25 0.402 1.42 0.007
GO:0009790 Embryo development 390 415 0.357 1.74 0.583 1.97 0.007
GO:0007005 Mitochondrion organization 435 513 0.456 2.46 0.768 2.68 0.008
GO:0048870 Cell motility 461 534 0.545 2.86 0.915 3.01 0.009
GO:0006397 mRNA processing 489 681 0.679 3.66 1.12 3.93 0.009
GO:0016192 Vesicle-mediated transport 494 630 0.670 3.49 1.13 3.75 0.009
GO:0034641 Cellular nitrogen metabolic process 563 756 1.01 5.44 1.70 5.57 0.011
GO:0006950 Response to stress 590 772 1.16 6.23 1.92 6.82 0.012
GO:0007010 Cytoskeleton organization 606 799 1.23 6.70 2.09 7.53 0.012
GO:0006464 Cellular protein modification process 627 751 1.40 7.60 2.32 8.24 0.013
GO:0006605 Protein targeting 642 860 1.49 8.22 2.47 9.07 0.014
GO:0006457 Protein folding 670 842 1.69 8.94 2.82 9.80 0.013
GO:0006412 Translation 772 996 2.52 13.77 4.27 15.47 0.017
GO:0006914 Autophagy 825 1001 2.94 16.33 5.03 18.71 0.018
GO:0006810 Transport 872 1089 3.41 19.55 6.01 21.92 0.020
GO:0005975 Carbohydrate metabolic process 1014 1329 5.44 30.78 9.41 35.32 0.026
GO:0007267 Cell–cell signaling 1202 1737 8.99 50.74 15.52 56.93 0.033
GO:0007049 Cell cycle 1513 2262 17.77 102.71 30.99 117.12 0.051
GO:0007568 Aging 1692 2637 24.92 144.16 43.78 158.62 0.062
GO:0030154 Cell differentiation 1752 2742 27.82 163.10 48.25 178.31 0.068
GO:0007155 Cell adhesion 1865 3356 34.26 194.14 58.84 216.88 0.076
GO:0008283 Cell proliferation 2616 4664 78.80 431.63 160.43 491.17 0.146
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network is substantially higher than those of the three popular
tools (9 min versus 30–60 s). The longer job execution times of
PROFEAT arise from its computation of the full set of network
descriptors in contrast to the computation of a smaller subset of
descriptors by the other tools.

Discussion

The usefulness of the network descriptors in characterizing the
connectivity, organizational, robustness and stability properties
of the protein–protein, disease, metabolic and drug targeted
networks are illustrated in the following cases of literature-
reported studies. These are the study of the topological proper-
ties of the human protein–protein network [18], the characteris-
tics of the protein encoding the house-keeping genes and
tissue-specific genes in the protein–protein network of specific
human tissues [85], the exploration of network descriptors for
identifying [86] and analyzing [87] metabolic pathways and for
studying evolutional features [88] and phylogenetic relation-
ships [89], the investigation of the target-like characteristics of

therapeutic targets in the human protein–protein network
[9, 17] and the disease network [9], and the feasibility assess-
ment of using drug target relevant network descriptors for de-
veloping machine learning target prediction models [17]. The
taxonomy of the biological problems and the use of network in-
dicators discussed here are summarized in Supplementary
Section D and Supplementary Table S12.

Study of the topological properties of the human
protein–protein network and the characteristics of
specific protein classes

The extensive studies of PPI have generated rich knowledge and
data for the investigation of the network behavior of proteins.
For instance, a PPI map has been constructed as a resource for
annotating the proteome, which has been used for probing the
topological properties of the human protein–protein network
that connects 1705 human proteins via 3186 interactions [18].
Based on the analysis of the network descriptors of this net-
work, it was found that the average clustering coefficient, a

Figure 4. CPU time (mins) in computing the complete set of network descriptors for the networks described in Table 5 with respect to the number of nodes (left) and

the number of edges (right). A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Table 6. Comparison of the computed network descriptor values and the job execution time for a PPI network GO:0030705 cytoskeleton intra-
cellular transport (107 nodes and 123 edges) by PROFEAT and other popular tools NetworkX, Cytoscape and Gephi

