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Abstract

Background: While the association between a drug and an adverse event (ADE) is generally detected at the level
of individual drugs, ADEs are often discussed at the class level, i.e., at the level of pharmacologic classes (e.g., in
drug labels). We propose two approaches, one visual and one computational, to exploring the contribution of
individual drugs to the class signal.

Methods: Having established a dataset of ADEs from MEDLINE, we aggregate drugs into ATC classes and ADEs into
high-level MeSH terms. We compute statistical associations between drugs and ADEs at the drug level and at the
class level. Finally, we visualize the signals at increasing levels of resolution using heat maps. We also automate the
exploration of drug-ADE associations at the class level using clustering techniques.

Results: Using our visual approach, we were able to uncover known associations, e.g., between fluoroquinolones
and tendon injuries, and between statins and rhabdomyolysis. Using our computational approach, we systematically
analyzed 488 associations between a drug class and an ADE.

Conclusions: The findings gained from our exploratory techniques should be of interest to the curators of ADE
repositories and drug safety professionals. Our approach can be applied to different drug-ADE datasets, using different
drug classification systems and different signal detection algorithms.

Keywords: Adverse drug events, Drug classes, Anatomical Therapeutic Chemical (ATC) drug classification system,
Class effect, Heat maps, Pharmacovigilance
Background
Motivation
According to the Agency for Healthcare Research and
Quality (AHRQ), adverse drug events (ADEs) “result in
more than 770,000 injuries and deaths each year and
cost up to $5.6 million per hospital” [1]. Drug safety is
addressed through the drug development process, not
only during clinical trials [2], but also through postmarket-
ing surveillance, by analyzing spontaneous reports [3],
observational data [4] and the biomedical literature [5].
While the association between a drug and an adverse

event is generally detected at the level of individual drugs
(e.g., between aspirin and Reye syndrome [6]), ADEs are
often discussed at the level of pharmacologic classes.
Examples include the ototoxicity of aminoglycosides [7],
the association between statins and rhabdomyolysis [8],
and between vaccines and Guillain-Barré syndrome [9].
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These examples illustrate the need for investigating ADEs
at the class level, i.e., after aggregating individual drugs
into pharmacologic classes.
Some ADEs can be observed with every individual

drug in a class. This is often the case when the ADE is
related to the physiologic effect of the drug. For ex-
ample, bleeding is a common effect of anticoagulants,
such as vitamin K antagonists [10]. Conversely, some
ADEs are associated with some class members, but not
with all of them. For example, a recent review reports a
differential risk of tendon injuries with various fluoro-
quinolones, the highest risk being with ofloxacin [11].
From an ontological perspective, it is interesting to

explore whether the ADE is an inherent property of the
class (inherited by every member of the class) or rather
a property of some members only. In practice, when
there is a high risk of an ADE for a class (i.e., a strong
class-level signal), one may want to “drill down” and
investigate the drug-level signal for each individual drug
in the class to discover if the class-level signal results
from uniformly high drug-level signals, or is rather
driven by an intense signal for a small number of drugs,
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while the other drugs in the class would not exhibit a high
risk for this ADE. The former reflects a “class property”
inherited by each drug, whereas the latter reflects a “drug
property”, i.e., a property for some of the drugs only.
The objective of this work is to explore the contribution

of individual drugs to the class signal. More specifically, we
propose two approaches, one visual and one computa-
tional, to identifying “class effects”, i.e., cases when all
drugs in a class have the same ADE (as opposed to cases
where the class signal is driven by only a few drugs from
the class).

Drug and ADE terminologies
The following sections detail the characteristics of the
resources used in this research. We use MeSH for aggre-
gating ADEs and ATC for drug classification purposes.
We also use RxNorm to harmonize drugs between
MeSH and ATC.

MeSH
The MeSH thesaurus is the controlled vocabulary used
to index documents included in the MEDLINE database
[12]. It contains over 27,000 descriptors (main headings)
organized in sixteen hierarchical tree structures. Each
tree contains up to eleven levels denoting aboutness
relationships between the terms. For example, the term
Rhabdomyolysis is classified under Muscular Diseases
in the Diseases tree. Version 2014 of MeSH is used in
this study.

