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A B S T R A C T

Microbial interactions are widespread and important processes that support the link between 
disease and microbial ecology. The gut microbiota is a major source of microbial stimuli that can 
have detrimental or beneficial effects on human health. It is also an endocrine organ that 
maintains energy homeostasis and host immunity. Obesity is a highly and increasingly prevalent 
metabolic disease and the leading cause of preventable death worldwide. An imbalance in the gut 
microbiome is associated with several diseases including obesity-related metabolic disorders. This 
review summarizes the complex association between the gut microbiome and obesity-associated 
metabolic diseases and validates the role and mechanisms of ecological dysregulation in the gut in 
obesity-associated metabolic disorders. Therapies that could potentially alleviate obesity- 
associated metabolic diseases by modulating the gut microbiota are discussed.

1. Introduction

Obesity is a globally prevalent condition that increases the risk of metabolic conditions such as type 2 diabetes, cardiovascular 
disease, and chronic kidney disease [1,2]. Its multifactorial etiology involves genetic predisposition, environmental influences, and 
lifestyle patterns, with precise pathophysiological pathways yet to be elucidated. Recent evidence underscores the significant role of 
the gut microbiota and its metabolites, such as short-chain fatty acids and bile acids, in obesity and metabolic diseases [3]. The gut 
microbiome, which comprises trillions of bacteria, is crucial for human homeostasis [4]. Bäckhed et al. [5] found a notable reduction in 
adiposity in germ-free mice compared to their conventional counterparts, with subsequent microbiota transplantation from conven
tional mice increasing fat content in germ-free subjects. These observations underscore the influence of the microbiome on obesity, 
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prompting further investigations into its exact contribution to this condition. However, the association between alterations in the 
microbiome and obesity remains unclear. Moreover, which microbes are beneficial or harmful in obesity is also unclear. Studies have 
explored the gut microbiota in obese versus lean individuals, noting differences in bacterial species such as those in the Firmicutes and 
Bacteroidetes phyla [6–9]. However, the results are inconsistent and their functional implications remain unclear [10]. Interventions 
such as dietary changes, probiotics, and prebiotics have the potential to modulate obesity outcomes; however, their efficacy and 
mechanisms of action are still under investigation. Gut microbes may influence obesity through mechanisms such as energy extraction 
from food, regulation of fat storage genes, and inflammation modulation [11,12]. Despite this progress, identifying specific microbes 
that protect against or contribute to obesity remains challenging [13,14]. This review provides a thorough examination of the 
mechanisms by which the gut microbiome modulates obesity. Additionally, we discuss specific gut microbes that exhibit protective 
effects in humans, both in relation to obesity and related metabolic conditions. We systematically searched PubMed, Web of Science, 
and Embase using keywords related to obesity-associated metabolic diseases and the gut microbiome. Duplicate entries were removed 
to ensure the accuracy of the analysis [15].

2. Gut microbiome

The human body contains a large number of microorganisms, most of which are found in the gastrointestinal tract [16]. The in
testine is a complex ecosystem with a microenvironment consisting of a monolayer of epithelial cells, a local immune system, and 
microorganisms. These three intestinal tract components interact to maintain a dynamic balance [17,18] (Fig. 1). The gut microbiome 
in the human intestine comprises more than 40 genera of commensal bacteria. The major microorganisms were Bacteroidetes and 
Firmicutes [19], with essential contributions from Proteobacteria and Actinobacteria [20]. Bacteroidetes are involved in many 
essential metabolic activities in the human colon and may help suppress inflammation, although there is some evidence suggesting that 
they also have the potential to promote inflammation [21]. Among these is Bacteroides fragilis, a strain that suppresses intestinal 
inflammation by secreting polysaccharides that encourage T cells to differentiate into regulatory T cells with anti-inflammatory 
properties [22,23]. Faecalibacterium prausnitzii breaks down dietary fibers in food and produces abundant short-chain fatty acids 
(SCFAs), which help reduce the inflammatory response in the intestine [24–26]. Akkermansia muciniphila has been highlighted for its 
role in preserving the intestinal mucus layer, protecting the epithelial cells, and dampening inflammation [27,28]. The Bacteroides 
vulgatus strain can secrete endotoxins that stimulate intestinal inflammatory responses [22,29]. Prevotella copri can damage intestinal 
mucosal epithelial cells and stimulate intestinal inflammatory response [30]. Escherichia coli can produce toxins and cause intestinal 
inflammation [31]. Many types of Firmicutes are beneficial, with Lactobacillus species being common probiotics [32], whereas only a 
small number are pathogenic. Some strains of Firmicutes can produce toxins, and their metabolic byproducts may lead to intestinal 
inflammation and other health issues. An example of a pathogenic Firmicutes strain is Clostridium difficile, a resistant bacterium that 