Tool name PROFEAT NetworkX Cytoscape Gephi

Network descriptor Computed network descriptor value
Degree 42 (TUBB) 42 (TUBB) 42 (TUBB) 42 (TUBB)
Number of triangle 4 (KIF5A) 4 (KIF5A) N.A. 4 (KIF5A)
Local clustering coefficient 1 (SDC3) 1 (SDC3) 1 (SDC3) 1 (SDC3)
Closeness centrality 0.486 (TUBB) 0.485 (TUBB) 0.485 (TUBB) 0.484 (TUBB)
Betweenness centrality 0.816 (TUBB) 0.816 (TUBB) 0.816 (TUBB) 0.816 (TUBB)
Global clustering coefficient 0.025 0.025 0.025 0.110
Connectivity centralization 0.382 N.A. 0.382 N.A.
Heterogeneity 2.046 N.A. 2.045 N.A.

Job execution time
�5 s �5 s �30 s �30 s

The first five descriptors are node-level properties, where the maximum values and the corresponding node’s gene names are given, like ‘max. Value (gene name)’.

The next three descriptors are network-level properties, globally describing the entire network.
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measure of the tendency of the proteins to form groups, dimin-
ishes when the number of interactions per protein increases,
indicating a hierarchical organization of the network. Moreover,
the topological coefficient, a measure of the extent to which a
protein shares interaction partners with other proteins, de-
creases with the number of connections, suggesting that hubs
do not have more common neighbors than proteins with fewer
connections.

Moreover, a study has been conducted to analyze the topo-
logical and organizational properties of the proteins encoded by
the house-keeping and tissue-specific genes in the human pro-
tein–protein networks of specific human tissues [85]. The tis-
sue-specific networks of 19 tissue types were generated by
mapping the tissue-specific gene expression data of the Human
Gene Expression Index database [90] to those of the Human
Protein Reference Database [91]. There are 149–203 house-
keeping genes and 8–318 tissue-specific genes with 464–1933
interactions in the network of each tissue type. Three network
descriptors (degree, betweenness centrality, closeness central-
ity) of the house-keeping and tissue-specific genes were ana-
lyzed in comparison with the expected mean values of
randomly selected proteins in the human protein–protein net-
work, which showed certain tissue-specific behavior. For in-
stance, for the house-keeping genes, the average degrees in the
brain and testes, and the average betweenness centrality in the
testes are significantly greater than the expected mean values,
which indicate that in these tissues the proteins encoded by
house-keeping genes tend to have a greater number of direct
neighbors and/or occupy network points incident to higher
number of shortest interaction paths. For the tissue-specific
genes, the average betweenness centrality in the testes and the
average closeness centrality in the ovary are significantly lower
than the expected mean, which suggest that the protein prod-
ucts of tissue-specific genes in the testes tend to occupy net-
work positions incident to lower number of shortest interaction
paths, and those in the ovary tend to be further away from other
genes.

Exploring network descriptors for identifying and
analyzing metabolic pathways, and for studying
evolutional features and phylogenetic relationships

Metabolic pathways have distinct network topological features
shaped by such factors as the evolutionary processes [88, 92].
These topological features are useful and have been explored
for identifying [86] and evaluating [87] the elements of meta-
bolic pathways, studying the influence of evolution on meta-
bolic networks [88], and revealing that the phylogenetic
relationship of the species are encoded in their metabolic path-
ways [89]. One strategy in generating metabolic pathways is to
search for the shortest reaction paths among the possible con-
nections between the identified metabolites using their struc-
tural similarity as the edge weightage in the metabolite graphs
[86]. To remove the irrelevant metabolite candidates for each re-
action path, two network descriptors (degree and betweenness
centrality) have been used to filter out the nodes of lower degree
value or lower betweenness centrality value that likely repre-
sent side metabolites in a reaction step [86]. In another study,
multiple network descriptors such as betweenness centrality
and eccentricity have been used in the development of a ma-
chine learning model (random forest model) to predict the cor-
rect and incorrect enzyme assignments, which successfully
distinguished correctly and incorrectly annotated candidates of

a missing enzyme (dihydroneopterin aldolase) in the
Plasmodium falciparum folate biosynthesis pathway [87].