ATC
The Anatomical Therapeutic Chemical (ATC) classifica-
tion [13], a system developed by the World Health
Organization (WHO) Collaborating Centre for Drug
Statistics Methodology, is recommended for worldwide
use to compile drug utilization statistics. The system
includes drug classifications at 5 levels; anatomical, thera-
peutic, pharmacological, chemical and drugs or ingredi-
ents. For example, the 4th-level ATC class Vitamin K
antagonists (B01AA) has the following 5th-level drugs as
members: acenocoumarol, dicumarol, fluindione, phe-
nindione, phenprocoumon, tioclomarol and warfarin.
The 2014 edition of ATC used in this study contains
4,580 5th-level ATC drugs and 1,256 drug classes.

RxNorm
RxNorm is a standardized nomenclature for medications
produced and maintained by the U.S. National Library
of Medicine (NLM) [14]. Both ATC and MeSH are inte-
grated in RxNorm, making it possible for us to use
RxNorm to link MeSH drugs to their classes in ATC.
Moreover, RxNorm provides a rich network of relations
among various types of drug entities, making it possible
to normalize the various salts and esters of a drug
(“precise ingredients”) to their base form (“ingredient”).
The April 2014 version of RxNorm is used in this study
and was accessed through the RxNorm API [15].

Related work
ADE extraction and prediction
There is a large body of research on the extraction of
drug ADE associations from various sources (e.g.,
[3-5,16]), in which terminologies are usually leveraged
for the normalization of drugs (e.g., to RxNorm and
ATC) and adverse reactions, for example to the Com-
mon Terminology Criteria for Adverse Events (CTCAE)
and the Medical Dictionary for Regulatory Activities
(MedDRA). Researchers have also created repositories of
ADEs, such as ADEpedia [17] and used network analysis
to analyze and predict drug-ADE associations [18]. In
our effort to explore the ADEs at the class level, we use
an existing dataset of drug-ADE pairs obtained from
prior work on extracting drug-ADE pairs from MED-
LINE indexing.

Research on class effect
Many researchers have investigated whether a given
ADE was specific to a drug or common to all drugs in
the corresponding class. Examples of such investigations
include the exploration of antiepileptic-induced suici-
dality [19], association between anti-VEGF agents and
dysthyroidism [20] or avascular necrosis of the femoral
head [21], association between dipeptidyl-peptidase-4
inhibitors and heart failure [22] or angioedema [23], and
atypical antipsychotic-induced somnambulism [24]. A
search for “class effect” in the titles of PubMed articles
retrieves over one hundred citations. Such efforts, how-
ever, generally investigate one specific drug class and
one specific ADE. In contrast, we propose a method
for assessing the class effect over a wide range of drug
classes and ADEs.

Specific contribution
The specific contribution of our work is to combine
existing drug safety signal detection and visualization
techniques, and to leverage drug terminologies for ex-
ploring adverse drug events at the class level. We extend
the visual exploration with an automated computational
approach to identifying class effects, allowing their system-
atic detection from any dataset of drug-ADE associations.

Methods
Our approach to exploring ADEs at the class level can
be summarized as follows. We first establish a dataset of
ADEs by extracting drug-ADE pairs from MEDLINE.
Then we aggregate drugs into ATC classes and ADEs
into high-level MeSH terms. We compute the associ-
ation between drugs and ADEs at the drug level and at
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the class level. In our visual approach, we use heat maps
to visualize the signal at increasing levels of resolution
to distinguish between drug-level and class-level ADEs.
In our computational approach, we achieve the same
result by leveraging clustering techniques. While the
visual approach requires manual selection of the classes
and ADEs of interest, the computational approach is
completely automated and can be applied over a wide
range of drug classes and ADEs.
Extracting drug – adverse event pairs from the literature
Our dataset consists of pairs of drugs and ADEs ex-
tracted from the MEDLINE database, using an approach
similar to [5]. We use combinations of MeSH descrip-
tors (and supplementary concepts) and qualifiers to
identify, on the one hand, drugs involved in ADEs (e.g.,
ofloxacin/adverse effects) and, on the other, manifesta-
tions reflecting an ADE (e.g., tendinopathy/chemically
induced). We improved upon [5] by also taking into
account those MeSH descriptors inherently indicative of
adverse events (e.g., Drug-induced liver injury). We
collected the resulting list of drug-manifestation pairs
for each ADE (e.g., ofloxacin-tendinopathy).
Linking MEDLINE drugs to ATC classes
We map all MeSH drugs extracted from MEDLINE to our
target terminology, ATC, for aggregation purposes, using
RxNorm.
Table 1 Example of contingency table representing
drug-ADE associations in MEDLINE

