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Abstract
Objectives  To assess Prostate Imaging Reporting and Data System (PI-RADS)–trained deep learning (DL) algorithm per-
formance and to investigate the effect of data size and prior knowledge on the detection of clinically significant prostate 
cancer (csPCa) in biopsy-naïve men with a suspicion of PCa.
Methods  Multi-institution data included 2734 consecutive biopsy-naïve men with elevated PSA levels (≥ 3 ng/mL) that 
underwent multi-parametric MRI (mpMRI). mpMRI exams were prospectively reported using PI-RADS v2 by expert radiolo-
gists. A DL framework was designed and trained on center 1 data (n = 1952) to predict PI-RADS ≥ 4 (n = 1092) lesions from 
bi-parametric MRI (bpMRI). Experiments included varying the number of cases and the use of automatic zonal segmentation 
as a DL prior. Independent center 2 cases (n = 296) that included pathology outcome (systematic and MRI targeted biopsy) 
were used to compute performance for radiologists and DL. The performance of detecting PI-RADS 4–5 and Gleason > 6 
lesions was assessed on 782 unseen cases (486 center 1, 296 center 2) using free-response ROC (FROC) and ROC analysis.
Results  The DL sensitivity for detecting PI-RADS ≥ 4 lesions was 87% (193/223, 95% CI: 82–91) at an average of 1 false 
positive (FP) per patient, and an AUC of 0.88 (95% CI: 0.84–0.91). The DL sensitivity for the detection of Gleason > 6 
lesions was 85% (79/93, 95% CI: 77–83) @ 1 FP compared to 91% (85/93, 95% CI: 84–96) @ 0.3 FP for a consensus panel 
of expert radiologists. Data size and prior zonal knowledge significantly affected performance (4%, p < 0.05).
Conclusion  PI-RADS-trained DL can accurately detect and localize Gleason > 6 lesions. DL could reach expert performance 
using substantially more than 2000 training cases, and DL zonal segmentation.
Key Points   
• AI for prostate MRI analysis depends strongly on data size and prior zonal knowledge.
• AI needs substantially more than 2000 training cases to achieve expert performance.
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Abbreviations
AUC​	� Area under the ROC
bpMRI	� Bi-parametric MRI
CAD	� Computer-aided diagnosis
CI	� Confidence interval
csPCa	� Clinically significant prostate cancer
DL	� Deep learning
FROC	� Free-response ROC

mpMRI	� Multi-parametric MRI
ROC	� Receiver operating characteristic

Introduction

Prostate MRI is now incorporated in international guidelines 
as an upfront test in men with a suspicion of prostate cancer 
(PCa). High-level evidence has emerged that prostate MRI is 
able to detect and localize clinically significant PCa (csPCa). 
Compared to systematic transrectal ultrasound-guided biop-
sies (TRUSGB), MRI can avoid 20–50% of biopsies, without 
compromising the detection of csPCa [1–3]. The interpreta-
tion of multi-parametric MRI (mpMRI) strongly depends on 
expertise as evidenced by a high inter-reader variability [4, 5]. 
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The Prostate Imaging Reporting and Data System or PI-RADS 
(currently PI-RADS v2.1) aims to reduce variation in the acqui-
sition, interpretation, and reporting [6]. The current effect of 
PI-RADS on the inter-reader variability is moderate [5, 7, 8]. 
In this paper, we will focus on computer-aided diagnosis (CAD) 
to assist in the detection and localization of csPCa.

CAD and AI are increasingly explored but require caution. 
Several studies have shown a limited effect of machine learn-
ing (ML)-CAD on prostate MRI reading [9–12]. In particular, a 
major issue is that ML-CAD does not achieve stand-alone expert 
performance [13]. ML algorithms are programmed with hand-
crafted, expert features fed to a simple classifier trained for the 
diagnostic task. Even though more data has become available, 
the proficiency of ML-CAD remains below expert performance. 
Deep learning (DL) is a newly emerging branch of AI that is able 
to outperform traditional ML [14, 15]. DL can take advantage 
of the increasingly large data sets that are currently available, to 
derive highly complex, data-driven features and classifiers. DL-
CAD performance strongly depends on the amount of training 
data [15], and the minimum requirements are unclear.