The studies of the evolution of metabolic networks have
been based on such models as the Patchwork model [88, 93],
which assumes that enzymes refine their substrate specificity
after duplication events. In the early stage of evolution, most
enzymes have broad substrate specificities for generating mul-
tiple metabolic pathways to produce the same metabolites.
Eventually, evolution has brought selective advantage to those
pathways that generate higher amounts of the key metabolites,
and the duplication events lead to the specialization of the en-
zymes and the respective metabolic pathways. In studying
these evolutionary events, five network descriptors (degree,
betweenness centrality, clustering coefficient, assortativity and
shortest path) have been used for characterizing the topological
properties of metabolic networks [88]. The relevant studies have
shown that the duplication rate of a metabolic network hubs is
relatively low [94], indicative of their central roles, while dupli-
cation of genes are mostly localized in the network [88].
Moreover, there is a high retention of duplicates between chem-
ically similar reactions and in closely connected functional
modules, and the local connectivity effect of duplications is ab-
sent in the interaction networks of nonenzymatic proteins,
which suggests that the retention of duplicates results from bio-
chemical rules that govern substrate–enzyme–product relation-
ships [95]. In another study [89], two networks, a network of
interacting pathways and a network of interacting metabolites,
were constructed from the KEGG and the November 2006 re-
lease of the Ma data set for each of the 107 species, which were
represented by 35 network descriptors that measure various de-
gree, centrality, distance and cliques-related properties. Then,
the metabolic network-based distances derived from the
trained regression models were compared with the phylogen-
etic distances derived from the 16S rRNA sequences, which
showed that the metabolic network-based distances reproduce
accurately reference phylogenetic distances derived from 16S
rRNA sequences. These studies suggest the usefulness of net-
work descriptors in studying the structural, evolutionary and
phylogenetic profiles of the metabolic networks.

Study of the target-like characteristics of drug targets in
the human protein–protein and disease networks

The targets of approved drugs possess such specific target-like
characteristics as the appropriate druggable structures, sub-
stantial dissimilarity to human proteins and distinguished sys-
tems and tissue distribution profiles [9, 17, 96, 97]. In particular,
these targets are distinguished in the human protein–protein
and disease–gene networks such that specific network descrip-
tors may be used as the quantitative determinants of drug tar-
gets in these networks [9, 17]. In a study of the global
relationships between drug targets in the human interactome
network [9], a target protein network was first constructed by
using 394 targets of 890 approved drugs wherein these targets
are connected by their commonly targeted drug(s). In this net-
work, 788 drugs share targets and 305 targets are connected to
one another. This network was then overlaid onto the human
protein–protein network [98] composed of 7533 proteins and
22 052 non-self-interacting and nonredundant interactions.
Overall, 260 targets were mapped onto the human protein–pro-
tein network, which on average have a higher degree (with 42%
more interacting proteins) than that of the nontarget proteins
in the same network. In another study of the druggability prop-
erties of 304 targets of approved drugs in the human protein–
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protein network [17], a protein–protein network model of 7764
proteins and 28 149 interactions derived from the Human
Protein Reference Database [74], in which the drug targets were
found to have increased average betweenness, suggesting their
tendency to bridge two or more clusters of relatively closely
interacting proteins.

The distribution behavior of the drug targets in the human
disease network has also been studied [9]. A human disease–
gene network of 1284 distinct disorders and 1777 disease-related
genes was generated from the OMIM-based disorder–disease
gene associations [50], wherein a link is established between a
disorder and a disease gene if a mutation in that gene leads to
the disorder. Disease genes associated with a single disorder
are omitted. In this network, there are 166 genes encoding
the targets of approved drugs, 43% of which are associated
with two or more disorders. For both the disorder nodes
connected to a drug target and the disease gene nodes encoding
a drug target, their average degrees are higher than random
cases. Moreover, the distribution of the drug targets in this
network exhibits a clustered pattern with the targets primar-
ily enriched in some regions of the network. Specifically,
starting from a node in the network, the ratio of drug targets with
respect to the distance from the node was measured, which
showed a strong enrichment in the first and the second neigh-
bors and thus a bias toward clustering of drug targets in the
network.