Fig. 1. The gut microenvironment.
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can cause gastrointestinal infections [33,34]. Many types of Proteobacteria are pathogenic, including E. and Helicobacter pylori [35]. 
Although Actinomycetes have been shown to have potential health benefits, such as aiding in the breakdown of complex carbohydrates 
and producing antibiotics, the precise relationship between Actinomycetes and diseases such as obesity and diabetes mellitus remains 
unclear. Some studies have suggested that alterations in the gut microbiota, including decreases in Actinomycetes abundance, may be 
associated with these conditions; however, further investigation is necessary to confirm and comprehensively elucidate these asso
ciations [36] (Table 1).

Emerging evidence suggests a robust association between the gut microbiome and the development of obesity, with individual 
microbiomes potentially exerting varying effects on obesity relative to overall gut microbial diversity. Walker et al. [37] reported no 
alteration in the Firmicutes/Bacteroidetes ratio with the onset of obesity, challenging the purported link between gut microbiome 
composition and obesity. Notably, the Verrucomicrobia phylum, especially Akkermansia muciniphila, which resides in the mucus layer, 
has been identified for its anti-obesity effects [38,39]. Plovier et al. [40] found that the administration of A. muciniphila in mice reduced 
the occurrence of obesity and related metabolic disorders. The bacterium reduced weight gain and fat mass from a high-fat diet while 
improving glucose intolerance and insulin sensitivity. Additionally, A. muciniphila engages with Toll-like receptor (TLR)-2, a member 
of the TLR family involved in microbial detection and metabolic regulation, to enhance gut barrier function and combat obesity [40]. 
Lactobacillus acidophilus has been shown to mitigate body weight, adiposity, inflammation, and insulin resistance in mice fed a high-fat 
diet by modulating the AMPK-SREBP-1c/PPARα pathway while also activating brown adipose tissue (BAT) and enhancing energy, 
glucose, and lipid metabolism [41,42]. Although some animal studies have confirmed that an inappropriate proportion of the gut 
microbiome is associated with obesity, few clinical studies have demonstrated that the gut microbiome causes obesity.

2.1. The gut Microbiome’s role in obesity-related metabolic disorders

2.1.1. Inflammation
Obesity is linked to persistent low-grade inflammation and is often associated with increased levels of the endotoxin lipopoly

saccharide (LPS) levels in the outer membrane of Gram-negative bacteria [43,44]. When these bacteria die, LPS enters the blood
stream, translocates across the intestinal mucosa, and triggers chronic inflammation, which contributes to obesity [45,46]. Elevated 
circulating endotoxin levels enhanced adipose tissue inflammation by promoting the secretion of pro-inflammatory cytokines [46,47] 
(Fig. 2, Table 2).

Bacterial LPS has limited benefits but produces high levels of endotoxic shock [48]. LPS is instrumental in fat accumulation [20], 
with gut receptors that modulate inflammation and metabolic dysregulation. Scheithauer et al. [49] observed that mice with reduced 
expression of the LPS receptor CD14 exhibited lower levels of inflammatory markers and fewer macrophages in fat stores. The in
testinal lining serves as a critical barrier against bacterial elements [50]. However, in the presence of obesity and increased levels of 
fatty acids, the intestinal epithelium may become disrupted, allowing the passage of LPS across the gut wall, leading to a moderate 
increase in LPS levels in the circulation [51–53].