CAD training data size requirements can be reduced by the 
inclusion of prior knowledge into the DL model. We deploy 
two strategies to integrate prior knowledge. Firstly, we inte-
grate the concept of zonal anatomy, as approximately 70–75% 
of prostate cancers originate in the peripheral zone (PZ) and 
25–30% in the transition zone (TZ). Besides, the assignment 
of a PI-RADS category to each lesion is based on the scor-
ing of mpMRI sequences, according to zonal anatomy [6, 16, 
17]. Secondly, we integrate expert radiologist knowledge by 
using PI-RADS-detected csPCa lesions to train the DL-CAD. 
PI-RADS captures knowledge accumulated by international 
expert radiologists over many years [6]. We hypothesize that 
DL-CAD can generalize beyond its training annotations and 
reliably detect histopathologically confirmed csPCa.

In this study, we investigate the effect of training data size 
on the diagnostic performance of DL-CAD and investigate the 
effect of incorporating CAD-generated prostate zonal segmenta-
tion as prior knowledge. We also evaluated the performance of 
the DL-CAD model which is trained using PI-RADS ≥ 4 lesions 
to detect csPCa lesions (Gleason score > 6) on an external data-
set with histopathological reference standard and compared it 
with reported clinical assessment performance and a consensus 
panel of expert radiologists.

Materials and methods

Study groups

This retrospective analysis used data from two centers. The 
center 1 cohort (n = 2438) is a set of consecutive clinical cases 
for which retrospective scientific use was approved by the 
institutional ethics committee (CMO2016-3045/20011). The 

center 2 cohort (n = 296) is a set of cases from an external 
center that was included in a previously reported prospective 
study that assessed the diagnostic accuracy of mpMRI for the 
detection of csPCa [1]. This trial was approved and registered 
in the Dutch Trial register under identifier NTR5555.

Inclusion criteria for the center 1 cohort were consecu-
tive, regular clinical mpMRI acquired from January 2016 to 
January 2018 at Radboudumc, Nijmegen, The Netherlands. 
All men were biopsy-naïve with elevated PSA levels and/or 
suspicious digital rectal examination results, without history 
of PCa.

Inclusion criteria for the center 2 cohort were consecu-
tive mpMRI acquired from March 2015 to January 2017 at 
Ziekenhuis Groep Twente, Almelo, The Netherlands, as part 
of a prospective diagnostic accuracy study. All men were 
biopsy-naïve without history of PCa, aged 50–75 years, with 
a PSA level of ≥ 3ng∕mL [1]. Figure 1 shows the cohort 
selection flowcharts.

MRI protocol

MRIs in the center 1 cohort were performed on 3-T MR 
scanners (Magnetom Trio/Skyra (90%)/Prisma (10%); Sie-
mens Healthineers). In center 2, MRIs were also performed 
on 3-T MR scanners (Magnetom Skyra; Siemens Health-
ineers). All MRIs were acquired according to the PI-RADS 
technical recommendations and standards [18, 19]. Addi-
tional information describing scanners’ characteristics is 
provided in Appendix A.

For both cohorts, the bi-parametric MRI (bpMRI) data 
were selected comprising T2-weighted imaging (T2W) in 
three planes, diffusion-weighted imaging (DWI) calculated 
apparent diffusion coefficient (ADC) maps, and high-b-
value DWI images (b ≥ 1400s∕mm2 ) (HBV), thus exclud-
ing dynamic contrast-enhanced (DCE) imaging. The DL-
CAD system was developed by bpMRI given the challenge 
of pharmacokinetic modeling of DCE, the limited role of 
DCE, and the emerging use of bpMRI [6, 20].