Evaluation of the feasibility of using drug target-relevant
network descriptors for developing machine learning
target prediction models

A study has been conducted to further test whether some of the
above-described drug target-relevant network descriptors are
useful for developing machine learning classification models to
predict drug targets based on the available network and other
types of descriptors of proteins [17]. In that study, 237 targets
(positive samples) and 5037 nontarget proteins (negative sam-
ples) were used for constructing and testing the machine learn-
ing models (naive Bayesian classifier, logistic regression, radial
basis function network and Bayesian network models) in distin-
guishing targets and nontarget proteins in the human genome.
These target and nontarget proteins were represented by two
network (degree and betweenness) and three other (tissue ex-
pression entropy, SNP-based Cratio and functional family assign-
ment) descriptors. The machine learning models were each
trained and tested by using the 10-fold cross-validation method
[99]. The performance of these machine leaning models was
evaluated by the receiver operating characteristic (ROC) score
that measures the overall performance of each model inte-
grated over the entire range of false-positive and false-negative
rates. The ROCs of these four models were found to be signifi-
cantly higher than the value of 0.5 of a random classification
model, indicating the usefulness of the network descriptors as
part of the ingredients in developing drug target prediction tools
based on the sequence, structure and systems profiles of
proteins.

Perspectives

The functional studies of proteins frequently require the use of
multiple approaches from the perspectives of genetic se-
quences, protein structures, molecular interactions and biolo-
gical networks. Protein functional studies particularly at the
biological systems and cellular levels can be greatly enhanced

by the exploration of the network theories, descriptors and
models developed in other fields [12–14, 20, 21, 100–102] and in
the study of biological systems [1–3, 6, 9, 103], which offers
much more expanded perspectives and avenues to the under-
standing of biological systems and cellular internal organiza-
tion, evolution and dynamic behavior than the studies based on
the concept of individual molecule or independent group of
molecules [1]. The progress toward reliable network-based stud-
ies of the biological and disease processes may be constrained
by the insufficient information about biological networks, lim-
ited capability of the available network analysis and modeling
methods and the inadequate computational resources for facili-
tating the analysis and modeling of biological networks. By pro-
viding the facility of the computation of comprehensive
network descriptors useful for studying biological systems,
PROFEAT complements the other resources in the information
[72, 104], modeling tools [105], parameters [106] of biological
pathways and the data of PPIs [107–109] for collectively facilitat-
ing the investigation of the protein functions and the network
dynamics and their roles in biological and cellular systems [1],
disease processes [2] and therapeutic regulations [3].

Key Points

• PROFEAT web server computes the currently most
comprehensive (upto 313) network descriptors to char-
acterize the node/network-level topology, connectivity
and complexity properties of a network.

• It supports different types of networks with different
biological representations in terms of binding con-
stants, molecular levels and directed processes.

• It is user friendly with simple input/output and easy
operation.

• This article reviewed the usefulness of network de-
scriptors in systems biology applications (e.g. protein–
protein interaction network, metabolic network, disease
network, drug–target network and gene regulatory
network)

• PROFEAT network descriptors could facilitate the func-
tional biological investigations by providing the sys-
tematic properties of molecular interaction networks,
offering the expanded understandings of biological
complex systems and revealing the higher-level clues
of what the mechanisms could be.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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45. Dirk Koschützki FS. Centrality analysis methods for biolo-
gical networks and their application to gene regulatory net-
works. Gene Regul Syst Bio 2008;2:193–201.

46. Jacunski A, Tatonetti NP. Connecting the dots: applications
of network medicine in pharmacology and disease. Clin
Pharmacol Ther 2013;94:659–69.

1068 | Zhang et al.



47. Joy MP, Brock A, Ingber DE, et al. High-betweenness proteins
in the yeast protein interaction network. J Biomed Biotechnol
2005;2005:96–103.

48. Yu H, Kim PM, Sprecher E, et al. The importance of
bottlenecks in protein networks: correlation with gene es-
sentiality and expression dynamics. PLoS Comput Biol
2007;3:e59.

49. Harrold JM, Ramanathan M, Mager DE. Network-based
approaches in drug discovery and early development. Clin
Pharmacol Ther 2013;94:651–8.

50. Goh KI, Cusick ME, Valle D, et al. The human disease net-
work. Proc Natl Acad Sci USA 2007;104:8685–90.

51. Banky D, Ivan G, Grolmusz V. Equal opportunity for low-
degree network nodes: a PageRank-based method for pro-
tein target identification in metabolic graphs. PLoS One
2013;8:e54204.

52. Winter C, Kristiansen G, Kersting S, et al. Google goes cancer:
improving outcome prediction for cancer patients by
network-based ranking of marker genes. PLoS Comput Biol
2012;8:e1002511.