With this ADE Without this ADE

Articles mentioning this drug a b

Articles not mentioning this drug c d
Mapping MeSH drugs to ATC drugs through RxNorm
ingredients
Both ATC and MeSH are integrated in RxNorm. For ex-
ample, the RxNorm drug rosuvastatin (301542) is linked
to both the MeSH drug rosuvastatin (C422923) and the
5th-level ATC drug rosuvastatin (C10AA07). Individual
drugs in MeSH correspond to ingredients (IN) and pre-
cise ingredients (PIN) in RxNorm. We normalize the
drugs by mapping PINs to their corresponding INs. For
example, RxNorm explicitly asserts that valproic acid is
the “precise ingredient” of the ingredient valproate.
Of note, a given drug can be represented multiple

times in ATC. Typically, topical drugs and systemic
drugs have different ATC codes for the same active
moiety. For example, the anti-infective ofloxacin has two
codes in ATC, depending on whether it is classified as
an antibacterial drug for systemic use (J01MA01) or as
an ophthalmological drug (S01AE01). However, we con-
sider unique drugs, not multiple codes, when we associ-
ate drugs with their ADEs. We only use the codes to
link drugs to their classes. The individual MeSH drugs
extracted from MEDLINE and which map to ATC
constitute the set of eligible drugs for this study.
Establishing drug class membership
In ATC, the 5th-level drugs are linked to one or more
4th-level classes. For example, ofloxacin is a member of
the two Fluoroquinolones drug classes (J01MA and
S01AE). For the purpose of comparing class-level ADEs
to drug-level ADE, we require that the classes contain a
sufficient number of members. In practice, we exclude
all drug classes with fewer than 4 drug members in our
set of drugs. In this proof-of-concept investigation, this
threshold was selected as a trade-off between retaining a
sufficient number of classes and getting a meaningful
interpretation of the characteristics of the drugs in these
classes.

Aggregating adverse event terms in MeSH
ADEs can be expressed at different levels of granularity.
The MeSH hierarchy has multiple levels, enabling MED-
LINE indexers to capture information at the appropriate
level of granularity. However, for analytical purposes, it
is useful to aggregate detailed ADEs into coarser ADE
classes, similarly to what we do for the drugs. We use
descriptors at the second level of the MeSH hierarchy for
aggregation purposes. For example, we would aggregate
Tendinopathy (tree number C05.651.869) and Rhabdo-
myolysis (C05.651.807) to the second-level descriptor
Muscular Diseases (C05.651).

Computing adverse event signals at the drug level
In pharmacovigilance, safety signal detection consists in
the identification of an association between a drug and an
adverse event (AE). In this study, we use the traditional
proportional reporting ratio (PRR) [25] in computing stat-
istical associations for unique drug- and drug class-AE
pairs. PRR is a simple disproportionality method for signal
detection that is easy to compute and sufficient in the con-
text of this study. Based on the frequencies shown in
Table 1, the PRR is defined as follows:

PRR ¼ a= aþ bð Þð Þ= c= cþ dð Þð Þ ð1Þ

We calculate signals for all possible combinations of
drugs and ADEs that co-occur in at least one MEDLINE
article. We apply the usual zero-cell correction to tables
where b or c is equal to 0 (by adding 0.5 to each count
in the 2 × 2 table). For all pairs that do not co-occur in
the literature, we set the PRR to a neutral value of 1.
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Computing adverse event signals at the class level
At the class level, we compute the signal using a similar
approach. For drug classes, we count articles mentioning
any drug from this drug class (a and b) and articles men-
tioning any other drug (c and d). For ADE classes, we
count articles with any ADE from this ADE class (a and
c) and articles with any other ADE (b and d).