Lesion assessment

All mpMRIs in the center 1 cohort were interpreted by at 
least one of 6 radiologists (4 to 25 years of experience) dur-
ing clinical routine using PI-RADS v2 to score each detected 
lesion. Difficult cases were examined in consensus with an 
expert radiologist (5 to 25 years of experience). In total, 
3379 lesions were detected and scored.

All mpMRIs in the center 2 cohort were interpreted by 
trained radiologists (at least 3 years of experience) using 
PI-RADS v2 to score each detected lesion. Before biopsy, 
two experienced radiologists (5 and 25 years of experience 
with prostate MRI) reviewed each case. In case of a dis-
crepant reading, a consensus assessment by two experienced 
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radiologists was decisional. In total, 449 lesions were 
detected and scored. Twelve-core systematic TRUSGB 
(using 18G needles with a sampling length of 17 mm) was 
performed by a urologist for all patients [1]. In addition, for 
all suspicious MRIs (defined by the presence of a PI-RADS 
≥ 3 ) in-bore MRI-guided biopsies (MRGB) (using 18G nee-
dles with a sampling length of 17 mm) were performed using 
two to four cores for all PI-RADS 3–5 lesions [1]. An expe-
rienced uropathologist (25 years of experience) reviewed 
all biopsies using Gleason scoring (GS) independent of the 
results of the non-academic pathologists and the mpMRI 
results [1]. For the center 2 cohort, “pathology csPCa” 

was defined as GS ≥ 3 + 4 (GG ≥ 2 ) in any biopsy core of 
MRGB or TRUSGB. Table 1 shows the clinical assessment 
of the lesions.

Definition of clinically significant PCa  In this study, we 
defined PI-RADS 4–5 as “PI-RADS csPCa” [21] and PI-
RADS 1–3 as “PI-RADS non-csPCa.” This was used to train 
the DL model. For the assessment of the performance of the 
DL model and expert radiologists for csPCa detection, we 
defined GS ≥ 3 + 4 or GG ≥ 2 as “Gleason csPCa,” which 
is in compliance with EAU guidelines [22].

Fig. 1   Flow diagrams of study design and participants. a shows 
inclusion of patients into the study from center 1. b shows inclusion 
of patients into the study from center 2. mpMRI = multi-parametric 
magnetic resonance imaging, PSA = prostate-specific antigen, PI-
RADS = Prostate Imaging Reporting and Data System, PCa = prostate 
cancer

Table 1   Characteristics of patients, PI-RADS assessment categories, 
and final pathology

Participant demographics and characteristics

Variable Center 1
(n = 2438)

Center 2
(n = 296)

Median age (y) 66 (61–70) 65 (59–68)
Median PSA (ng/mL) 8 (5–11) 6.6 (5.1–8.7)
No. of patients with MRI-detected lesions 2372 293

  1 lesion 1507 163
  2 lesions 734 104
  3 lesions 120 26
  4 lesions 11 0

No. of patients with specified MRI index lesion
  No lesion 66 3
  PI-RADS 2 1295 141
  PI-RADS 3 179 23
  PI-RADS 4 469 54
  PI-RADS 5 429 75

No. of lesions with specified MRI assessment
  Total 3379 449
  PI-RADS 2 2007 233
  PI-RADS 3 280 40
  PI-RADS 4 623 89
  PI-RADS 5 469 87

No. of MRI-detected lesions with specified zone distribution
  Peripheral zone 1941 317
  Transition zone 722 91
  Anterior fibromuscular stroma 20 9
  Central zone 113 27
  Multiple zone 536 N/A
  Others 36 5

Per-patient maximum Gleason score
  No prostate cancer N/A 146
  Gleason score ≤ 6 N/A 64
  Gleason score 7 (3 + 4) N/A 42
  Gleason score 7 (4 + 3) N/A 18
  Gleason score 8 N/A 8
  Gleason score ≥ 9 N/A 18
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Lesion annotation