53. Paladugu SR, Zhao S, Ray A, et al. Mining protein networks
for synthetic genetic interactions. BMC Bioinformatics
2008;9:426.

54. You ZH, Yin Z, Han K, et al. A semi-supervised learning ap-
proach to predict synthetic genetic interactions by combin-
ing functional and topological properties of functional gene
network. BMC Bioinformatics 2010;11:343.

55. Schadt EE, Björkegren JL. NEW: network-enabled wisdom in
biology, medicine and healthcare. Sci Transl Med
2012;4:115rv111.

56. Zhang B, Horvath S. A general framework for weighted gene
co-expression network analysis. Stat Appl Genet Mol Biol
2005;4:Article17.

57. Barrat A, Barthelemy M, Pastor-Satorras R, et al. The archi-
tecture of complex weighted networks. Proc Natl Acad Sci
USA 2004;101:3747–52.

58. Pei Wang JL, Yu X. Identification of important nodes in dir-
ected biological networks: a betwork motif approach. PLoS
One 2014;9:e106132.

59. Dong J, Horvath S. Understanding network concepts in mod-
ules. BMC Syst Biol 2007;1:24.

60. Rubinov M, Sporns O. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage
2010;52:1059–69.

61. Emmert-Streib F, Dehmer M. Networks for systems biology:
conceptual connection of data and function. IET Syst Biol
2011;5:185–207.

62. Bonchev D. Complexity in Chemistry, Biology, and Ecology. New
York, USA: Springer US, 2007.

63. Kim J, Wilhelm T. What is a complex graph? Physica A
2008;387:2637–52.

64. Mueller LA, Kugler KG, Netzer M, et al. A network-based ap-
proach to classify the three domains of life. Biol Direct
2011;6:53.

65. Dehmer M, Mowshowitz A. A history of graph entropy meas-
ures. Inf Sci 2011;181:57–78.

66. Dehmer M, Grabner M, Varmuza K. Information indices with
high discriminative power for graphs. PLoS One 2012;7:e31214.

67. Dehmer M. Uniquely discriminating molecular structures
using novel eigenvalue-based descriptors. MATCH Commun
Math Comput Chem 2012;67:147–72.

68. Ivan G, Grolmusz V. When the web meets the cell: using per-
sonalized PageRank for analyzing protein interaction net-
works. Bioinformatics 2011;27:405–7.

69. Saram€aki J, Kivel€a M, Onnela JP, et al. Generalizations of the
clustering coefficient to weighted complex networks. Phys
Rev E 2007;75:027105.

70. Li ZR, Lin HH, Han LY, et al. PROFEAT: a web server for com-
puting structural and physicochemical features of proteins
and peptides from amino acid sequence. Nucleic Acids Res
2006;34:W32–7.

71. Rao HB, Zhu F, Yang GB, et al. Update of PROFEAT: a web ser-
ver for computing structural and physicochemical features
of proteins and peptides from amino acid sequence. Nucleic
Acids Res 2011;39:W385–90.

72. Cerami EG, Gross BE, Demir E, et al. Pathway commons, a
web resource for biological pathway data. Nucleic Acids Res
2011;39:D685–90.

73. Kandasamy K, Mohan SS, Raju R, et al. NetPath: a public re-
source of curated signal transduction pathways. Genome Biol
2010;11:R3.

74. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human pro-
tein reference database–2009 update. Nucleic Acids Res
2009;37:D767–72.

75. Watts DJ, Strogatz SH. Collective dynamics of ’small-world’
networks. Nature 1998;393:440–2.

76. Newman MEJ. A measure of betweenness centrality based
on random walks. Soc Networks 2003;27:39–54.

77. Dijkstra EW. A note on two problems in connexion with
graphs. Numer Math 1959;1:269–71.

78. Brandes U. A faster algorithm for betweenness centrality.
J Math Sociol 2001;25:163–77.

79. Gutman I, Zhou B. Laplacian energy of a graph. Linear
Algebra Appl 2006;414:29–37.

80. Leroy G. Information Theoretic Indices for Characterization of
Chemical Structures. New York, NY : Wiley, 1985.

81. Ma HW, Zeng AP. The connectivity structure, giant strong
component and centrality of metabolic networks.
Bioinformatics 2003;19:1423–30.

