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SUMMARY

The endogenous melanocortin peptide agouti-related protein (AgRP) plays a well-known role in

foraging, but its contribution to metabolic regulation is less understood. Mature AgRP(83-132) has

distinct residues for melanocortin receptor binding and heparan sulfate interactions. Here, we

show that AgRP increases ad libitum feeding and operant responding for food in mice, decreases

oxygen consumption, and lowers body temperature and activity, indicating lower energy expendi-

ture. AgRP increased the respiratory exchange ratio, indicating a reduction of fat oxidation and a shift

toward carbohydrates as the primary fuel source. The duration and intensity of AgRP’s effects

depended on the density of its positively charged amino acids, suggesting that its orexigenic and

metabolic effects depend on its affinity for heparan sulfate. These findings may have major clinical im-

plications by unveiling the critical involvement of interactions between AgRP and heparan sulfate to

the central regulation of energy expenditure, fat utilization, and possibly their contribution to

metabolic disease.

INTRODUCTION

There is a pressing need to identify the underlying mechanisms of metabolic disease. The central melano-

cortin system regulates feeding, body weight, and energy expenditure. However, the contribution of the

central melanocortin peptide agouti-related protein (AgRP) and its interaction with heparan sulfate to

metabolic regulation has not been characterized. Here, we found that AgRP increases both ad libitum

food intake andmotivation for food in an operant paradigm and reduces energy expenditure and fat oxida-

tion, which has been linked to a higher risk for metabolic disease. Both orexigenic and metabolic actions of

AgRP depended on the density of AgRP positive charges, which determines its affinity for heparan sulfate

independently of the binding of AgRP to central melanocortin receptors. These results support a role for

heparan sulfate in the regulation of energy homeostasis by the melanocortin system.

The central melanocortin system includes neurons in the arcuate nucleus (ARC) of the hypothalamus that

coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) and the neurotransmitter g-aminobu-

tyric acid (GABA) and neurons that coexpress proopiomelanocortin (POMC) and cocaine- and amphet-

amine-regulated transcript (CART; van der Klaauw, 2018). Evidence from mutant mice and human muta-

tions indicates that the central melanocortin system plays a key role in coordinating nutrient intake,

energy metabolism, fat accumulation, and body weight (Butler et al., 2000; Chen et al., 2000; Ehtesham

et al., 2019; Lede et al., 2016; Nuutinen et al., 2018). However, the contribution of AgRP to metabolic

regulation is not well understood because of its coexpression with GABA (Krashes et al., 2013) and NPY,

which is also a key regulator of appetite and energy balance (Loh et al., 2015).

Neuropeptide Y/AgRP-coexpressing neurons promote feeding andweight gain, whereas POMCneurons atten-

uate feeding and promote weight loss (Dodd and Tiganis, 2017). Both NPY/AgRP and POMC/CART neurons

express receptors for the adipocyte-derived hormone leptin and insulin that, together with other hormones

(e.g., the gut peptides ghrelin and peptide YY, among others) and nutrients, such as glucose, fatty acids, and

peptides, allow them to sense peripheral energy status and needs (van der Klaauw, 2018). Circulating leptin

and insulin interact with neurons in the ARC through special properties of the blood-brain barrier in this region

of the hypothalamus, resulting in the inhibition of NPY/AgRP neurons and activation of POMC/CART neurons,

leading to a reduction of food intake (Dodd and Tiganis, 2017).
iScience 22, 557–570, December 20, 2019 ª 2019 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

557

mailto:glennm@ucsc.edu
mailto:psanna@scripps.edu
https://doi.org/10.1016/j.isci.2019.10.061
https://doi.org/10.1016/j.isci.2019.10.061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.10.061&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Numerous studies support a central role for NPY/AgRP neurons in regulating energy expenditure, food intake,

and body weight. NPY/AgRP neurons mediate insulin’s central effects on hepatic glucose production (Konner

et al., 2007; Obici et al., 2002; Pocai et al., 2005). Fat accumulation and obesity comprise the primary phenotype

of lower centralmelanocortin-3 receptor (MC3R) andMC4R loss-of-function (Butler et al., 2000; Chenet al., 2000;

Ehteshamet al., 2019; Lede et al., 2016;Nuutinen et al., 2018). Insulin receptor signaling inNPY/AgRP neurons in

the ARC inhibits hepatic glucose production via vagus nerves that are associatedwith food intake (Konner et al.,

2007; Obici et al., 2002; Pocai et al., 2005). Additionally, NPY/AgRP neurons control insulin sensitivity by regu-

lating brown adipose tissue (BAT; Steculorum et al., 2016). The deletion of suppressor of cytokine signaling 3

(SOCS3) in NPY/AgRP or POMC/CART neurons enhanced insulin signaling and improved whole-body glucose

metabolism in diet-induced obesemice (Dodd and Tiganis, 2017). The deletion of activating transcription factor

4 (ATF4) in NPY/AgRP neurons resulted in a lean phenotype with an increase in energy expenditure and resis-

tance to high fat diet (HFD)-induced obesity (Deng et al., 2017).

The melanocortin system includes five G protein-coupled receptors (GPCRs) that contribute to diverse

physiological processes (Goodfellow and Saunders, 2003; Kalra et al., 1999; Williams et al., 2001). Agonists

of MCRs derive from POMC through proteolytic cleavage to produce adrenocorticotropic hormone

(ACTH) and various melanocyte-stimulating hormone (MSH) variants, such as a-MSH, b-MSH, and

g-MSH. MC1R is involved in skin and hair pigmentation by regulating the production of melanin (Goodfel-

low and Saunders, 2003; Kalra et al., 1999; Williams et al., 2001). MC2R is mainly expressed in the adrenal

cortex where it serves as an ACTH receptor, inducing glucocorticoid production (Schioth et al., 1996).

