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Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that
primarily attacks motor neurons in the brain and spinal cord, leading to progressive
paralysis and ultimately death. Currently there is no effective therapy. The majority
of ALS cases are sporadic, with no known family history; unfortunately the etiology
remains largely unknown. Contribution of Enteroviruses (EVs), a family of positive-
stranded RNA viruses including poliovirus, coxsackievirus, echovirus, enterovirus-A71
and enterovirus-D68, to the development of ALS has been suspected as they can target
motor neurons, and patients with prior poliomyelitis show a higher risk of motor neuron
disease. Multiple efforts have been made to detect enteroviral genome in ALS patient
tissues over the past two decades; however the clinical data are controversial and a
causal relationship has not yet been established. Recent evidence from in vitro and
animal studies suggests that enterovirus-induced pathology remarkably resembles the
cellular and molecular phenotype of ALS, indicating a possible link between enteroviral
infection and ALS pathogenesis. In this review, we summarize the nature of enteroviral
infection, including route of infection, cells targeted, and viral persistence within the
central nervous system (CNS). We review the molecular mechanisms underlying viral
infection and highlight the similarity between viral pathogenesis and the molecular and
pathological features of ALS, and finally, discuss the potential role of enteroviral infection
in frontotemporal dementia (FTD), a disease that shares common clinical, genetic, and
pathological features with ALS, and the significance of anti-viral therapy as an option for
the treatment of ALS.

Keywords: amyotrophic lateral sclerosis, enterovirus, TDP-43 pathology, nucleocytoplasmic trafficking, RNA
metabolism, autophagy, neuroinflammation

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive
degeneration of both upper and lower motor neurons, resulting in paralysis and eventual death
within 3–5 years after diagnosis (Brown and Al-Chalabi, 2017; Hardiman et al., 2017; van
Es et al., 2017). Despite primarily a motor neuron disease, nearly 50% of ALS patients show
cognitive/behavioral impairments, suggesting an involvement of non-motor systems in ALS
pathogenesis (Hardiman et al., 2017). The overall prevalence of ALS in Europe and North America
is estimated at∼3–5 cases per 100,000 people and increases with age (Brown and Al-Chalabi, 2017).
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The average age of ALS onset is between 55 and 65, with the
cumulative lifetime risk being higher for men (1:350) than for
women (1:400; van Es et al., 2017). There is currently no cure
for ALS. Riluzole (a glutamate release inhibitor) and edaravone
(a free-radical scavenger) are the only two FDA-approved drugs
for the treatment of ALS. However, their benefits are modest
by only delaying disease progression and prolonging survival
for 2–3 months (Martinez et al., 2017). Many other therapeutic
options have been investigated over the past two decades, but
their clinical effectiveness has not been proven (Katyal and
Govindarajan, 2017; Martinez et al., 2017).

ALS can be genetically inherited or occur sporadically in
individuals without any apparent family history. Since the
identification of SOD1 as a causative gene of ALS, significant
progress has been made in unravelling the genetics causes of
ALS. Over the past two decades, ∼30 genes have been identified
to be highly associated with ALS (Al-Chalabi et al., 2017; Ito
et al., 2017; Chia et al., 2018). These genes encode proteins
that are involved in the maintenance of protein homeostasis
and vesicle trafficking (e.g., SQSTM1/p62, TBK1, SOD1, VCP,
CHMP2B, OPTN, UBQLN2 and C9ORF72), RNA processing
(e.g., TARDBP, FUS, TIA1, HNRNPA1, C9ORF72 and MATR3),
and regulation of cytoskeletal integrity and axonal transport
(e.g., PFN1,DCTN1, SOD1, and TUBA4A, Al-Chalabi et al., 2017;
Mackenzie et al., 2017; Chia et al., 2018). Unlike familial ALS
(FALS), the cause(s) of sporadic ALS (SALS), which accounts for
the majority of ALS cases (90%–95%), remain(s) largely unclear.
A ‘‘multistep model’’ of gene-environment interaction requiring
both genetic mutations and environmental risk factors has been
proposed as a mechanism triggering the onset and progression of
SALS (Al-Chalabi et al., 2014). Several environmental risk factors
have been studied, including viral exposure, physical activity,
smoking, heavymetals, pesticides and chemicals, military service,
and electric shock (Yu and Pamphlett, 2017). However, a
definitive relationship between these factors and ALS has yet to
be established. This reviewwill focus on the possible contribution
of viral infection, in particular, enteroviral infection in the
pathogenesis of ALS.