82. Wiedermann M, Donges JF, Heitzig J, et al. Node-weighted
interacting network measures improve the representation
of real-world complex systems. EPL 2013;102:28007.

83. UniProt C. UniProt: a hub for protein information. Nucleic
Acids Res 2015;43:D204–12.

84. Gene Ontology C. Gene Ontology Consortium: going for-
ward. Nucleic Acids Res 2015;43:D1049–56.

85. Lin WH, Liu WC, Hwang MJ. Topological and organizational
properties of the products of house-keeping and tissue-
specific genes in protein-protein interaction networks. BMC
Syst Biol 2009;3:32.

86. Frainay C, Jourdan F. Computational methods to identify
metabolic sub-networks based on metabolomic profiles.
Brief Bioinform 2016;pii: bbv115

87. Liberal R, Pinney JW. Simple topological properties predict
functional misannotations in a metabolic network.
Bioinformatics 2013;29:i154–61.

88. Yamada T, Bork P. Evolution of biomolecular networks: les-
sons from metabolic and protein interactions. Nat Rev Mol
Cell Biol 2009;10:791–803.

89. Mazurie A, Bonchev D, Schwikowski B, et al. Phylogenetic
distances are encoded in networks of interacting pathways.
Bioinformatics 2008;24:2579–85.

90. Hsiao LL, Dangond F, Yoshida T, et al. A compendium of
gene expression in normal human tissues. Physiol Genomics
2001;7:97–104.

91. Peri S, Navarro JD, Amanchy R, et al. Development of human
protein reference database as an initial platform for approach-
ing systems biology in humans. Genome Res 2003;13:2363–71.

Protein network descriptor server | 1069



92. Raymond J, Segre D. The effect of oxygen on biochemical net-
works and the evolution of complex life. Science 2006;311:1764–7.

93. Ycas M. On earlier states of the biochemical system. J Theor
Biol 1974;44:145–60.

94. Lu C, Zhang Z, Leach L, et al. Impacts of yeast metabolic net-
work structure on enzyme evolution. Genome Biol 2007;8:407.

95. Diaz-Mejia JJ, Perez-Rueda E, Segovia L. A network perspec-
tive on the evolution of metabolism by gene duplication.
Genome Biol 2007;8:R26.

96. Zheng CJ, Han LY, Yap CW, et al. Therapeutic targets: pro-
gress of their exploration and investigation of their charac-
teristics. Pharmacol Rev 2006;58:259–79.

97. Hopkins AL, CR G. The druggable genome. Nat Rev Drug
Discov 2002;1:727–30.

98. Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-
scale map of the human protein-protein interaction net-
work. Nature 2005;437:1173–8.

99. Hanley J, McNeil B. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology
1982;143:29–36.

100. Latora V, Marchiori M. Efficient behavior of small-world net-
works. Phys Rev Lett 2001;87:198701.

101. Sabidussi G. The centrality index of a graph. Psychometrika
1966;31:581–603.

102. Davis JA. Clustering and hierarchy in interpersonal rela-
tions: testing two graph theoretical models on 742 socioma-
trices. Am Sociol Rev 1970;35:843–51.

103. Zhang J, Jia J, Zhu F, et al. Analysis of bypass signaling in
EGFR pathway and profiling of bypass genes for predicting
response to anticancer EGFR tyrosine kinase inhibitors. Mol
Biosyst 2012;8:2645–56.

104. Kanehisa M, Goto S, Sato Y, et al. Data, information, know-
ledge and principle: back to metabolism in KEGG. Nucleic
Acids Res 2014;42:D199–205.

105. Chelliah V, Juty N, Ajmera I, et al. BioModels: ten-year anni-
versary. Nucleic Acids Res 2015;43:D542–8.

106. Kumar P, Han BC, Shi Z, et al. Update of KDBI: kinetic data of
bio-molecular interaction database. Nucleic Acids Res
2009;37:D636–41.

107. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10:
protein-protein interaction networks, integrated over the
tree of life. Nucleic Acids Res 2015;43:D447–52.

108. Orchard S, Ammari M, Aranda B, et al. The MIntAct
project–IntAct as a common curation platform for 11 mo-
lecular interaction databases. Nucleic Acids Res 2014;42:
D358–63.

109. Hoffmann R, Valencia A. A gene network for navigating the
literature. Nat Genet 2004;36:664.

1070 | Zhang et al.


	bbw071-TF1