MC3Rs and MC4Rs are expressed in the brain and involved in the regulation of energy homeostasis and

metabolism (Goodfellow and Saunders, 2003; Kalra et al., 1999; Williams et al., 2001). a-MSH is released

by POMC/CART neurons and acts as the endogenous agonist of central MC3Rs and MC4Rs. Central

MC4Rs and peripheral MC1Rs exhibit elevated basal activity in the absence of agonists, and their activity

is regulated by two pivotal endogenous peptides that act as inverse agonists: AgRP in the central nervous

system (CNS) and agouti-signaling protein (ASP; the main product of the agouti gene in the skin; Goodfel-

low and Saunders, 2003; Kalra et al., 1999; Williams et al., 2001).

AgRP is a key modulator of central MC3Rs andMC4Rs (Cone et al., 2001). Full-length AgRP is a 132-residue

pro-protein that is posttranslationally processed by pro-protein convertase 1/3 into its mature form,

AgRP(83-132) (Creemers et al., 2006). AgRP(83-132) contains five disulfide bonds, three of which form an inhib-

itor cystine knot (ICK) motif (Figure 1), which is sufficient for MC3/4R antagonism (McNulty et al., 2001),

whereas positively charged residues in the N-terminal segment and C-terminal loop allow AgRP to bind

heparan sulfate (Palomino et al., 2017) independently of its receptor affinity and signaling ability through

a reduction of cyclic adenosine monophosphate (cAMP; Madonna et al., 2012).

Heparan sulfate proteoglycans were originally considered structural elements of the extracellular matrix,

but they have subsequently emerged as key modulators of biological processes (Kim et al., 2011; Sarrazin

et al., 2011). Sulfate groups provide docking sites for numerous positively charged peptide ligands,

including AgRP, that are involved in diverse biological processes (Kim et al., 2011; Sarrazin et al., 2011).

The contribution of AgRP and its interaction with heparan sulfate to metabolic regulation has not been pre-

viously characterized. The present study investigated the effects of AgRP peptides, including AgRP(83-132)
(i.e., the mature form of AgRP) and two charge-modified AgRP variants that differed in their affinity for hep-

aran sulfate, on food intake and energymetabolism.We found that the intracerebroventricular (ICV) admin-

istration of AgRP in addition to ad libitum feeding in the home cage increased operant responding for food

in a manner that depended on the density of AgRP positive charges, which determined its affinity for hep-

aran sulfate. Similarly, we found that AgRP decreased energy expenditure and shifted fuel utilization from

fatty acids toward carbohydrates, which also required heparan sulfate binding. Lower fatty acid oxidation at

rest promotes an increase in fat storage (Must et al., 1999) and is associated with a higher risk of type 2 dia-

betes and metabolic syndrome (Rosenkilde et al., 2010; Ukropcova et al., 2007). All of the AgRP variants

reduced body temperature and activity, suggesting lower energy expenditure. However, the effects of

the variant that had a lower density of positive charges had faster onsets and were less protracted.

Overall, the present results indicate that the orexigenic effects of AgRP are accompanied by complex

metabolic changes that are characterized by lower energy expenditure, a reduction of fat oxidation, and

a shift in substrate utilization toward carbohydrate oxidation. Although the AgRP variants that were tested
558 iScience 22, 557–570, December 20, 2019



Figure 1. Structure and Electrostatic Potential Maps for AgRP and Charge-Modified AgRP Variants

(A) Nuclear magnetic resonance structure (Protein DataBank: 1HYK) of mature AgRP-WT(83-132) depicting the inhibitor

cystine knot (ICK) core (green) and non-ICK N-terminal segment (pink) and C-terminal loop (orange). Disulfide-bonds are

in yellow. The ICK core that contains the active loop is sufficient for MC3/4R binding and antagonism. However, the

N-terminal segment and C-terminal loop that flank the ICK core are highly conserved and required for AgRP-induced

long-term feeding.

(B) Schematic diagram of the location of lysine mutations in AgRP-4K and glutamine mutations in AgRP-4Q. All charge

mutations are located outside of the ICK core.

(C) Electrostatic potential surface maps for AgRP-4Q, AgRP-WT, and AgRP-4K, calculated by Adaptive Poisson-Boltzmann

Solver (APBS). AgRP-4K adds positive charges to an existing positively charged patch that is present in AgRP-WT.
did not differ in receptor affinity or in vitro potency, their in vivo potency and duration of action significantly

depended on positively charged amino acids that mediate heparan sulfate binding.
METHODS

Peptide Synthesis, Purification, and Folding

The AgRP peptide sequences were previously described inMadonna et al., 2012. The peptide was produced on

a CEM Liberty1 microwave peptide synthesizer using standard Fmoc (fluorenylmethyloxycarbonyl chloride)

chemistry. Amino acids were purchased from AAPPTec and assembled on H-Rink amide ChemMatrix resin.