Exploring ADE signals at different levels
We want to determine whether the class signal is
driven by the strong signal of only a few drugs or is
distributed among all drugs from that class. To this
end, we visually explore the signal at different levels of
granularity, from drug class-ADE class, to individual
drug-ADE class, to individual drug-individual ADE.
Visual patterns reflect the contribution of the drug
signal to the class signal. We draw on the techniques
popularized by gene expression data studies, combining
clustering and “heat map” visualization [26], for explor-
ing the relations between drugs and ADEs. We rely on
the R statistical software package (version 3.1.2) for
implementation. More specifically, we use hclust for
clustering (using complete linkage and Euclidean dis-
tance) and heatmap for visualization.

Drug class-ADE class signal
We start by plotting all ATC4 drug classes against all
ADE classes, using the drug class signal. To reduce the
amplitude of the PRR signal, we plot the logn transform
of the PRR for all eligible class pairs. We perform hier-
archical clustering on both drug classes and ADE classes
to group pairs of drug classes and ADE classes with
similar signals. On the resulting heat map, strong signals
will appear in white and yellow, while weak signals will
be displayed in red.

Drug-ADE class signal
While a low-resolution map is sufficient to identify
strong class signals and the corresponding broad ADE
classes, a higher resolution is required to investigate the
distribution of the class signal among the individual
drugs members. Starting from the strongest signals
Figure 1 Patterns of associations between members of drug class CD(d1,..,d
observed in the previous step for a given drug class
(e.g., PRR above 10), we plot the signal for each drug in
the class. Here again, we perform hierarchical clustering
of both individual drugs and ADE classes (based on the
drug-level PRR, as opposed to the class-level PRR used
in the previous step). This heat map exhibits the distri-
bution of the class signal among the individual drug
members. In some cases, we see the emergence of
characteristic patterns illustrated in Figure 1:

1. A solid column (vertical bar) with medium intensity
(bright orange/ yellow) reflects an ADE (class) that
is equally distributed among all members of the
class, corresponding to a “class property”.

2. Several incomplete, non-overlapping vertical bars in
different columns, with medium intensity, reflect
ADEs (ADE classes) associated with subsets of the
class members, but not all members. This pattern
corresponds to the properties of sets of individual
drugs, rather than the property of the class itself.

3. Isolated spots or small islands of high intensity
reflect associations between one drug (or few drugs)
from the class and an ADE (class), corresponding to
individual drug properties.
Drug-ADE signal
Finally, to assess individual ADEs, we plot the drug-
level signal for each ADE in the ADE classes present at
the previous step. As before, we perform hierarchical
clustering on both drugs and ADEs (based on the drug-
level PRR). This heat map exhibits the distribution
of the ADE class signal among the individual ADEs.
Patterns similar to those described above can also be
observed.
Automating the detection of class effects
While the visual approach provides an intuitive explor-
ation of the ADEs within a drug class, its manual nature
restricts its large applicability. Here we propose an auto-
mated approach to identifying class effects in the same
dataset.
n) and the manifestation of an adverse event class CE(e1,..,em).
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Intuition
In case of a class effect, the PRRs are expected to be
homogeneous among all drug members in a class for a
given ADE, and we should not be able to identify dis-
tinct subgroups among them. Conversely, if we can iden-
tify subgroups among the drugs, it means that the class
signal is driven by some drugs more than others, which
is not characteristic of a class effect.

Implementation
For a given drug class and ADE pair, we have computed
the class-level signal (as described in section 2.5) and
the drug-level signal for each drug in the class (as
described in section 2.4). Only classes with at least four
drug members are considered. Because PRRs are propor-
tions, we use their logn-transformed value to approach a
normal distribution.
To examine the distribution of the PRRs for individual

drugs in the class, we use k-means clustering with
Euclidean distance to identify two clusters (k = 2) among
the (logn-transformed) PRRs. We then compare the
means between the two clusters using Welch's t-test,
which accommodates unequal variances in samples. Of
note, in some cases, when the PRRs for all drugs in a
class are very similar, k-means clustering only produces
a single cluster. In this case, we assume that this cluster
is homogeneous by design. When we obtain only one
cluster or when the hypothesis of a difference between
the means of the two clusters is rejected (p-value > 0.05),
we conclude to a class effect.
For example, the 4th-level ATC class selective sero-

tonin reuptake inhibitors (N06AB) has a (logn-trans-
formed) PRR of 4.30 for the ADE sexual dysfunctions.
We partition the PRRs for the individual drugs into two
clusters: {fluoxetine (4.25), fluvoxamine (3.85)} and {ser-
traline (3.68), citalopram (3.57), paroxetine (3.77), escita-
lopram (3.57)}. There is no significant difference between
the means of the two clusters (p-value 0.28). Thus we
conclude that all the individual drugs contribute to the
signal for the drug class, which is the characteristic of a
class effect.