In the center 1 cohort, all “PI-RADS csPCa” lesions 
(n = 1092), and in the center 2 cohort, all “Gleason csPCa” 
lesions (n = 93), were selected and their three-dimensional 
volumes of interest (VOIs) manually delineated by 2 investi-
gators using the size and location information given in clini-
cal reports in consensus with and under the supervision of 
a radiologist (7 years of experience with prostate MRI). A 
total of 1185 lesions were segmented. The clinical charac-
teristics and assessment of the lesions are shown in Table 1.

Deep learning framework

The proposed deep learning framework is illustrated in 
Fig. 2. We developed a two-stage cascaded framework using 
two convolutional neural networks (CNN). At the first stage 
of the framework, we used a multi-planar anisotropic 3D 
U-net network [23]. This model is an anisotropic, multi-ori-
entation extension of a state-of-the-art segmentation model, 
3D U-net [24], previously developed for prostate segmenta-
tion [23]. The segmentation network takes all three T2W 
scans (axial, sagittal, and coronal) as inputs, and outputs the 
segmentation of the PZ and TZ.

For lesion detection and localization, we used a U-net 
model [25] at the second stage of the framework. The inputs 
of this detection model are 2D images of all bpMRI modali-
ties (axial T2W, ADC, and HBV) stacked in different chan-
nels. The model is trained to respond with a heatmap with 
spikes at the location of the detected lesions. Further details 
about the proposed framework are provided in Appendix B.

Experiments

Experiment 1  We conducted experiments to determine the 
effect of the size of the training data set on the error rate 
of the test set. For a fair comparison in these experiments, 
we fixed everything (including the validation set) except the 
number of training scans. The models were trained with dif-
ferent sizes of training sets (50, 200, 500, 1000, 1586).

Experiment 2  We investigated the effect of prostate zonal 
information as prior knowledge. We used computer-gener-
ated zonal segmentations as extra channels at the input of 
the baseline model to incorporate zonal prior knowledge into 
the model. This experiment was performed under the same 
training/validation/test conditions as in experiment 1.

Statistical analysis

We evaluated the DL-CAD model using receiver operating 
characteristics (ROC) and the summary measure area under 
the curve (AUC) to compare patient-based accuracy, and 
free-response ROC (FROC) with sensitivities at 0.5, 1, and 
2 false positives (FP) on average for lesion-based analysis. 
To compare DL-CAD predictions with radiologist-generated 
“PI-RADS csPCa” on biopsy outcomes, we used descriptive 
analysis on ROC and FROC curves. We used Cohen’s kappa 
[26] to quantify the patient-level agreement between DL-
CAD, radiologists, and pathologists. We used bootstrapping 
with 2000 bootstrap samples to generate the 95% confidence 
intervals and p < 0.05 considered statistically significant.

Fig. 2   Illustration of the DL-CAD framework
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Results

The performance of the DL-CAD model is compared 
over several experiments with and without the inclusion 
of zonal segmentation and with different sizes of the train-
ing data set.

Training, validation, and test sets  After splitting the center 1 
data set into “PI-RADS csPCa” patients (n = 1540) and “PI-
RADS non-csPCa” patients (n = 898), we randomly selected 
20% of each split to form the test set (n = 486) and 15% for 
the validation set (n = 366). The remaining data were ran-
domly divided into data sets with (50, 200, 500, 1000, 1586) 