Fmoc protecting groups were removed using 20% piperidine and 0.1 M hydroxybenzotriazole (HOBt) in dime-

thylformamide (DMF). Each amino acid was double coupled using four molar equivalents of Fmoc-amino acid,

five molar equivalents of diisopropylcarbodiimide (DIC), and 10 molar equivalents of HOBt in DMF. Cleavage of

the peptide from resin was performed in a trifluoroacetic acid (TFA)/triisopropylsilane (TIS)/1,2-ethanedithiol

(EDT)/phenol (90:4:4:2) mixture for 90 min. The resin was filtered, and the filtrate was added to 90 mL of cold

dry diethyl ether. The precipitatewas collectedby centrifugation, and the diethyl ether was discarded. Oxidative

foldingwas achieved in foldingbuffer (2.0MGuHCl/0.1MTris, 3mMGSH, 400mMGSSG [pH8–8.5]) at a peptide

concentration of 0.1 mg/mL and stirred for 24 h. Folding was monitored by reverse-phase HPLC, which revealed

one major species that was used in subsequent experiments. The folded products were purified on a C18

reverse-phase HPLC column and identified as fully oxidized peptides and confirmed with the correct molecular

weight by electrospray ionization-mass spectrometry.
Glycan Array Fabrication

Amine(-NH2)-linked heparan sulfate glycan compounds (Glycan Therapeutics) were immobilized on NHS-

activated surface-coated slides (Nexterion Slide-H, Applied Microarrays) using a robotic microarray printer
iScience 22, 557–570, December 20, 2019 559



(Microgrid II, Digilab) that was equipped with StealthSMP4B microarray pins (Telechem) to couple hep-

aran sulfate glycan compounds by covalent binding via (-NH2) reactive chemistry. Custom printing was

performed by the robotic pin deposition of 0.6 nL of (-NH2)-conjugated heparan sulfate glycan com-

pounds in print buffer (150 mM phosphate [pH 8.5], which contained 0.01% Tween 20) onto Nexterion-

Slide H glass slides (Applied Microarrays). Slide printing with the heparan sulfate glycan compounds

was kept at 80% relative humidity for 1 h, followed by desiccation overnight. Printed slide microarrays

were placed in a sealed slide box and stored at �20�C. Before use, unreacted NHS groups on the printed

slides were immersed in blocking buffer (50 mM ethanolamine in 50 mM borate buffer [pH 9.2]) for 1 h.

The slides were then rinsed with water and dried before the binding assays.

Heparan Sulfate-AgRP Binding Assay

The printed slides were pre-wetted with Tris-Metal-Salts (TMS) buffer (25mM Tris, 2.7 mMKCl, 2 mMCaCl2,

2 mMMgCl2, and 137 mMNaCl [pH 7.4], containing 0.05% Triton X-100). Peptides of AgRP(83-132) and AgRP

charge variants were then diluted to 50 mg/mL in TMS buffer and directly applied to the pre-wetted arrays.

After incubation at room temperature for 1 h, the AgRP solution or its variants were removed, and the arrays

were washed with TMS buffer three successive times. A pre-complexed antibody mixture of Rb anti-human

AgRP (10 mg/mL, Novus Biologicals) and anti-Rb IgG-Alexa 488 (5 mg/mL, Life Technologies) was subse-

quently added to the arrays and incubated for an additional 1 h at room temperature. The slides were

washed by successive rinses with TMS, TMS without Triton X-100, and deionized H2O. The washed arrays

were dried by centrifugation and immediately scanned for green fluorescence using an InnoScan confocal

microarray scanner (Innopsys, Carbonne, France). Images were analyzed using Mapix software and

processed with ImageJ software.

Animals

Male C57BL/6 mice, 20–24 weeks old, were single-housed in a climate-controlled vivarium on a 12 h/12 h

light/dark cycle (lights on 6:00 AM to 6:00 PM) and fed a standard diet (58 kcal% carbohydrate, 17 kcal% fat,

and 25 kcal% protein; LM-485; Teklad Diets, Madison, WI, USA). Daily food consumption was measured by

weighing the pellets in the home cage every day at the same time while the mice’s body weights were re-

corded. All of the procedures adhered to the National Institutes of Health Guide for the Care and Use

of Laboratory Animals (eighth edition) and were approved by the Institutional Animal Care and Use

Committee of The Scripps Research Institute.

Ad Libitum Food Intake and Operant Responding for Food

Daily ad libitum food consumption was measured manually by weighing the standard laboratory chow

(Teklad LM-485, catalog no. 7012, Teklad Diets, Madison, WI, USA) that was placed in the home cage.

Body weights at the corresponding times were also monitored daily. For operant responding for food,

the mice were trained to lever-press for food pellets in operant chambers (Med Associates, St. Albans,

VT, USA) as described previously with minor modifications. For three days before training, 20 food pellets

(14 mg, Bio-Serv, 64.5 kcal% carbohydrate, 10.1 kcal% fat, and 25.4 kcal% protein; total energy, 3.35 kcal/g)

were placed in the home cage to prevent potential effects of neophobia on operant performance. Themice

were trained 1 h/day under a fixed-ratio 1 (FR1) schedule, in which each active lever-press resulted in the

delivery of one pellet, accompanied by illumination of the cue light above the lever that signaled a 5-s time-

out period. Water was available from a sipper in the front side of the wall opposite the levers and food

receptacle. After the mice developed stable responding for food (R20 rewards received per session

and R75% total responses at the active lever over three consecutive sessions), the response requirement

was gradually increased from FR1 to FR5 until stable responding was reached for two consecutive sessions.