Results
Drug-ADE dataset
We collected 189,800 MEDLINE articles, from which we
extracted 371,417 drug-ADE pairs. The 244,692 MeSH
drug instances mapped to 1,966 distinct 5th-level ATC
drugs, and were aggregated into 598 4th-level ATC clas-
ses, of which 261 had at least four drugs. The 282,691
adverse event instances (3,043 distinct MeSH terms)
were aggregated into 314 2nd-level descriptors in MeSH.
The coarse matrix (Figure 2) reflects the association
between each of the 261 drug classes of interest and the
314 ADE classes. The dataset used for our computational
approach includes all the 3,043 individual ADEs for each
of the 261 drug classes under investigation (794,223 pairs).

Visual approach
Drug class-ADE class signal
Figure 2 represents the heat map of 261 drug classes
and 314 ADE classes, with drug classes in rows and
ADE classes in columns. Because of the large number of
classes, the labels are not legible at this resolution. (A
high-resolution version of the heat maps is available
as Additional file 1). However, bright yellow spots or
islands are clearly visible. For example, the yellow rect-
angle right at the center corresponds to the association
between fluoroquinolones and various kinds of tendon
injuries. Isolated bright spots are equally interesting. For
example, the strong signal between statins and muscular
diseases is represented by a single bright spot.

Drug-ADE class signal
The left part of Figure 3 shows examples of interesting
patterns. There is a solid bar for all members of the
statins class and the ADE class muscular diseases. And
there is an incomplete column involving 8 of the 14
members of the fluoroquinolones class for the ADE class
tendon injuries. Isolated spots are also visible, for
example, between rosuvastatin and chronic fatigue
syndrome, and between fleroxacin and radiation injuries
and radiation-induced neoplasms.

Drug-ADE signal
The right part of Figure 3 also shows examples of inter-
esting patterns, with higher resolution than before. For
example, the solid bar between the statins class and the
ADE class muscular diseases, visible on the left, is
conserved, but we can now see that its signal is driven
by the specific ADE rhabdomyolysis.

Computational approach
Of the 794,223 pairs of (drug class, ADE), the large
majority correspond to cases where at least one of the
drugs in the class has no reported association with the
ADE in the pair. In the visual approach, we assigned
such combinations a neutral PRR of 1 for display pur-
poses, resulting in many “red” areas on the heat map. In
the computational approach, however, we ignored such
cases, because we cannot distinguish between absence of
evidence and evidence of absence for the drug-ADE
association. As a consequence, only 488 drug class-ADE
pairs could be explored for class effect. The class PRRs
for these pairs ranged from 0.11 to 373.97 (before logn
transformation), with 134 pairs having a PRR above 10
and 214 pairs having a PRR above 5.
The clustering process yielded two clusters in 457

cases (93%) and a single cluster in 31 cases (7%). When



Figure 2 Heat map of drug classes and ADE classes (based on the class signals).
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two clusters were identified, the difference between their
means was not significant in 337 (74%) and significant
in 120 (26%) of the 457 cases. Of note, a significant
difference between the clusters does not necessarily rule
out the possibility of a class effect, because the average
PRRs may be high in both clusters.
Examples of pairs with a single cluster include (cortico-

steroids, femur head necrosis) and (fibrates, muscular
diseases). Examples of pairs with two clusters between
which no difference could be found include (tetracycline
and derivatives, tooth discoloration), (statins, rhabdo-
myolysis) and (selective serotonin reuptake inhibitors,
sexual dysfunctions, psychological). In many of the pairs
with two significantly different clusters, the PRRs were
high in both clusters, suggesting a class effect despite
the presence of two distinct clusters. For example, in the
pair (other aminoglycosides, labyrinth diseases) the aver-
age PRR is 57 in the first cluster (7 drugs) and over 350
in the second cluster (2 drugs). While drugs from the
second cluster (arbekacin and dibekacin) show a higher
risk of ototoxicity, the risk for the drugs from the first
cluster seems high enough (PRR = 57) for labeling oto-
toxicity a class effect. In contrast, there are pairs with
two significantly different clusters where the PRRs are