ENTEROVIRUSES AND NEUROLOGICAL
DISORDERS

Enteroviruses (EVs) are a group of single, positive-stranded
RNA viruses of the Picornaviridae family that include poliovirus,
coxsackievirus, echovirus and enterovirus, with the latter
(specifically EV-A71 and EV-D68) emerging as the causative
agents of the recent large epidemics across the Asia-Pacific
and North American region, respectively (Huang and Shih,
2015; Anastasina et al., 2017). Although EVs commonly
cause asymptomatic infection, sometimes they are associated
with severe diseases, including neurological complications.
EVs have a high tropism for the central nervous system
(CNS) and account for various neurological disorders, such
as poliomyelitis, aseptic meningitis, encephalitis and non-polio
flaccid paralysis, particularly in infants and children (Rhoades
et al., 2011; Huang and Shih, 2015). Since the successful

campaign of the poliovirus vaccination, neurological diseases
caused by non-polio EVs have been increasingly reported.
For example, acute flaccid paralysis was frequently observed
among patients with EV-A71, echovirus and coxsackievirus
infection (Suresh et al., 2018). In addition, epidemiological
studies from the recent EV-D68 outbreaks reveal a strong
relationship between EV-D68 infection and increased incidence
of acute flaccid myelitis (Greninger et al., 2015; Messacar et al.,
2016).

While the majority of the EVs are transmitted through the
fecal-oral route and replicate in the gastrointestinal tract, some
EVs (e.g., EV-D68) can cause respiratory infection and spread
via respiratory secretion. Available evidence suggests that EVs
can invade the CNS from these primary infection sites through
three main mechanisms: (1) retrograde axonal transport—both
poliovirus and EV-A71 can infect the peripheral nerve and
gain access into the CNS via retrograde axonal transport and
trans-synaptic spread (Gromeier and Wimmer, 1998; Chen
et al., 2007); (2) blood-brain barrier (BBB) penetration—during
viremia, poliovirus in the blood can directly cross the BBB
through disrupted tight junctions that are likely induced by
inflammation independently of viral receptor (Yang et al., 1997),
and/or via transferrin receptor 1-mediated direct transmission
(Mizutani et al., 2016); and (3) ‘‘Trojan-horse’’ invasion—EVs,
such as poliovirus (Freistadt and Eberle, 1996), EV-A71 (Lin
et al., 2009b) and coxsackievirus (Tabor-Godwin et al., 2010),
can also invade the CNS through virus-infected immune cells,
including macrophage/monocytes, dendritic cells, lymphocytes
and nesting+ myeloid cells, which act as carriers to deliver virus
into the CNS. EVs likely utilize one or multiple routes of entry
into the CNS.

Within the CNS, many cell types can be targeted by the EVs.
It is well documented that poliovirus infects and replicates in
motor neurons within the anterior horns of the spinal cord,
leading to poliomyelitis (Nagata et al., 2004). Motor neurons
in the spinal cord and brainstem are also highly susceptible to
EV-71 (Ong and Wong, 2015; Too et al., 2016). More recently,
it was reported that mice infected with EV-D68 isolates from
the 2014 outbreak develop limb paralysis, closely resembling
human acute flaccid myelitis, due to infection of motor neurons
in the anterior horns of spinal cord (Hixon et al., 2017). In
addition to neuronal cells, especially motor neurons, astrocytes
and oligodendrocytes are also permissive to poliovirus (Couderc
et al., 2002), EV-A71 (Tung et al., 2010), and coxsackievirus B3
(CVB3; Zhang et al., 2013). Moreover, CVB3 and EV-A71 were
found to preferentially target neural progenitor cells compared
with differentiated neuronal cells, suggesting a mechanism of
viral persistence and possible lasting neurological consequences
(Feuer et al., 2005; Tsueng et al., 2011; Huang et al., 2014).