Comprehensive Lab Animal Monitoring System

The comprehensive lab animal monitoring system (CLAMS; Columbus Instruments) is an open-circuit indirect

calorimeter that allows simultaneous multiple parameter scoring, including measurements of gas concentra-

tions and flow, core body temperature, activity, feeding, drinking, etc. Oxygen consumption (VO2) is a measure

of the volume of oxygen that is used to convert energy substrate into adenosine triphosphate. Energy expen-

diture can thus be assessed by measuring core body temperature and VO2. The mice were acclimated to the

CLAMS chambers for 72 h before they received an injection of AgRP and then were recorded for five days after

the injection. Food and water were provided in the chamber ad libitum throughout the experiments. The RER

(i.e., the ratio of VO2 to CO2 production) can be used to estimate the fuel source. An RER = 0.7 indicates that
560 iScience 22, 557–570, December 20, 2019



fatty acids are the predominant fuel source for oxidative metabolism. An RER = 0.85 suggests a mix of fat and

carbohydrates. AnRERR1.00 indicates that carbohydrates are the primary fuel source (Lusk, 1924;Marvyn et al.,

2016; Schmidt-Nielsen, 1997; Speakman, 2013).

Intracranial Cannula Implantation and ICV Microinjection Procedure

Intracranial stereotaxic surgery was performed as described previously (Chen et al., 2013). Briefly, the mice

were immobilized in a stereotaxic frame in the flat-skull position (Kopf Instruments), and a cannula (26

gauge, Plastics One, Roanoke, VA, USA) was implanted in the lateral ventricle (anterior/posterior,

�0.22 mm; medial/lateral, 1.0 mm; dorsal/ventral, �1.5 mm). The mice were allowed to recover from sur-

gery for 7–10 days. On the test day, a stainless-steel injector (33 gauge, extended 1 mmbelow the tip of the

cannula; Plastics One, Roanoke, VA, USA) was inserted into the cannula, and the AgRP solution (1 nmole in

1 mL of saline) was delivered slowly at a rate of 0.5 mL/min through the injector by a syringe pump (KD Sci-

entific). The injector remained in place for 2 min to allow for diffusion and then was withdrawn slowly to

avoid backflow of the fluid.

Data Analysis

Two-way repeated-measures analysis of variance (ANOVA) was used to assess the main effects of AgRP

treatment. Significant differences between the AgRP group and vehicle control group were assessed using

Fisher’s Least Significant Difference post hoc test. Values of p < 0.05 were considered statistically signifi-

cant. All of the behavioral data are expressed as means G SEM and were analyzed using GraphPad Prism

8.0 software.

RESULTS

Binding of AgRP and Charge-Modified AgRP Variants to Heparan Sulfate Glycan Arrays

As shown in Figure 2, the mature form of AgRP (AgRP[83-132]), henceforth referred to as wild-type AgRP

(AgRP-WT), binds broadly to different heparan-sulfate-derived oligosaccharides in glycan arrays. AgRP

binding affinity was correlated with the state of sulfation and length of the heparan sulfate oligosaccha-

rides. AgRP binding appeared to be favored by 6S and NS sulfation but not by 3S sulfation. We next

compared the binding of AgRP-WT and two charge-modified AgRP variants, including AgRP-4Q (in which

positive charges were eliminated by replacing Arg and Lys residues with Gln) and AgRP-4K (in which addi-

tional positively charged amino acids were included by mutating Gly123 and Ala125 and the two Ser res-

idues in the N-terminal segment to Lys; Madonna et al., 2012). These modifications have been shown to not

affect MC3R or MC4R binding (Madonna et al., 2012). As shown in Figure 3, these two charge-modified

AgRP variants resulted in alterations of the affinity for heparan sulfate in a glycan array using immobilized

hexasaccharide that was representative of a highly sulfated heparan sulfate. AgRP-4Q exhibited negligible

binding to sulfated hexasaccharide, whereas AgRP-4K exhibited approximately 50-times greater binding

than AgRP-WT (Figure 3).

Effects of Charge-Modified AgRP Variants on ad libitum Food Intake and Body Weight

We first tested the effects of AgRP-WT and AgRP variants with a decrease or an increase in positive charges

(AgRP-4Q and AgRP-4K, respectively) on ad libitum food intake in mice in their home cages (Figure 4). Each

AgRP variant was injected ICV into the lateral ventricle. Food consumption and body weight were

measured daily. As shown in Figure 4, the ICV administration of AgRP-WT and AgRP-4K but not AgRP-

4Q significantly increased food intake and body weight. AgRP-4K exerted a more pronounced and long-

lasting effect than AgRP-WT.

Effects of Charge-Modified AgRP Variants on Operant Responding for Food

We then tested the effects of AgRP variants in an operant food self-administration paradigm. The mice

were trained in an operant chamber to obtain food pellets by pressing a lever on the wall. During the

training phase, an FR1 schedule was used, whereby one active lever press resulted in the delivery of one

food pellet. After the acquisition of stable lever-pressing behavior, the mice were gradually switched to

an FR5 schedule and then remained at this FR throughout the remainder of the experimental period.

AgRP-4Q, the variant with a decrease in positive charges, significantly and rapidly increased food respond-

ing on the first day of the injection, but the effect subsided within a few hours (Figure 5A). AgRP-4K, the

variant with an increase in positive charges, induced a delayed increase in responding for food, starting

approximately 10 h after the injection. However, the AgRP-4K-induced increase in responding for food
iScience 22, 557–570, December 20, 2019 561



Figure 2. Glycan Array Analysis of AgRP Binding to Heparan Sulfate Oligosaccharides

(A) Fluorescent image of the glass slide glycan arrays showing fluorescence signals (green dots) of AgRP binding to 52

immobilized heparan sulfate oligosaccharides (low-molecular-weight heparan sulfate, LMHS).