TLR4 binds to LPS from Gram-negative bacteria and is crucial for LPS signaling in immune cells [50,54–56]. LPS activates the 
inflammatory response via the nuclear factor-kappa B pathway through TLR4, leading to metabolic disorders [46,57,58]. 
Clemente-Postigo et al. [59] found increased serum LPS and chylomicron levels in patients with morbid obesity after a high-fat diet, 
with postprandial LPS levels correlated with hypertriglyceridemia. González-Sarrías et al. [60] explored the effect of gut microbiota 
manipulation on plasma LPS-binding protein levels, which are indicative of endotoxemia, in obese individuals. Their analysis using 
16S rDNA sequencing revealed that fecal microbiota transplantation (FMT) could reshape the gut microbiota, potentially mitigating 
the risk of endotoxemia.

Table 1 
Species and functions of the gut microbiome.

Gut microbiome 
species

Function References

Bacteroidetes Mycobacterium avium: Basic metabolic activities, suppression of inflammation. 
Bacteroides fragilis Intestinal inflammation suppression, polysaccharide secretion, regulatory T cell differentiation. 
Faecalibacterium prausnitzii 
Dietary fiber breakdown, abundant SCFA production, reduction of inflammatory response. 
Akkermansia muciniphila 
Inhibition of intestinal inflammation, reduction of mucus layer spoilage, protection of intestinal epithelial cells. 
Potential for promoting inflammation. 
Bacteroides vulgatus 
Endotoxin secretion, stimulation of intestinal inflammatory response prevotella copri 
Damage to intestinal mucosal epithelial cells, stimulation of intestinal inflammatory response. 
Escherichia coli 
Toxin production, induction of intestinal inflammation

[21–31]

Firmicutes Beneficial bacteria, lactic acid bacteria, common probiotic. 
Clostridium difficile, Resistant bacterium, gastrointestinal infections.

[32–34]

Proteobacteria Includes many pathogenic bacteria, such as Escherichia coli and Helicobacter pylori [35]
Actinobacteria Health benefits, breakdown of complex carbohydrates, antibiotic production, unclear relationship with metabolic 

disease
[36]
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2.1.2. Browning of adipose tissue
The body contains three types of adipose tissue: white adipose tissue (WAT), beige adipose tissue, and BAT. WAT stores excess 

energy in triglycerides, which can lead to obesity [67]. BAT increases energy consumption and accelerates lipolysis by producing heat, 
thereby preventing excess body fat [67]. Beige adipose tissue, which is browned WAT, also helps avoid obesity [68]. The gut 
microbiome can influence the activation of BAT and browning of WAT, thereby affecting the development of obesity [69] (Table 2). 
Mestdagh et al. [70] observed increased BAT activity and higher energy expenditure in mice with a certain composition of the gut 
microbiota, resulting in lower body weight and improved glucose tolerance. Their study provided the first evidence that the gut 
microbiota affects the functioning of adipose tissue by increasing the production of BAT and interfering with lipolysis. 
Suárez-Zamorano et al. [71] found that depletion of the microbiota promoted browning of WAT and increased the expression of Ucp1, 
a marker of BAT. These findings support the conclusion that gut microbes hinder browning. They also found that mice treated with 
microbiota transplantation developed glucose intolerance, increased white fat weight, and decreased brown gene levels [71] (Table 2). 
Kong et al. [72] used pyrosequencing to examine the gut microbiota in morbidly obese subjects before and after Roux-en-Y gastric 
bypass and noted associations between microbial alterations and changes in gene expression in WAT.

2.1.3. Energy absorption and distribution
The gut microbiome plays a crucial role in energy absorption and distribution, significantly affecting body weight and metabolic 

health [114,115]. Obesity has been shown to cause alterations in the gut microbiome, including a reduction in bacterial diversity [86,
87]. Specifically, Rahat-Rozenbloom et al. [88] observed an increase in the Firmicutes/Bacteroidetes ratio in obese individuals. This 
observation was corroborated by Hills et al. [89] who noted that obese individuals had increased Firmicutes levels and decreased 

Fig. 2. Pathways through which the gut microbiome influences obesity via endotoxins, inflammation, energy balance, and adipose tis
sue regulation.

Table 2 
Mechanisms of obesity caused by the gut microbiome and treatment.