Figure 3 Detailed heap maps for individual drug classes (based on the individual drug signals); a) Fluoroquinolones, ADE classes and drugs;
b) Fluoroquinolones, ADEs and drugs; c) Statins, ADE classes and drugs; d) Statins, ADEs and drugs.
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high in one cluster and low in the other. For example, in
the pair (selective serotonin reuptake inhibitors, long QT
syndrome), only the drugs citalopram and escitalopram
exhibit a high PRR (about 20), while other drugs from
this class have low PRRs (e.g., sertraline and paroxetine
have PRRs between 1 and 2).

Discussion
Findings
Visual approach
Using our visual approach to exploring ADEs at the
class level, we were able to uncover known associations,
e.g., between fluoroquinolones and tendon injuries, and
between statins and rhabdomyolysis. More specifically,
exploring the signal at increasingly higher levels of reso-
lution revealed a difference between fluoroquinolones
and statins. Although both drug classes exhibit a strong
class-level signal for their respective ADEs, only 8 of the
14 individual fluoroquinolones showed an association
with tendon injuries, while all statins were associated
with rhabdomyolysis. This difference illustrates the dis-
tinction between a class effect (statins), i.e., inherited by
all members, and the property of a subset of the class
members.

Computational approach
The computational approached proposed here auto-
mates the interactive strategy for exploring the class
signal introduced with the visual approach. The patterns
detected on the heat map (Figure 1) correspond to cases
where all drugs from the class have roughly similar PRRs
(solid bar), or where groups of drug with different PRR
levels can be found (incomplete bar or isolated spot).
Translated into clusters for automated processing, the
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solid bar corresponds to a single cluster or two clusters
with similar PRR levels (no significant difference be-
tween the clusters), while the incomplete bar corre-
sponds to two distinct clusters with significant difference
between their average PRR levels. For example, for the pair
(statins, rhabdomyolysis), we found two clusters with no
significant difference. In contrast, the pair (fluoroquino-
lones, tendon injuries) was excluded from automatic pro-
cessing, because association with tendon injuries had been
reported for only four drugs (ciprofloxacin, fleroxacin,
pefloxacin and ofloxacin), while no information was
available for the other ten fluoroquinolones in this class
(e.g., trovafloxacin). In this case, expertise is required to
distinguish between less toxic drugs and drugs recently
marketed for which no ADEs have been reported as of
yet. For this reason, a proper determination of class
effect could be suggested for only 488 pairs based on
the dataset we exploited.

Applications
The findings gained from our exploratory techniques
should be of interest to the curators of ADE repositories
and drug safety professionals. One drug safety issue has
to do with the information found in drug labels, where
ADEs can be labeled in reference to a specific drug or to
an entire class of drugs. For example, the drug label for
citalopram includes a warning for QT prolongation (not
found in other SSRIs, such as sertraline). In contrast, the
label for minocycline refers to an ADE for its class:
“THE USE OF DRUGS OF THE TETRACYCLINE
CLASS DURING TOOTH DEVELOPMENT […] MAY
CAUSE PERMANENT DISCOLORATION OF THE
TEETH”. To make this determination, drug safety offi-
cers must be able to access not only safety information
for a given drug, but also safety information for the
other members of its class. The approaches we propose
here support effective review of safety information in the
context of drug classes.
To assess the relevance of our determination of a