(B) Bar graph showing the relative fluorescence intensity of AgRP binding to the heparan sulfate oligosaccharides arrays.

Heparan sulfate oligosaccharides 22 and 41 show the highest intensity.

(C) The structures of the different heparan sulfate oligosaccharides on the slide microarray in A. Data are represented as

mean G SEM.
was quite protracted and statistically significant for five days (Figure 5B). Altogether, these results indicated

that the positive charge and affinity of AgRP for heparan sulfate were associated with an increase in food

intake and motivation for food.
Effects of Charge-Modified AgRP Variants on Energy Expenditure and Fuel Source

We next investigated the effects of AgRP variants on energy expenditure and fuel source using CLAMS

chambers. One hour before being placed in the CLAMS chamber, the mice received an injection of

AgRP-WT, AgRP-4Q, or AgRP-4K. Body temperature, VO2, and carbon dioxide production (VCO2) were re-

corded continuously for five days. The respiratory exchange ratio (RER; i.e., the ratio of VCO2 to VO2) was

calculated to estimate the fuel source that was utilized for energy production, based on the difference in

the number of oxygen molecules that are required for the oxidation of glucose vs. fatty acids.

All three AgRP variants reduced body temperature, suggesting a decrease in energy expenditure (Figure 6A).

The reductions of body temperature that were induced by AgRP-WT and AgRP-4K had later onsets and were

more protracted than the reduction that was induced by AgRP-4Q (Figure 6A). AgRP-WT also significantly

reduced VO2 for a protracted time (Figure 6B, left). AgRP-4K, but not AgRP-4Q, showed a similar protracted

trend toward a VO2 reduction, but this reduction did not reach statistical significance (Figure 6B, right).

AgRP-WT and AgRP-4K, but not AgRP-4Q, significantly increased the RER at rest (during the light, inactive

phase), indicating a reduction of fat oxidation and a shift in fuel utilization toward carbohydrates at rest

(Figure 6C). AgRP-4K also caused a significant short-term elevation of VCO2 (not shown). Collectively, these
562 iScience 22, 557–570, December 20, 2019



Figure 3. Binding of AgRP and Charge-Modified AgRP Variants to a Heparan Sulfate Hexasaccharide Glycan Array

(A) AgRP(83-132) (AgRP-WT) and AgRP-4K, in which Gly123 and Ala125 and the two Ser residues in the N-terminal segment were replaced with Lys, showed

concentration-dependent binding to a glycan array of the heparan sulfate hexasaccharide GlcNS6S-GlcA-GlcNS6S-IdoA2S-GlcNS6S-GlcA-NH2 (Array 34 in

Figure 2 is the hexasaccharide used in this figure). The printed concentration of hexasaccharides was from 100 mM and serially diluted by a dilution factor of 2

down to a minimum concentration of 0.4 mM. Each concentration had 10 replicates. AgRP-4Q, in which Arg and Lys residues were replaced with Gln, showed

negligible binding to the heparan sulfate hexasaccharide glycan array.

(B) Semiquantitative determination of binding of AgRP variants to heparan sulfate hexasaccharide glycan array. The signal intensity (arbitrary units) was

determined by ImageJ software. The AgRP-4K binding curve showed a dramatic leftward shift that was indicative of approximately 50-times greater binding

affinity for the heparan sulfate hexasaccharide glycan array than AgRP-WT. Data are represented as mean G SEM.
results indicate that AgRP decreases energy expenditure, reduces fat oxidation, and increases

carbohydrate oxidation. AgRP-WT significantly decreased energy expenditure, measured by VO2.

All three AgRP variants reduced body temperature, regardless of their positive charges. However, reduc-

tions of body temperature that were induced by AgRP-WT and AgRP-4K (i.e., the more positively charged

AgRP variants with affinity for heparan sulfate) had a more delayed onset, were more protracted, and were

associated with a decrease in fat oxidation and an increase in carbohydrate oxidation.

Effects of Charge-Modified AgRP Variants on Activity, Feeding, and Drinking in CLAMS

Chambers

Activity was assessed by the triple-axis detection of animal motion using the infrared photocell technology

of the CLAMS. All three variants of AgRP significantly decreased total activity, ambulation, and rearing dur-

ing the dark cycle (Figure 7). The AgRP-4Q-induced reduction of activity had a faster onset and a shorter

duration than the AgRP variants that had greater positive charges, suggesting that heparan sulfate binding

contributes to the duration of the AgRP-induced downregulation of activity. Access to food and water can

be simultaneously monitored automatically in the CLAMS. AgRP-WT and AgRP-4K but not AgRP-4Q signif-

icantly increased both food and water intake (Figures 8 and 9). These results indicate that the AgRP variants

decreased activity, regardless of their positive charges. However, the reductions of activity that were

induced by the more positively charged AgRP variants (AgRP-WT and AgRP-4K) had a more delayed onset,

were more protracted, and were associated with increases in food and water intake.

DISCUSSION

Neurons in the ARC of the hypothalamus that express the peptides AgRP and NPY and the neurotrans-

mitter GABA promote feeding and weight gain and repress energy expenditure, whereas neurons that ex-

press POMC and CART inhibit food intake (Dodd and Tiganis, 2017). The specific contributions of these

peptides and their classic neurotransmitter systems to feeding have only recently begun to be elucidated

(Andermann and Lowell, 2017), but their respective functions in metabolic control are less characterized.