Mechanisms Treatments References

Endotoxin-induced chronic inflammation Dietary interventions: high dietary fiber, tea polyphenols [43–60,61,62–66]
Adipose tissue browning interference Probiotic supplementation [67–72,73–85]
microbiome imbalances Antibiotic application (β-lactams, macrolides and vancomycin) [86–91,92–94]
Gut microbiome-induced energy accumulation Metformin, acarbose [95,96,97–100]
Regulation of metabolic pathways Fecal microbiota transplantation [101–103,104–106,107,108,109]
Regulation of bile acid anabolism ​ [110,111–113]

K. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e37609

5

Bacteroidetes levels relative to lean individuals. Further experiments by Duca et al. [86] showed that transplanting a microbiota with a 
high Firmicutes/Bacteroidetes ratio from obese rats into germ-free mice could induce obesity. This suggests that Firmicutes may have a 
more efficient mechanism of extracting energy from the diet, thus enhancing calorie absorption and promoting weight gain [6,7,90,
91]. Additionally, such an alteration in the gut microbiome composition can suppress fasting-induced adipose factor (Fiaf). Fiaf 
normally helps regulate lipid metabolism by inhibiting lipoprotein lipase, an enzyme that promotes triglyceride accumulation in 
adipocytes [101]. When Fiaf is suppressed, lipoprotein lipase activity increases, leading to greater triglyceride storage in fat cells [5] 
(Table 2).

Moreover, gut microbial metabolites can enter the bloodstream through various mechanisms including absorption, enterohepatic 
circulation, and increased intestinal permeability. These metabolites further modulate energy absorption and distribution [102,103]. 
Certain components of the gut microbiome may inhibit Fiaf, thereby reducing triacylglycerol metabolism, increasing fat storage, and 
contributing to obesity [5]. They also process dietary polysaccharides, which leads to increased hepatic lipogenesis and fat cell tri
glyceride storage [5]. Another way by which the gut microbiota can exacerbate obesity is through the production of excess butyrate, 
which is a major energy source in the colon. Elevated butyrate levels increase energy accumulation, thereby contributing to weight 
gain [95]. In summary, the interplay between the gut microbiome, its metabolites, and energy distribution is complex but crucial for 
understanding and managing obesity. The gut microbiome plays a significant role in metabolic health and weight regulation by 
influencing energy absorption and fat storage.

2.1.4. Bile acids
Bile acids play a crucial role in metabolic and inflammatory processes. Alterations in bile acid metabolism affect lipid metabolism, 

energy homeostasis, and intestinal hormone production. The gut microbiome modulates bile acid synthesis and influences metabolic 
pathways through receptors such as the farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) [110,116]. Bile 
acids are known to increase the production of intestinal hormones, such as glucagon-like peptide-1, which enhances insulin secretion 
and improves glucose metabolism [117–119]. Bile acids affect BAT and immune reactions through TGR5 [116]. Additionally, 
increased intestinal bile acid levels and decreased fecal elimination have been observed in germ-free subjects. Zheng et al. [111] 
demonstrated a significant increase in the body weight of normal mice fed a diet supplemented with bile acids, and that the structure of 
the gut microbiome in these mice resembled that of obese mice. These findings suggest that the gut microbiome participates in the 
development of obesity by regulating bile acid metabolism (Table 2).

Moreover, clinical data increasingly suggest that the metabolically varied microbiota in the human gut may influence obesity 
through bile acid metabolism. Ryan et al. [112] found that dysregulation of the gut microbiome–host metabolic axis and bile-mediated 
signaling pathways may increase the risk of developing metabolic diseases. Allegretti et al. [113] explored the effect of FMT on 
metabolically healthy obese patients. These findings indicate lasting alterations in the gut microbiome and bile acid profiles following 
treatment with FMT from a lean donor, reinforcing the link between microbiota changes and obesity via bile acid pathways.