Although EVs are regarded as highly lytic viruses and
EV-related diseases are commonly resulted from acute infection,
EVs, such as poliovirus (Julien et al., 1999), EV-A71 (Han
et al., 2010), and coxsackievirus (Feuer et al., 2009), can
persist in various tissues, including the CNS. Glial cells and
neuronal progenitor cells were reported to be the sites of
CVB3 persistence (Feuer et al., 2009; Zhang et al., 2013).
Multiple viral and host factors, including viral receptors, viral
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mutations, viral evasion of host immune response, and host
translation machinery, participate in establishing a persistent
EV infection (Rhoades et al., 2011; Huang and Shih, 2015).
Latent EVs might be reactivated years later, either spontaneously
or in response to exogenous stimulations, such as local
trauma (Andréoletti et al., 2000; Feuer et al., 2002). EV
persistence in cardiomyocytes and pancreatic cells has been
associated with chronic clinical conditions, such as dilated
cardiomyopathy and type 1 diabetes, mainly through continuous
inflammatory responses (Chapman and Kim, 2008; Oikarinen
et al., 2012). However, the long-term impacts of EV infection
within the CNS are largely unclear. Clinically, it is observed
that polio survivors decades after the recovery from the acute
paralytic poliomyelitis can develop post-poliomyelitis syndrome,
a neurological disorder characterized by new and progressive
muscular weakness, accompanied by the detection of defective
viral particles in the cerebrospinal fluid of some patients
(Dalakas, 1995), indicating a possible long-lasting effect of latent
poliovirus infection. In addition, a murine model has shown
that a neonatal CVB3 infection can have a chronic impact
on neurogenesis and CNS development, further supporting
a potential link between early subclinical infections and late
neurological sequelae (Ruller et al., 2012).

VIRAL INFECTION AND ALS

Viral infection has long been suspected as an environmental
risk factor and/or a causative pathogen for ALS. Over the past
30 years, many efforts have been made to explore the association
of neurotropic viruses (Limongi and Baldelli, 2016), especially
EVs, exogenous retroviruses such as human immunodeficiency
virus (Verma and Berger, 2006) and human T cell leukemia
virus (Araujo, 2015), and human endogenous retrovirus (HERV;
Li et al., 2015), with ALS.

HERVs are the remnants of ancient retroviruses integrated
into the human genome and normally inactivate, but can
be re-activated under physiological and pathological stresses
(Li et al., 2015). Despite unsuccessful attempts to find evidence
of exogenous retroviruses in ALS patient tissues (McCormick
et al., 2008), several studies have reported the detection of
enhanced gene expression of HERV-K and reverse transcriptase
activity in the blood (Andrews et al., 2000; Steele et al., 2005;
MacGowan et al., 2007) and brain tissues (Douville et al., 2011;
Li et al., 2015) of ALS patients. More notably, transgenic mice
expressing HERV-K in the neurons develop progressive motor
neuron dysfunction similar to human ALS phenotype (Li et al.,
2015), suggesting a potential viral etiology of ALS. Further studies
are underway to explore the mechanism by which HERV-K
causes neuropathology and to test existing anti-retroviral drugs
and develop novel anti-HERV inhibitors for the treatment of
retrovirus-associated ALS (Bowen et al., 2016; Tyagi et al., 2017).

A potential role of EVs in ALS has been proposed for
decades due to their ability to target motor neurons and
the development of the ALS-like post-poliomyelitis-syndrome
(Ravits, 2005). Multiple clinical studies have been conducted
to detect EVs in ALS patient tissues; however, the available