Interactions between AgRP and its central receptors are believed to be facilitated by heparan sulfate proteogly-

can binding (Reizes et al., 2001), which has been proposed to act as a co-receptor and storage mechanism for

heparan sulfate binding peptides such as AgRP (Kim et al., 2011; Sarrazin et al., 2011). Consistent with this view,

the genetic ablation of heparanase, which selectively cleaves heparan sulfate chains, increases fat mass (Karls-

son-Lindahl et al., 2012). Conversely, heparanase-overexpressing transgenic mice have lower body fat, despite

an increase in food intake, and exhibit a greater utilization of fat as the main fuel source (Karlsson-Lindahl et al.,

2012). The activation of NPY/AgRP neurons in the ARC by designer receptor exclusively activated by designer

drugs (DREADDs) technology or optogenetics increases both ad libitum food intake and themotivation to work

for food reinforcement inmice (Aponte et al., 2011; Krashes et al., 2011). However, AgRPneuronswere foundnot
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Figure 4. Effects of AgRP and Charge-Modified AgRP Variants on Ad Libitum Food Intake and Body Weight

Baseline levels of food intake (A) and body weight (E) were recorded daily for seven days, and then the AgRP peptides were injected ICV in the lateral

ventricle (1 nmol in 1 mL of saline).

(B) The mature wild-type form of AgRP (AgRP-WT) significantly increased the amount of food that was consumed. The two-way repeated-measures ANOVA

revealed a significant main effect of days (F8,152 = 3.65, p = 0.0006) and a significant AgRP variant 3 days interaction (F8,152 = 3.736, p = 0.0005) n = 10–11/

group. The post hoc analysis showed that the increases in food consumption were statistically significant on the second and third days of AgRP

administration. *p < 0.05, compared with mice that were injected with vehicle; ***p < 0.001, compared with vehicle group (post hoc test). n = 10–11/group.

(C) The mutant form with lower positive charges (AgRP-4Q) did not significantly alter ad libitum food consumption.

(D) The mutant form with higher positive charges (AgRP-4K) caused a significant and long-lasting increase in food intake, which peaked on the second day

of injection. The two-way repeated-measures ANOVA revealed significant main effects of AgRP (F1,25 = 143.2, p < 0.0001) and time course (F8,200 = 25.65,

p < 0.0001) and a significant AgRP 3 time course interaction (F8,200 = 20.85, p < 0.0001). (F) AgRP-WT caused a transient significant increase in body weight

on day 5 post-injection. (G) AgRP-4Q did not affect body weight. (H) AgRP-4K caused a significant increase in body weight that started on day 3 post-

injection, which lasted through the testing period. The two-way repeated-measures ANOVA revealed significant main effects of AgRP (F1,25 = 9.403, p < 0.01)

and time course (F8,200 = 127.5, p < 0.0001) and a significant AgRP 3 time course interaction (F8,200 = 125.2, p < 0.0001). ***p < 0.001, compared with vehicle

group (post hoc test). n = 13–14/group. Data are represented as mean G SEM.
to be required for feeding responses that are induced by palatable food that recruits hedonic neural circuits

(Denis et al., 2015).

The present study investigated the effects of AgRP and its interaction with heparan sulfate on food intake

and metabolism using AgRP(83-132), the mature form of AgRP (AgRP-WT), and two charge-modified AgRP

variants (AgRP-4K and AgRP-4Q) with either a higher or lower density of positively charged amino acids

outside the ICK motif, resulting in either higher or lower affinity for heparan sulfate, respectively. Because

the ICK motif mediates the AgRP interaction with MC3/4R, AgRP-WT, AgRP-4Q, and AgRP-4K all have

identical receptor affinities and potency in vitro (Madonna et al., 2012).

We found that the ICV administration of AgRP enhanced both ad libitum food intake in the home cage and

the motivation for food in an operant paradigm, which were correlated with the density of positive charges

of the AgRP variants. The AgRP-induced increase in ad libitum food intake was abolished in AgRP-4Q (i.e.,

the AgRP variant that had the least positive charges that also exhibited deficient heparan sulfate binding)

and more pronounced and protracted with AgRP-4K (i.e., the most positively charged AgRP variant that

also exhibited the greatest affinity for heparan sulfate). However, a rapid but transient increase in operant

responding for food was observed in mice that were treated with AgRP-4Q. The increase in operant re-

sponding for food was delayed in mice that were treated with AgRP-4K, but the increase was protracted
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Figure 5. Effects of AgRP and Charge-Modified AgRP Variants on Operant Food Self-Administration

(A) AgRP-4Q significantly increased food self-administration during the dark phase on the first day of injection. This

feeding-promoting effect of AgRP-4Q subsided rapidly in the following periods. The two-way repeated-measures

ANOVA revealed significant main effects of AgRP variant (F1,16 = 7.452, p = 0.015) and time (F7,112 = 183.4, p < 0.0001) and

a significant AgRP variant 3 time interaction (F7,112 = 2.577, p = 0.017). ***p < 0.001, relative to the level before AgRP

injection.

(B) AgRP-4K induced a longer-lasting increase in food self-administration compared with AgRP-4Q. Data are represented

as mean G SEM.
and lasted for approximately four days. These results indicate that in addition to ad libitum food intake,

AgRP increases the motivation for food, and both of these effects depended on its affinity for heparan

sulfate. AgRP-WT and AgRP-4K also increased water intake, which was correlated with the increase in

feeding and thus may reflect a general increase in consummatory behavior that was induced by the

AgRP variants that exhibited higher positive charges and thus higher heparan sulfate binding affinity.