2.2. SCFAs

SCFAs such as acetate, propionate, and butyrate are produced by gut bacteria during the fermentation of dietary fibers. These 
metabolites play a crucial role in regulating glucose and lipid metabolism by stimulating insulin secretion and incretin hormones and 
enhancing glucose uptake in peripheral tissues [104–106]. SCFAs also influence the expression of genes involved in lipid metabolism 
and energy expenditure and contribute to the regulation of body weight and metabolic health [120]. Elevated SCFA production, which 
is often observed in obese individuals, potentially leads to increased energy harvesting and fat storage [88]. Furthermore, SCFAs 
increase the production of intestinal hormones, decrease inflammation by maintaining intestinal permeability, and prevent fat 
accumulation through the activation of G protein-coupled receptor 43 [121].

2.3. Amino acids and related metabolites

Gut bacteria generate various metabolites from amino acids, such as phenylacetylglutamine, indoxyl sulfate, and p-cresol sulfate, 
which are implicated in insulin resistance, inflammation, and oxidative stress [107,108]. These metabolites disrupt metabolic path
ways and contribute to obesity-related complications. For instance, tryptophan metabolites produced by the gut microbiota regulate 
the expression of miR-181 in WAT, affecting energy expenditure and glucose homeostasis [96]. An abnormal gut microbiota-miR-181 
axis is crucial for WAT inflammation, insulin resistance, and obesity development, and metabolites such as indole-3-carboxylic acid 
and indole sulfate can influence energy accumulation by regulating miR-181 expression in WAT. Gut microbiota-derived tryptamine 
and phenethylamine impair insulin sensitivity in metabolic syndrome [122] (Table 2).

2.4. Gut microbiome-based obesity treatments

2.4.1. Dietary interventions
Dietary fiber improves microbial diversity in the gut and maintains a balanced glucolipid metabolism. Zhao et al. [61] found that 

high dietary fiber causes an increase in beneficial bacteria. Their study showed that 8 weeks of resistant starch supplementation 
decreased abdominal fat, promoted weight loss, and improved insulin resistance in overweight individuals by modulating the gut 
microbiota [123]. Other studies have shown that high-fiber foods can increase the production of indole propionate in the gut, thereby 
promoting lipid metabolism and maintaining beta cell function [62]. Benítez-Páez et al. [63] observed that obesity may be alleviated 
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through caloric restriction and fiber supplementation, which is potentially linked to alterations in gut microbes and their metabolite 
production, such as SCFAs. Diets high in fat and animal protein and low in fiber are associated with reduced Bacteroidetes and 
increased Firmicutes [64]. Specifically, increased high-fat diet intake is associated with a reduction in Lactobacillus spp. and increased 
secretion of pro-inflammatory products. High-fat diets increase endotoxemia and inflammation, increase energy intake, and induce 
obesity [65]. Finally, polyphenols in tea have been found to regulate the gut microbiota in diabetic mice, reduce fasting blood glucose 
levels and mesenteric fat, and prevent damage to beta cells [66] (Table 2).

2.4.2. Probiotics
Probiotics are live microorganisms that ameliorate intestinal microbiota disorders, reduce mucosal permeability, decrease 

inflammation, and stimulate the growth and multiplication of beneficial intestinal bacteria upon entry into the intestines [73,74]. In 
clinical trials, probiotics and commensal bacteria (such as Lactobacillus gaseri, L. casei, L. rhamnosus, L. bulgaricus, Streptococcus ther
mophilus, Bifidobacterium breve, and B. longum) are beneficial for patients with obesity, mainly affecting body mass index (BMI) and fat 
mass. Some probiotics (e.g., L. plantarum) are helpful in reducing insulin resistance and cell adhesion molecule-1 levels, whereas 
synbiotics (e.g., L. rhamnosus and L. acidophilus) reduce plasma lipid levels [75–78].

In a meta-analysis of 15 randomized controlled trials, Borgeraas et al. [79] evaluated the effect of probiotics on overweight or obese 
subjects. Outcomes from these studies included body weight changes in 13 trials and changes in fat mass percentage in seven trials. The 
results of these studies indicated the efficacy of probiotics in obesity management. Musazadeh et al. [80] conducted a meta-analysis 
revealing that probiotics significantly reduced BMI, body weight, and waist circumference, with interventions exceeding 8 weeks 
showing pronounced weight loss in obese participants. There was a significant change in BMI in participants with concomitant 
metabolic syndrome and in those in whom the intervention was continued for more than 12 weeks. Therefore, the authors recom
mended probiotic supplementation as an effective intervention for obese patients [80].