Fig. 3   DL-CAD performance for the detection of “PI-RADS csPCa” 
at the patient-based and lesion-based levels on the center 1 test set for 
different data set sizes and with and without the use of prior knowl-
edge on zonal segmentation. Graphs a and b show FROC curves for 
the detection and localization of “PI-RADS csPCa” on a lesion-based 
level by DL-CAD models trained using different sizes of training sets 
from center 1, trained with zonal segmentation (a) and without zonal 

segmentation (b). The number of false positives per normal case is 
shown on a logarithmic scale. c, d ROC curves for the detection of 
“PI-RADS csPCa” patients by DL-CAD models trained using differ-
ent sizes of training sets from center 1, trained with zonal segmen-
tation (c), and without zonal segmentations (d). Ninety-five percent 
confidence intervals estimated using bootstrapping are shown as 
transparent areas around the mean curves
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scans with the same proportion of “PI-RADS csPCa” and 
“PI-RADS non-csCPa” patients. Each training set is a subset 
of a larger training set. As an external test set, we used all 
patients in center 2.

Lesion‑based results  The FROC curves for the detection of 
“PI-RADS csPCa” lesions in the center 1 test set are shown 
in Fig. 3. The results show that models trained with larger 
training sets performed better ( p < 0.05 ) than models trained 
using smaller training sets, ranging from 50 to 1586. By 
comparing the sensitivities at 0.5, 1, and 2 FPs per patient 
for both experiments with and without zonal segmentation 
as prior knowledge (Fig. 3 a and b, respectively), we see an 
increased performance by using larger training sets. Table 2 
shows, at similar FP levels, the sensitivities were signifi-
cantly higher after adding the zonal segmentation as prior 
knowledge for all models, e.g., 2.5%, 5.9%, 6.7%, 6.1%, and 
4% increase in sensitivity at 1 FP per patient for models 
trained using 50, 200, 500, 1000, and 1586 cases, respec-
tively. At 1 FP per patient, a sensitivity of 83% (95% CI: 
77–87) is reached by the model which was trained using all 
the training cases, whereas the sensitivity increased to 87% 
(95% CI: 82–91, p < 0.05 ) after adding the zonal segmenta-
tion as prior knowledge.

For the comparison of DL-CAD and radiologists, the best 
DL model (largest training set, including zonal segmenta-
tion model) was used on an independent test set (center 2) to 
assess the performance of csPCa lesion detection. The DL-
CAD FROC curve is shown in Fig. 4a. DL-CAD reached 
85% (79/93, 95% CI: 77–83) sensitivity at 1 FP per patient. 
The consensus panel of expert radiologists (with PI-RADS 
≥ 4 threshold) has 91% (85/93, 95% CI: 84–96) sensitivity 
at 0.30 FP per patient, which is significantly higher.

Patient‑based results  The ROC curves are shown in Fig. 3c, 
d for “PI-RADS csPCa” detection and in Fig. 4b for “Glea-
son csPCa” detection. DL-CAD trained using larger training 
sets performed significantly better ( p < 0.05 ) than models 
trained using smaller training sets. AUC of 0.73, 0.80, 0.81, 
0.83, and 0.85 for training sets with 50, 200, 500, 1000, and 
1586 scans, respectively. The inclusion of zonal segmenta-
tions as prior knowledge significantly increased the AUCs 
( p < 0.05 ). This increase was 0.066, 0.029, 0.039, 0.039, 
and 0.028 in AUC for models trained with 50, 200, 500, 
1000, and 1586 scans, respectively.

The DL-CAD model trained using the largest training 
set and inclusion of zonal segmentation as prior knowledge 
has an AUC of 0.85 on the center 2 test set, which is similar 
in performance when compared to literature, slightly worse 
than an expert panel of radiologists (Sens = 91%, Spec = 77% 
for PI-RADS ≥ 4 threshold) (Fig. 5). Figure 6 illustrates 
three examples of DL-CAD predicted Gleason csPCa lesions 
by the proposed DL-CAD model, and one false-negative 
case. Table 3 summarizes the patient-based diagnostic per-
formance of DL-CAD models in two test sets.