data are controversial and inconclusive. Using RT-PCR, three
studies reported a 60%–88% incidence of EV genome detection
in spinal cord/brain of ALS patients, compared to 0%–14%
in controls (Woodall et al., 1994; Berger et al., 2000; Giraud
et al., 2001). Additionally, RT-PCR analysis of cerebrospinal fluid
showed EV detection in 14.5% of 242 ALS patients and 7.6%
of 354 controls (Vandenberghe et al., 2010). However, three
additional studies failed to detect EV RNA in spinal cord/brain
of either ALS patients or controls (Swanson et al., 1995; Walker
et al., 2001; Nix et al., 2004). The discrepancies between these
studies are likely due to methodological differences, such as
the use of fresh vs. archived (or frozen vs. fixed) tissues, and
differences in PCR primers/amplification methods, which can all
affect the integrity of viral RNA and the sensitivity/specificity
of viral genome detection. Moreover, the stage of the disease
when samples are collected may also be critical for viral
detection, as viruses may be detectable or active only in
certain phases of the disease or in only a subset of patients.
In addition, given the emerging ‘‘prion-like mechanism’’ in
ALS pathogenesis (Grad et al., 2015), it is also possible that
EV infection causes disease pathology (i.e., seeding of protein
misfolding) focally during the acute phase of childhood infection,
followed by the gradual propagation of misfolded proteins in
other regions of the CNS, eventually leading to ALS onset in
adulthood. In such case, an active viral infection may not be
required for disease progression. Studies involved population-
based retrospective cohort may be one way to ‘‘enrich’’ the
chances of linking EV infection to later ALS. But the most
common symptoms of EV infections are flu-like symptoms,
which are often neglected until more disastrous consequences
arise. Thus, the existing clinical EV infection data may not be
an accurate reflection of the real infection prevalence. Overall,
with these limitations, it would be very difficult to come up with
a compelling strategy to firmly establish the connection between
EV infection and ALS in humans. However, recent evidence
from in vitro and animal studies prompts us to re-visit the
longstanding controversial role of EVs in ALS from a different
perspective.

EV-INDUCED MOLECULAR AND
PATHOLOGICAL CHANGES ASSOCIATED
WITH ALS PATHOGENESIS

Emerging evidence from cell culture and mouse
experiments reveals that EV infection produces hallmark
cellular and molecular phenotypes of ALS, including
RNA-processing defects, impaired nucleocytoplasmic transport,
neuroinflammation, compromised protein quality control, and
most strikingly, TDP-43 (transactive response DNA binding
protein-43) pathology, supporting a potential link between EV
infection and ALS pathogenesis (Figure 1).

RNA-Processing Defects and TDP-43
Pathology
The significance of aberrant RNA metabolism in ALS is
increasingly recognized since the discoveries of ALS-causing
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FIGURE 1 | Molecular and pathological similarities between amyotrophic lateral sclerosis (ALS) and enteroviral infection. Enterovirus (EV) infection impairs
nucleocytoplasmic trafficking (A) via EV proteinase-mediated proteolysis of nucleoporin proteins, resulting in mislocalization of TDP-43 and heterogeneous nuclear
ribonucleoproteins (hnRNPs) from the nucleus to the cytoplasm, where they are further cleaved to induce TDP-43 pathology (B) and cause RNA-processing defects
(C). EV infection also results in the cleavage of several critical autophagic proteins, including SQSTM1/p62, Nbr1 and SNAP29, contributing to the disruption of the
autophagic pathway (D) and consequent accumulation of misfolded proteins/damaged organelles (E). Finally, subclinical EV infection induces chronic inflammatory
reaction (F) and promotes non-lytic viral spread and prion-like mechanism through extracellular microvesicles (G).

mutations in many genes that encode RNA-binding proteins
(RBPs), including TARDBP, FUS, HNRNPA1, MATR3, TAF15
and TIA1 (Ito et al., 2017). More notably, cytoplasmic
mislocalization, aggregation, and cleavage of TDP-43
(TDP-43 pathology) in motor neurons and glial cells have
been found in ∼97% of all ALS cases, and consequently
regarded as a pathological hallmark of ALS (Neumann et al.,
2006; Mackenzie et al., 2007). TDP-43, encoded by TARDBP,
is a ubiquitously expressed DNA/RNA-binding protein and
plays a critical role in regulating RNA metabolism (Lee
et al., 2012). Mechanistically, both loss- and gain-of-function
in TDP-43 pathology are believed to contribute to disease
onset and progression (Lee et al., 2012). The replication
of EVs, including poliovirus, EV-A71, and coxsackievirus,
which takes place in the cytoplasm, relies heavily on the
function of cellular proteins. Numerous RBPs, which are
mostly nucleocytoplasmic shuttling proteins and localized
predominantly to the nucleus, are detained in the cytoplasm
during EV infection, and hijacked by EVs for support of viral
translation and viral RNA replication (Lloyd, 2015). For example,
EV-A71 infection causes redistribution of heterogeneous nuclear
ribonucleoprotein (hnRNP) A1 from the nucleus to the

cytoplasm, where it stimulates EV-A71 replication by facilitating
internal ribosome entry site-mediated viral translation (Lin J. Y.
et al., 2009; Tolbert et al., 2017). Most intriguingly, it was found
that CVB3 infection results in cytoplasmic mislocalization
and cleavage of TDP-43 via the action of CVB3-encoded
proteinases, leading to RNA-processing deficits (Fung et al.,
2015). Together, these findings suggest that EV infection shares
a strikingly similar molecular feature in RNA metabolism
with ALS.