Park et al. [81] identified only four randomized controlled trials in their meta-analysis that indicated a negligible effect of pro
biotics on body weight or BMI reduction. Suzumura et al. [82] reached a similar conclusion, noting minimal effects on waist 
circumference and no significant changes in body weight or BMI. These findings suggest that the limited number of studies and po
tential methodological limitations could hinder definitive conclusions. Consequently, further comprehensive randomized controlled 
trials are necessary to more precisely elucidate the metabolic effects of probiotics.

Everard et al. [83] demonstrated a reduction in Firmicutes and an increase Bacteroidetes secretion in genetically (ob/ob) or 
diet-induced obese and diabetic mice following probiotic administration. Probiotics improve glucose tolerance and reduce adipo
genesis, oxidative stress, and low-grade inflammation. Parnell et al. [84] showed that the combined effect of probiotics significantly 
altered the gut microbiome of obese and non-obese rats by increasing Bacteroidetes and decreasing the relative abundance of Fir
micutes. In addition, prebiotic intake significantly alters energy metabolism and reduces fat accumulation in rats. These results suggest 
that probiotics improve obesity and energy metabolism by modulating the gut microbiome. In a randomized, double-blind, place
bo-controlled clinical trial, Kassaian et al. [85] noted a marked increase in the Bacteroides fragilis to E. coli ratio and a decline in the 
Firmicutes to Bacteroidetes ratio following probiotic use. This implies that modulating gut microbial ratios using probiotics could be a 
viable strategy for obesity and metabolic disease management (Table 2).

2.4.3. Antibiotics
Antibiotic therapy is another feasible method of regulating the gut microbiome. A study establishing a mouse model simulating 

antibiotic use showed that treatment with beta-lactams or macrolides altered microbiota metabolism [92,93]. Murphy et al. [94] 
studied vancomycin’s impact on the microbiome of male C57BL/J6 mice on a high-fat diet and found significant reductions in Fir
micutes and Bacteroidetes, indicating antibiotics might influence the gut microbiome and obesity-related metabolic irregularities. 
However, it is important to note that antibiotics should only be used in specific situations and should not be considered a primary 
method for regulating the microbiome in individuals with metabolic disorders. It is crucial to consider the potential risks associated 
with the use of antibiotics and ensure safe handling and use of any specific antibiotics developed for this purpose in the future 
(Table 2).

2.4.4. Other pharmacological agents
Antidiabetic drug therapy has recently been shown to modulate the gut microbiota (Table 2). Metformin exerts hypoglycemic 

effects via the gut microbiome. Forslund et al. [97] in their meta-analysis involving 199 patients with type 2 diabetes and 544 healthy 
subjects found that metformin significantly altered the gut microbiome composition. Bauer et al. [98] showed that metformin modifies 
the microbiota, enhances glucagon-like peptide-1, and improves glucose regulation via sodium-glucose co-transporter protein-1 in the 
small intestine. Ejtahed et al. [99] conducted a randomized, double-blind clinical trial involving obese patients taking metformin in 
conjunction with a low-calorie diet. A significant increase in Ehrlichia/Shigella abundance in this group. In addition, acarbose 
administration led to a higher relative abundance of Lactobacillus and Bifidobacterium in the gut microbiota. These microbes are 
associated with improved intestinal health, reduced blood glucose and lipid levels, reduced inflammation, and enhanced metabolic 
well-being [100].

2.4.5. FMT
In FMT, the functional microbiota from healthy human feces is transplanted into the gastrointestinal tract of a recipient to establish 

a new gut microbiome. In one study, FMT improved insulin sensitivity and increased gut microbiome diversity in subjects with obesity 
and metabolic disorders [124]. Aron-Wisnewsky et al. [109] summarized the current data on the metabolic effects of FMT that improve 

K. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e37609

7

the metabolic status, particularly insulin sensitivity. These findings provide a rationale for the use of FMT in the treatment of obesity, 
metabolic syndrome, and diabetes [124]. However, few studies have been conducted on FMT, and its specific mechanism of action 
remains unclear and requires further in-depth analysis. Nevertheless, FMT is expected to be a useful therapeutic modality in certain 
conditions (Table 2).