All of the AgRP variants that were tested herein reduced body temperature, suggesting a decrease in energy

expenditure. The effect on body temperature of AgRP-4Q, the variant with a lower density of positive charges,

had a faster onset and was less protracted. AgRP-WT decreased oxygen consumption (VO2), indicating lower

energy expenditure. A similar, although nonsignificant, trend toward a decrease in VO2 was observed with

AgRP-4K, the variant with higher positive charges, but not AgRP-4Q, the variant with lower positive charges.

AgRP-WT and AgRP-4K, but not AgRP-4Q, induced a protracted and significant increase in the RER at

rest (during the light phase), indicating a reduction of fat oxidation and a shift toward carbohydrates

as the predominant fuel source (Lusk, 1924; Marvyn et al., 2016; Schmidt-Nielsen, 1997; Speakman,

2013). In humans, overnight fasting is associated with high rates of fat oxidation (low RER), which is
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Figure 6. Effects of AgRP and Charge-Modified AgRP Variants on Energy Expenditure and Fuel Source

Energy expenditure was assessed by body temperature and VO2 in the CLAMS.

(A) All three variants of AgRP—AgRP-WT (left), AgRP-4Q (middle), and AgRP-4K (right)—significantly decreased body temperature, suggesting that AgRP

reduces energy expenditure. The effect of AgRP-4Q (center) had a faster onset and was less protracted than the effects of AgRP-WT (left) and AgRP-4K

(right). Two-way repeated-measures ANOVA revealed significant AgRP variant 3 hours interactions for all three variants (AgRP-WT: F99,990 = 2.225,

p < 0.0001; AgRP-4Q: F99,856 = 1.754, p < 0.0001; AgRP-4K: F99,891 = 2.828, p < 0.0001).

(B) VO2 was significantly decreased by AgRP-WT, indicating that AgRP reduced energy expenditure.

(C) Effects of AgRP on the respiratory exchange rate (RER) in the CLAMS. AgRP-WT (left) and AgRP-4K (right) but not AgRP-4Q (middle) significantly

increased the RER specifically during the light phase (AgRP-WT: F4.577,45.77 = 10.73, p < 0.0001; AgRP-4K: F6.708,60.37 = 24.91, p < 0.0001; AgRP-4Q:

F3.734,37.20 = 11.38, p < 0.05), indicating that AgRP reduced fat oxidation and increased carbohydrate utilization as the predominant fuel source. *p < 0.05,

compared with vehicle group (post hoc test). Data are represented as mean G SEM.
blunted in individuals with a family history of type 2 diabetes (Ukropcova et al., 2007), reminiscent of the

present results in AgRP-WT- and AgRP-4K-treated mice. Reduced fatty acid oxidation at rest promotes

increased fat storage (Must et al., 1999), whereas exercise training can promote higher rates of fatty

acid oxidation at rest as well as during acute exercise (van Loon et al., 1999). A high RER at rest (reduced

fat oxidation and greater carbohydrate oxidation) in moderately overweight men has been linked to

greater metabolic syndrome risk compared with a low RER (greater fat oxidation at rest; Rosenkilde

et al., 2010). The increase in the RER in AgRP-WT- and AgRP-4K-treated mice appears to be consistent

with findings of higher fat oxidation in mice with perinatal deletions of NPY/AgRP neurons (Cansell

et al., 2012) and mice with the transgenic overexpression of heparanase, which selectively cleaves hep-

aran sulfate chains (Karlsson-Lindahl et al., 2012).

The present results showed that AgRP increased both ad libitum food intake and operant responding for food,

and these orexigenic effects ofAgRPwere accompaniedbymetabolic changes that were characterizedby lower
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Figure 7. Effects of AgRP and Charge-Modified AgRP Variants on Activity

AgRP significantly decreased activity in mice, including total activity (A), ambulation (B), and rearing (vertical activity) (C) in the CLAMS. The effect of AgRP-

4Q (center) had a faster onset and was less protracted than the effects of AgRP-WT (left) and AgRP-4K (right).

(A) All three variants of AgRP—AgRP-WT (left), AgRP-4Q (middle), and AgRP-4K (right)—reduced total activity, particularly during the dark phase. Total

activity during the light phase was unaffected. The two-way repeated-measures ANOVA revealed a significant AgRP variant 3 hours interaction for all three

variants (AgRP-WT: F9,90 = 6.535, p < 0.0001; AgRP-4Q: F9,81 = 2.824, p = 0.0001; AgRP-4K: F9,90 = 8.464, p < 0.0001).

(B) Ambulation. The two-way repeated-measures ANOVA revealed a significant AgRP variant 3 hours interaction for all three variants (AgRP-WT: F9,90 =

4.824, p < 0.0001; AgRP-4Q: F9,81 = 2.844, p = 0.0058; AgRP-4K: F9,90 = 6.222, p < 0.0001).