Compromised Nucleocytoplasmic
Trafficking
Defects in nucleocytoplasmic shuttling have recently been
identified as a central theme of ALS research, contributing
significantly to the pathological hallmark of cytoplasmic
mislocalization of RBPs (Boeynaems et al., 2016). Although the
underlying mechanisms remain largely elusive, recent studies
demonstrate that the G4C2 hexanucleotide repeat expansion
mutation in the first intron of chromosome 9 open reading
frame 72 (C9orf72) plays an important role in the dysfunction of
nucleocytoplasmic transport (Freibaum et al., 2015; Jovicic et al.,
2015; Xiao et al., 2015; Zhang et al., 2015). Mutation in C9orf72
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is the most common genetic cause of ALS, responsible for
∼40% of FALS and 5%–10% of SALS (DeJesus-Hernandez
et al., 2011; Renton et al., 2011). It was discovered that
expression of G4C2 repeats impairs nucleocytoplasmic transport
at the levels of transcribed G4C2 repeat RNA and translated
dipeptide repeat proteins through interfering with the function
of Ran GTPase-activating protein 1 and by disrupting the
integrity of the nuclear pore complex (NPC; Freibaum et al.,
2015; Jovicic et al., 2015; Xiao et al., 2015; Zhang et al.,
2015). Likewise, compromised nucleocytoplasmic trafficking is
a common mechanism for EV-induced pathology (Yarbrough
et al., 2014). It was found that nucleoporin (Nup) proteins,
Nup62, Nup98 and Nup153, key components of the NPC, are
targeted by poliovirus-encoded proteinase 2A for degradation,
resulting in the blockage of nuclear import (Gustin and Sarnow,
2001; Park et al., 2008, 2015). Through this strategy, EVs
gain access to the otherwise predominantly nuclear proteins
necessary for effective viral replication and inhibit host immune
response by preventing nuclear transport of anti-viral signal
molecules (Yarbrough et al., 2014). A recent finding that
expression of CVB3 proteinase 2A alone is sufficient to
induce cytoplasmic accumulation of TDP-43 indicates a possible
overlapping mechanism linking EV to ALS (Fung et al.,
2015).

Neuroinflammation
The immune involvement in the development of ALS has
been widely studied, with most focused on the activation of
glial cells and astrocytes as such event would lead to the
up-regulation of multiple pro-inflammatory cytokines, such as
tumor necrosis factor-α, monocyte chemoattractant protein-1,
cyclooxygenase-2, and interleukins (Sekizawa et al., 1998; Almer
et al., 2001; Robertson et al., 2001). For viral infection, beyond
direct damage, EVs could also stimulate immune-mediated
injury by facilitating the production of pro-inflammatory
cytokines, leukocyte infiltration and astrogliosis (Lin et al.,
2003; Feuer et al., 2009; Rhoades et al., 2011; Ruller et al.,
2012). It was shown that chronic CVB3 infection induces
CNS microgliosis and astrogliosis in persistently infected mouse
brains (Feuer et al., 2009). The presence of immune cells
and cytokines within the CNS can worsen the virus-mediated
neuropathology and the potential bystander damage caused by
the subsequent T cell activation (Lin et al., 2009a). Furthermore,
neuroinflammation initiated by microglia and astrocytes can
trigger cell death by promoting the production of reactive oxygen
species. Altogether, current evidence supports the possibility
that chronic EV infection is able to induce late-onset CNS
dysfunction by inducing inflammatory reactions.