3. Microbial adaptation and advanced characterization techniques

The gut microbes adapt to obesity-related metabolic disorders in several ways. To optimize nutrient utilization, these microbes 
make metabolic adjustments that allow them to process diverse substrates more efficiently. They also form protective biofilms that 
help them adhere to gut surfaces, provide a shield against harsh conditions, and influence the local environment. Additionally, these 
microorganisms dynamically modulate gene expression in response to changes in nutrient availability and host immune response. In 
the context of obesity, these adaptations can affect the balance of the microbial community, thereby affecting the host’s metabolic 
processes and contributing to inflammatory responses and insulin resistance.

Advancements in metagenomics and artificial intelligence (AI) have revolutionized our understanding of gut microbiota. Meta
genomics analysis involves collecting fecal samples, extracting DNA, and using high-throughput sequencing to generate detailed 
genomic data. Thesedata are then processed to identify the microbial species and predict their functional capabilities. AI enhances this 
analysis by applying machine-learning algorithms to detect patterns and correlations within complex data. AI models can predict 
health outcomes and personalize interventions based on an individual’s unique microbiota profile. In addition, AI aids in visualizing 
and interpreting data and reveals significant patterns and anomalies. By integrating metagenomics with AI, researchers can gain a 
deeper understanding of the gut microbiota and its impact on health and disease, leading to more precise diagnostics and tailored 
therapeutic strategies.

4. Future perspective

The evolving understanding of the role of the gut microbiome in obesity-related metabolic disorders has opened several promising 
avenues for research and therapeutic development. Personalized medicine is expected to benefit significantly from tailored treatments 
based on individual microbiome profiles. Future studies should focus on elucidating the specific mechanistic pathways through which 
microbial metabolites influence host metabolism.

Further clinical trials are required to investigate the efficacy and safety of probiotic and prebiotic therapies. Additionally, exploring 
microbiome-drug interactions and their impact on drug metabolism and effectiveness is crucial. Dietary interventions such as plant- 
based diets and intermittent fasting merit further examination to understand their influence on the gut microbiota. The identification 
of microbial biomarkers for early diagnosis and prognosis has the potential to transform patient management. Integrating microbiome 
research with omics technologies could offer a comprehensive view of host-microbe interactions. Finally, public health strategies that 
incorporate microbiome research can significantly enhance gut health and overall wellbeing.

5. Conclusion

Although the gut microbiome is diverse, certain microbiota may play a role in the development of obesity through various 
mechanisms. Increasing evidence supports the strong association between the gut microbiome and obesity. This review analyzes the 
role of the gut microbiome in obesity-related metabolic disorders, focusing on mechanisms such as chronic low-grade inflammation, 
adipose tissue browning, microbiome imbalances, energy absorption and distribution, bile acids, SCFAs, amino acids, and related 
metabolites. Moreover, we address microbial adaptation and advanced characterization techniques, offering new insights into gut 
microbiota dynamics. Correcting the gut microbiome has emerged as a promising approach for addressing obesity-induced metabolic 
disorders. Therapeutic interventions for these disorders involving the gut microbiome include dietary modifications, probiotic sup
plementation, antibiotics, other pharmacological agents, and FMT. Currently, the few clinical therapies available for the regulation of 
intestinal microbiota have a limited effect. Hence, there is an immediate need for additional research to elucidate the intricate link 
between the gut microbiome and obesity with the aim of identifying new strategies for modifying the gut microbiota to treat obesity.
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[60] A. González-Sarrías, M. Romo-Vaquero, R. García-Villalba, A. Cortés-Martín, M.V. Selma, J.C. Espín, The endotoxemia marker lipopolysaccharide-binding 

protein is reduced in overweight-obese subjects consuming pomegranate extract by modulating the gut microbiota: a randomized clinical trial, Mol. Nutr. Food 
Res. 62 (11) (2018) e1800160.

[61] L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (6380) (2018) 1151–1156.
[62] V.D. de Mello, J. Paananen, J. Lindström, et al., Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the 

Finnish Diabetes Prevention Study, Sci. Rep. 7 (2017) 46337.
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