We used Cohen’s kappa coefficient to evaluate the patient-
level agreement between the radiologists (PI-RADS ≥ 4 ), 
pathologists (GS ≥ 3 + 4 ), and the DL-CAD model for the 
external test set. The radiologists achieved 91% sensitivity 
and 77% specificity on the patient-based diagnosis. With a 
probability threshold of 0.96 on our DL-CAD, it operates 
at the same specificity. At this operating point, the kappa 
agreement was 0.53 and 0.5 between DL-CAD versus radi-
ologists and pathologists, respectively, reflecting a moderate 
agreement. Kappa between the radiologists and pathologists 
was 0.61.

Table 2   Lesion-based diagnostic and localization performance of DL-CAD models in two test sets

Cohort, model Sensitivity (95% CI)

@0.5 FP @1 FP @2 FPs

Center 1 test set (“PI-RADS csPCa” detection)
  DL-CAD #50 With zones 64.5% (57.4–71.3) 70.4% (64.5–76.8) 73.9% (68.3–79.9)

Without zones 53.5% (46.0–60.8) 67.9% (61.4–74.2) 77.7% (71.5–83.1)
  DL-CAD #200 With zones 73.7% (67.8–79.8) 82.3% (76.9–87.6) 87.1% (82.7–91.5)

Without zones 65.8% (59.3–72.7) 76.4% (70.7–82.0) 84.1% (79.1–88.7)
  DL-CAD #500 With zones 77.5% (71.5–83.3) 84.6% (79.9–89.3) 87.5% (83.2–91.6)

Without zones 69.1% (62.6–75.1) 77.9% (72.6–83.1) 85.3% (81.0–89.8)
  DL-CAD #1000 With zones 80.8% (75.0–86.2) 85.5% (80.5–90.3) 88.9% (84.5–93.2)

Without zones 71.9% (65.5–78.3) 79.4% (73.9–84.7) 84.7% (79.9–89.4)
  DL-CAD #1586 With zones 80.3 (74.9–85.5) 86.7% (82.1–91.3) 91.9% (88.0–95.5)

Without zones 74.0% (67.8–79.7) 82.7% (77.4–87.9) 88.5% (83.8–93.3)
Center 2 test set (“Gleason csPCa” detection)

  DL-CAD #1586 with zones 79.1% (69.3–87.8) 85.4% (76.6–92.9) 91.0% (83.9–97.3)
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Fig. 4   FROC and ROC curves for the performance of DL-CAD and 
the consensus panel of expert radiologists for the detection of csPCa 
lesions and patients on the histopathologically proven test set from 
center 2 (n = 296). Graphs show (a) the FROC curve for the lesion-
based performance and (b) the ROC curve for the patient-based per-
formance. Performances of radiologists for three different PI-RADS 

thresholds are indicated in the figure as well as the performance of 
other prospective clinical trials (4M and MRI-First). Ninety-five per-
cent confidence intervals estimated using bootstrapping are shown as 
transparent areas around the mean curves. The mean performance for 
the consensus panel of expert radiologists and their 95% confidence 
intervals are indicated by the center points and error bars

Fig. 5   Effect of the size of the 
training set on (a) the lesion-
based DL model performance 
for the detection of “PI-RADS 
csPCa” on the center 1 test set 
(n = 486). Sensitivities are on 
average 1 FP lesion prediction 
per patient. b Patient-based 
performance on the center 1 
test set

(a) (b)
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Discussion

Multi-parametric MRI is incorporated as an upfront test in 
the diagnostic pathway in biopsy-naive men with suspicion 
of prostate cancer. It can help to avoid unnecessary biopsies, 
reduce overdiagnosis and overtreatment, and allow targeted 
biopsy. An accurate reading of prostate MRI is crucial but 
strongly depends on expertise. DL-CAD has the potential 
to help improve diagnostic accuracy. DL-CAD requires a 

sufficient amount of data and design to achieve good stand-
alone diagnostic performance, which is essential for a suc-
cessful application. This study examined two crucial aspects: 
(1) the effect of training data size and (2) the use of a zonal 
segmentation as prior knowledge on the diagnostic perfor-
mance of deep learning AI to detect csPCa in biopsy-naive 
men with a suspicion of PCa. Our large data set (2736 cases) 
allowed us to investigate training on smaller data sets. Our 
results show a significant effect on the performance (AUC 