potential class effect with respect to information found
in the FDA-approved structured package labels available
as part of DailyMed [27], one of the authors (AS) with
a drug safety background reviewed the top-20 pairs
selected by our computational approach. These pairs are
20 of the 488 pairs with the highest class-level PRR
(>40), for which 2 clusters had been identified, but no
significant difference between the clusters had been
found. These pairs included well-known class effects
mentioned in drug labels, including (tetracycline and de-
rivatives, tooth discoloration), (statins, rhabdomyolysis)
and (selective serotonin reuptake inhibitors, sexual dys-
functions, psychological) and (selective serotonin reuptake
inhibitors, serotonin syndrome). In five cases, the ADE is
mentioned for all the drugs in the class, but the drug
label does not make explicit reference to the class in the
warning. In six other cases, it was not possible to verify
the information because there was no label available for
some of the drugs in the class (e.g., drugs not marketed
in the U.S.). Finally, the remaining cases included false
positives, where an ADE known to be associated with a
given systemic drug was wrongly associated with topical
forms of the drug (because our underlying dataset does
not contain information about routes of administration).
Overall, these results suggest that, while potentially

helpful to drug safety officers for exploring ADEs for
drugs in the context of their classes, our approaches to
identifying class effect should only be used to support
determinations made by domain experts.
Limitations and future work
A vast majority of the drug class-ADE pairs explored by
our computational approach ended up not being amen-
able to class effect determination, because no ADE infor-
mation was retrieved for at least one of the drugs in the
class. Our class definitions are based on ATC and in-
cluded drugs not marketed in the U.S., which made it
difficult to compare this information with warnings con-
tained in the drug labels from DailyMed. Restricting the
definition of drug classes to U.S. marketed drugs would
have led to a more meaningful comparison with Dai-
lyMed information. Moreover, having additional infor-
mation about the drugs would allow us to distinguish
between older drugs for which no ADEs have been men-
tioned (i.e., evidence of absence for the ADE) and drugs
more recently marketed for which there has not been
enough time for collecting safety information through
case reports (i.e., absence of evidence for the ADE).
Also missing from our current approach is an assess-

ment of the strength of evidence for the drug-ADE sig-
nal based on study design. For example, randomized
clinical trials could be given preference over non-
comparative observational studies and case reports [28] .
However, because our dataset is extracted from the bio-
medical literature, we could easily provide supporting in-
formation, such the number of articles in which the
ADE is reported for the drugs, as well as the publication
type (e.g., case report vs. clinical trial).
We are aware that our dataset of drug-ADE pairs

extracted from the biomedical literature is biased (e.g.,
towards case reports). However, our approach is agnostic
to the source used to derive the signal. In future work, we
are planning to apply it to the data from the FDA Adverse
Event Reporting System (FAERS). We could also leverage
natural language processing (NLP) techniques to extract
ADE pairs from text. Advanced NLP techniques would be
able to extract the polarity of ADEs (i.e., negated ADEs),
helping to assess evidence of absence of ADEs.
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The signal detection method used in this investigation
is extremely simple and may not be as robust as dispro-
portionality score algorithms developed more recently.
For example, limitations inherent in the use of PRR
include inability to account for temporal trends and
confounding by age, sex, or concomitant drugs [29].
Here again, our approach is agnostic to the methods
used for signal detection and could easily be adapted to
more sophisticated scores.
Finally, while aggregation plays a central role in our ap-

proach, ATC and MeSH are not the only terminologies
that can support aggregation. For example, the Established
Pharmacologic Classes distributed by FDA together with
the Structured Product Labels may offer an alternative
drug classification system. Our method for aggregating
ADEs in MeSH was limited to one level across all subdo-
mains and would benefit from refinement. Also, termin-
ologies such as MedDRA offer not only an alternative, but
groupings of ADEs across hierarchical structures.

Conclusions
We presented two complementary approaches to exploring
the contribution of individual drugs to the class signal for
ADEs. The visual approach supports the interactive
exploration of the class signal at increasing levels of
resolution. We showed that specific visual patterns in
heat maps are associated with class effects. Additionally,
we presented a computational approach, complemen-
tary to the visual approach, meant to assess the class
effect over a wide range of drug classes and ADEs sys-
tematically and automatically. In both cases, we were
able to find support for multiple known class effects.
Some of our findings were difficult to corroborate
against drug labels of DailyMed for a variety of reasons.
Our approach can be applied to other drug-ADE data-
sets, using various drug classification systems and signal
detection algorithms. The findings gained from our ex-
ploratory techniques should be of interest to the cura-
tors of ADE repositories and drug safety professionals.

Additional file

Additional file 1: High-resolution heat maps of drugs and ADEs at
different levels of granularity.
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