Defective Autophagy
In addition to RNA metabolism, ALS-causing mutations in
genes, such as SQSTM1/p62, OPTN, TBK1, VCP and UBQLN2,
are frequently related to protein quality control (Al-Chalabi
et al., 2017; Chia et al., 2018). Autophagy deficits and consequent
accumulation of misfolded proteins and large RNA clusters
(e.g., RNA granules) are implicated in ALS pathogenesis
(Cipolat Mis et al., 2016). Recent studies indicate that EVs

can hijack the autophagic pathway to their own advantage.
Autophagy is a dynamic process comprised of autophagosome
formation and degradation following fusion with lysosome,
called autophagic flux. Autophagic flux is inhibited upon
EV infection, due at least in part to EV proteinase-mediated
cleavage of synaptosomal-associated protein 29, a critical
component of the soluble N-ethylmaleimide-sensitive factor
activating protein receptor (SNARE) complex required for
autophagosome-lysosome fusion (Corona et al., in press;
Mohamud et al., in press). As a result of reduced autophagic
flux, autophagosomes accumulate and favor viral growth by
providing membrane scaffolds for viral assembly and replication
(Shi and Luo, 2012). Inhibition of autophagic flux also leads
to accumulation of protein aggregates, contributing to viral
pathogenesis. Apart from bulk degradation, autophagy can
selectively recycle misfolded proteins/damaged organelles,
a process mediated by autophagic receptors, including
sequestosome 1 (SQSTM1)/p62 and neighbor of BRCA1
(Nbr1), which target ubiquitinated proteins/organelles to
autophagosomes for destruction (Shaid et al., 2013). EV infection
leads to cleavage of SQSTM1 and/or Nbr1 via the proteolytic
activity of EV proteinases, resulting in impaired clearance of
protein aggregates (Shi et al., 2013, 2014). Collectively, current
evidence suggests a novel molecular mechanism employed by
EVs to promote viral replication and induce ALS-like viral
pathogenesis.

Prion-Like Mechanism
ALS is known to start focally and spread to other regions in
a neuroanatomic fashion (Grad et al., 2015). Recent evidence
suggests that both exosome-dependent and -independent
mechanisms are involved in the transmission of misfolded
proteins (Grad et al., 2014a,b). As non-enveloped viruses, EVs
are traditionally suggested to only be able to exit the infected
cell by causing it to rupture. However, it has become increasingly
clear that this group of viruses, including poliovirus, CVB3, and
EV-A71, can also spread between cells in a non-lytic fashion via
extracellular microvesicles (EMVs), such as exosomes (Bird et al.,
2014; Robinson et al., 2014; Chen et al., 2015; Too et al., 2016). In
doing so, EVs acquire a membrane shield against host immune
detection. It is thus conceivable that EV-induced secretion of
EMVs represents a mechanism for the transmission of misfolded
proteins (e.g., misfolded SOD1 and TDP-43) within the CNS
during chronic infection.

CONCLUSION

SALS is an idiopathic, fatal neurodegenerative disorder of the
motor neuron system, with no effective treatment to date. An EV
etiology of SALS has been proposed for decades; however, human
viral interrogation studies show conflicting results. Emerging
evidence has revealed that EV infection induces signature
molecular features of ALS. This evidence, along with the earlier
findings that EVs can establish a persistent infection in the CNS,
suggests that chronic and persistent EV infection might be a
causal/risk factor for ALS. Further investigations are needed
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to firmly establish the relationship, for example, by assessing
whether subclinical EV infection can promote early onset and
progression of ALS in normal mice or mice that are genetically
susceptible to ALS.

Recent progress has led to a greater recognition of the
significant clinical and genetic overlaps between ALS and
frontotemporal dementia (FTD). In fact, ∼13% of ALS patients
also have FTD (Brown and Al-Chalabi, 2017; Hardiman et al.,
2017; van Es et al., 2017). Mutations in the same set of genes,
including C9ORF72, TARDBP, FUS, TIA1 and SQSTM1/p62,
that cause ALS, are also linked to FTD (Gao et al., 2017). In
addition, ALS and FTD also share common neuropathological
hallmarks and disease mechanisms. It is therefore reasonable to
postulate that EV infection also plays a role in FTD. Finally,
identification of EV as a novel causal/risk factor for SALS
will offer a huge potential for future therapeutic interventions.
During EV infection, the use of ribavirin, a general anti-RNA
viral drug that is able to cross the BBB, long after the

end of the acute infection can greatly reduce viral-mediated
neuropathology (Ruller et al., 2012). Moreover, pleconaril, an
anti-picornavirus drug with demonstrated efficacy against many
EVs, including EV-D68 (Liu et al., 2015), has been shown
to cross the BBB and limit multiple species of EV infection
within the CNS (Schmidtke et al., 2009). Thus, it is anticipated
that anti-viral therapy offers new hope for the treatment
of ALS.
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