Fig. 6   Visualization of detection results on four sample cases (rows). 
The first row shows a case of a 64-year-old man with a serum pros-
tate-specific antigen (PSA) level of 7.5 ng/mL and a Prostate Imaging 
Reporting and Data System (PI-RADS) 4 lesion in the left peripheral 
zone. Targeted biopsy of the lesion yielded a Gleason score (GS) of 
3 + 5. The second row shows a case of a 54-year-old man with a PSA 
level of 25.6 ng/mL and a PI-RADS 5 lesion in the anterior left tran-
sition zone. Targeted biopsy of the lesion yielded a GS = 3 + 4 PCa. 
The third row shows a case of a 73-year-old man with a PSA level of 

8.7 ng/mL and a PI-RADS 4 lesion in the central zone and peripheral 
zone. Targeted biopsy of the lesion yielded a GS = 3 + 4 PCa. The last 
row shows a case of a 65-year-old man with a PSA level of 5.3 ng/mL 
and a PI-RADS 2 lesion in the transition zone. Systematic biopsy did 
not find any PCa. Images show examples of the bpMRI, annotations, 
and DL-CAD predictions. a Axial T2-weighted imaging (T2W) with 
overlaid lesion (in red) and zonal (in yellow and green) segmentation 
boundaries, b axial T2W, c apparent diffusion coefficient, d high-b-
value image, e axial T2W with overlaid DL-CAD prediction
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0.80 to 0.87) when varying the training data size (50 to 1586 
training with fixed 366 validation cases). The results also 
show that even at 1952 cases there is still a trend toward 
improvement. Secondly, we show that adding zonal seg-
mentation as prior knowledge improves performance sig-
nificantly by helping the DL-CAD model benefit from 
domain-specific clinical knowledge that the occurrence and 
appearance of PCa are dependent on its zonal location.

Our best DL-CAD model achieves a high diagnostic per-
formance (AUC = 0.85 [95% CI: 0.79–0.91]) assessed on an 
independent external data set. This performance approaches 
reader performance for predicting histopathologically proven 
csPCa (GS > 6, MRI-FIRST study, sens = 83%, spec = 75% 
for PI-RADS ≥ 4 threshold [2]), but is slightly below a 
consensus panel of expert radiologists (GS > 6, 4M study, 
sens = 89%, spec = 73% for PI-RADS ≥ 4 threshold). The 
performance similarity is supported by the reported kappa 
agreement between DL-CAD and radiologists in our study 
(κ = 0.53), which is comparable to the inter-reader agree-
ment [7]. For DL-CAD to be effective in clinical practice, 
it should have a stand-alone performance at least matching 
expert performance. Our recommendation, therefore, is that 
DL-CAD for prostate MRI should be trained on much more 
than 2000 cases (see Fig. 5b) with expert annotations (PI-
RADS, biopsy Gleason grade, and follow-up) and developed 
with state-of-the-art prior knowledge.

We hypothesized that DL-CAD can train effectively 
on PI-RADS, generalize beyond its training annotations, 
and reliably detect histopathologically confirmed csPCa. 
PI-RADS annotations represent the complete distribution 
of patients, can directly be retrieved from the radiology 
reports, and do not require the collection of biopsy results. 
This strategy contributes to increasing the size of training 
data. We expected and observed that DL-CAD then cannot 

completely reproduce radiologists’ scoring. Interestingly, the 
performance difference between radiologists in identifying 
Gleason csPCa was much smaller to the point of non-sig-
nificance. Our DL-CAD, which was trained on a large PI-
RADS dataset, demonstrated competitive test performance 
in comparison to recent state-of-the-art DL-CAD studies, 
which were trained on biopsy-confirmed cases exclusively 
and tested on smaller-size test sets [27–31]. This shows that 
even though the DL-CAD model is trained on “imperfect” 
PI-RADS annotations, which it finds hard to reproduce, it 
generalizes well. This interesting difference in generalization 
is a topic of further research.