(C) Rearing. The two-way repeated-measures ANOVA revealed a significant AgRP variant3 hours interaction for two of the variants (AgRP-WT: F9,90 = 3.226,

p = 0.0020; AgRP-4K: F9,90 = 3.767, p = 0.0005). *p < 0.05, **p < 0.01, ***p < 0.001, significant difference between AgRP and vehicle groups. The data are

presented in the form of a 12 h/12 h light/dark cycle. D, dark phase; L, light phase. *p < 0.05, **p < 0.01, compared with vehicle group (post hoc test). Data are

represented as mean G SEM.
energy expenditure and a reduction of fat utilization as the fuel source. These actions generally depended on

the density of positively charged amino acids, indicating that the affinity of AgRP for heparan sulfate is a key

determinant of both the orexigenic and metabolic effects of AgRP. The delayed and protracted kinetics of

most actions of AgRP-WT and AgRP-4K, which can interact with heparan sulfate unlike AgRP-4Q, are consistent

with a role for heparan sulfate proteoglycans in the extracellular matrix in controlling the diffusion of heparan/

heparin-binding peptides that act as storage mechanisms (Kim et al., 2011; Reizes et al., 2001; Sarrazin et al.,

2011). This function of heparan sulfate proteoglycans in the extracellular matrix results in the establishment

of gradients of signaling peptides during development and has been proposed to act as a repository of growth

factors that possibly results in their sequestration or localization in the proximity of receptors and prolongation

of their action (Kim et al., 2011; Reizes et al., 2001; Sarrazin et al., 2011).
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Figure 8. Effects of AgRP and Charge-Modified AgRP Variants on Food Intake in the CLAMS

Mice received AgRP-WT, AgRP-4Q, and AgRP-4K injections in the lateral ventricles, and food intake was monitored in the CLAMS for the following five days.

AgRP-WT (A) and AgRP-4K (C) but not AgRP-4Q (B) increased food intake compared with the vehicle-treated group. All of the CLAMS experiments were

performed under a 12 h/12 h light/dark cycle. D, dark phase; L, light phase. *p < 0.05, **p < 0.01, compared with vehicle group (post hoc test). Data are

represented as mean G SEM.
The differential effects of AgRP on feeding and various aspects of metabolic regulation that were observed

in the present study may reflect complex anatomical relationships between NPY/AgRP neurons in the ARC

and their energy-relevant connections (Betley et al., 2013; Sternson and Atasoy, 2014). Populations of NPY/

AgRP neurons with segregated axonal projections that differentially innervate target brain regions have

been observed with cell-type-specific neuron manipulations (Betley et al., 2013; Sternson and Atasoy,

2014). A low rate of ARC neuron collateralization has been reported in rats and mice (Betley et al., 2013;

Chronwall, 1985; Sternson and Atasoy, 2014). The optogenetic activation of NPY/AgRP neurons has shown

that different projections of NPY/AgRP neurons are involved in the long-term regulation of feeding

behavior through POMC/CART neurons and the acute control of appetite through an interconnected fore-

brain circuit that includes the paraventricular nucleus of the hypothalamus, anterior bed nucleus of the stria

terminalis, and lateral hypothalamus, among other regions that are involved in feeding behavior (Betley

et al., 2013; Sternson and Atasoy, 2014). The regulation of different NPY/AgRP neuronal populations ap-

pears to be specific. For example, the responsiveness to ghrelin and food deprivation characterizes

both intrahypothalamic and extrahypothalamic NPY/AgRP neuronal projection subpopulations. The leptin

receptor is expressed in NPY/AgRP neurons that project outside of the hypothalamus but not in neurons

that project within the hypothalamus (Betley et al., 2013; Sternson and Atasoy, 2014). These considerations

suggest that distinct NPY/AgRP neuronal projections may subserve the regulation of energy metabolism

and food intake and that the duration and intensity of AgRP’s actions on food intake and metabolism

are differentially affected by the positive charges of AgRP and its affinity for heparan sulfate.
Conclusions

Thepresent results indicate that the orexigenic effects ofAgRP are accompaniedby complexmetabolic changes

that are characterizedby lower energy expenditure, a reductionof fat oxidation, anda shift in substrate utilization
Figure 9. Effects of AgRP and Charge-Modified AgRP Variants on Water Intake in the CLAMS

AgRP-WT (A) and AgRP-4K (C) but not AgRP-4Q (B) increased water intake. The two-way repeated-measures ANOVA revealed significant main effects of

AgRP-WT (F1,18 = 4.499, p = 0.048) and AgRP-4K (F1,18 = 6.265, p = 0.022). D, dark phase; L, light phase. *p < 0.05, **p < 0.01, compared with vehicle group

(post hoc test). Data are represented as mean G SEM.
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towardcarbohydrateoxidation. To investigate theeffectsofAgRPand its interactionwithheparan sulfateon food

intakeandmetabolism,weused themature formofAgRPandtwoadditional charge-modifiedAgRPvariantswith

either a higher or a lower density of positively charged amino acids outside the receptor-bindingmotif, resulting

in either an increase or a decrease in binding to heparan sulfate, respectively. TheAgRP variants that were tested

had identicalMC3/4R receptor affinity and in vitropotency, butweobserved significantdifferencesbetween their

orexigenicandmetabolic responses in vivo. The in vivopotency anddurationofactionofAgRP largelydepended

onpositively chargedaminoacids thatmediateheparan sulfatebinding independentlyofMC3/4R receptorbind-

ing.Overall, thepresent results support a role forAgRPand its interactionwithheparan sulfate in the regulationof

energy expenditure and metabolic balance between carbohydrate and lipid utilization.

Limitations of the Study

Despite convincing evidence that heparan sulfate proteoglycans are key modulators of the actions of AgRP, we

cannot exclude the potential contribution of other complementary mechanisms for AgRP positive charges in

potentiating and prolonging its orexigenic and metabolic effects. For instance, AgRP positive charge density

may have effects at the receptor level, such as the stabilization of alternative active states of MC3Rs and

MC4Rs, andmay act as a biased agonist atMC4Rs on the regulation of Kir7.1 potassium channels (Ghamari-Lan-

groudi et al., 2015) or on the recruitment of b-arrestins (Breit et al., 2006). Future studies will also investigate

whether AgRP is also bound by other glycosaminoglycans, such as chondroitin sulfate.
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