Many prostate CAD papers claim near radiologists’ per-
formance, while comparing against local radiologists and/
or reporting on small test sets that show huge variations in 
performance [13, 31]. Reported pathology-proven csPCa 
detection performances of many radiologists are much 
lower than those of our consensus panel of expert radi-
ologists (sens = 88%, spec = 50% for PI-RADS ≥ 4 [27]). 
The most important claim of prostate MRI is that it can 
avoid unnecessary biopsies, but to optimally achieve this 
goal requires expert performance, with high negative pre-
dictive value, and good image quality. Experts specifically 
mention these as requirements [1, 32]. ML-CAD does not 
achieve the required expert performance [16]. Deep learn-
ing can improve over ML-CAD but requires more cases 
to train. Recent DL-CAD papers do not reflect this. For 
example, [27–29, 32] used 150–690 cases. Their CAD may 
be competitive to those of local radiologists, but not to the 
global-expert level required to avoid biopsies. Our training 
size observations are supported by prior DL-CAD litera-
ture showing that to achieve the expert level in lung cancer 
CT [33] required ≥ 35k and in mammography, ≥ 90k [34]. 
Our observation is that achieving expert-level DL-CAD for 
prostate MRI requires much larger training data sizes than 
currently reported.

Our study had several limitations. First, all data came 
from one MRI vendor (Siemens). Although we used inde-
pendent data from an external center, we cannot general-
ize our conclusions to all prostate MRI manufacturers. This 
generalization would require extending training with more 
data from other vendors. We plan to expand our data set by 
collecting multi-vendor data to develop a more general DL-
CAD model in the future. We are exploring normalization 
methods to compensate for scanner and scanner setting vari-
ations [35]. Second, we utilized PI-RADS v2 instead of the 
more recent PI-RADS v2.1 in our study. PI-RADS will con-
tinue to evolve, and updating the annotations is a challenge 
for all CAD researchers/developers. Finally, we designed our 
DL-CAD system to use bpMRI alone, and without access to 
clinical variables (e.g., PSA density). Adding more informa-
tion (DCE, PSA, age, etc.) to DL-CAD is likely to provide 
further improvements.

Table 3   Patient-based diagnostic performance of DL-CAD models in 
two test sets

Cohort, model AUC (95% CI)

Center 1 test set (“PI-RADS csPCA” detection)
  DL-CAD #50 With zones 0.799 (0.753–0.846)

Without zones 0.733 (0.665–0.796)
  DL-CAD #200 With zones 0.829 (0.789–0.869)

Without zones 0.800 (0.740–0.855)
  DL-CAD #500 With zones 0.853 (0.813–0.891)

Without zones 0.814 (0.757–0.867)
  DL-CAD #1000 With zones 0.871 (0.833–0.908)

Without zones 0.832 (0.775–0.881)
  DL-CAD #1586 With zones 0.875 (0.838–0.910)

Without zones 0.847 (0.792–0.894)
Center 2 test set (“Gleason csPCA” detection)

  DL-CAD #1586 With zones 0.849 (0.790–0.906)
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In conclusion, we described a DL-CAD model that can 
detect and localize csPCa on bpMRI. Our study demon-
strates that the performance of a DL-CAD system for the 
detection and localization of csPCa in biopsy-naive men 
is improved by using prior knowledge on DL-based zonal 
segmentation. A larger data set leads to an improved perfor-
mance, which can potentially reach expert-level performance 
when substantially more than 2000 training cases are used.
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