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ABSTRACT

Time-series gene expression profiles are the pri-
mary source of information on complicated biolog-
ical processes; however, capturing dynamic regula-
tory events from such data is challenging. Herein,
we present a novel analytic tool, time-series miner
(TSMiner), that can construct time-specific regula-
tory networks from time-series expression profiles
using two groups of genes: (i) genes encoding tran-
scription factors (TFs) that are activated or repressed
at a specific time and (ii) genes associated with bio-
logical pathways showing significant mutual interac-
tions with these TFs. Compared with existing meth-
ods, TSMiner demonstrated superior sensitivity and
accuracy. Additionally, the application of TSMiner
to a time-course RNA-seq dataset associated with
mouse liver regeneration (LR) identified 389 tran-
scriptional activators and 49 transcriptional repres-
sors that were either activated or repressed across
the LR process. TSMiner also predicted 109 and 47
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways significantly interacting with the transcrip-
tional activators and repressors, respectively. These
findings revealed the temporal dynamics of multi-
ple critical LR-related biological processes, includ-
ing cell proliferation, metabolism and the immune
response. The series of evaluations and experi-
ments demonstrated that TSMiner provides highly

reliable predictions and increases the understanding
of rapidly accumulating time-series omics data.

INTRODUCTION

Biological processes are often dynamic, and time-series ex-
pression profiles are the most abundant sources of infor-
mation for such dynamic activity (1). Capturing underly-
ing regulatory mechanisms from time-series gene expression
data can help broaden our understanding of complex bio-
logical processes, including the cell cycle, stem cell differen-
tiation and disease progression. Clustering methods (2–5)
have been extensively applied to time-series data for mod-
ule detection. Genes included in the same module likely
share common regulators or participate in similar biological
pathways; hence, clustering is often accompanied by enrich-
ment analysis to identify the regulators or pathways signif-
icantly associated with each gene module. However, clus-
tering methods cannot evaluate the temporal dynamics of
regulators or pathways.

To overcome this limitation, Ernst et al. (6) developed
Dynamic Regulatory Events Miner (DREM), which is ca-
pable of training a time-series expression matrix into a
tree-structure model comprising multiple bifurcation points
when two or more gene sets abruptly diverge from the
same expression level. Gene sets divided from a bifurca-
tion point are speculated to be derived from different reg-
ulatory events. Thus, TSMiner further predicts the tran-
scription factors (TFs) involved in regulating each subset of
genes. Multiple methods have been subsequently developed
to expand the functions of DREM. For example, interactive
DREM (iDREM) (7) provides support for additional data
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types (e.g. miRNA expression, proteomics, epigenomics
and single-cell RNA-seq data). Additionally, Signalling and
Dynamic Regulatory Events Miner (SDREM) (8) links the
TFs predicted by DREM to a cascaded network. Although
iDREM and SDREM provide additional capabilities, they
follow the core algorithms of DREM, which remains the
only method for capturing time-specific regulators from
time-series data to date.

However, DREM and its extended methods have three
limitations. First, DREM uses a version of the Baum–
Welch algorithm to train the parameters of tree-structure
models. The Baum–Welch training algorithm seeks local
maxima that are highly dependent on initial parameters;
however, DREM lacks an effective parameter initialization
method, limiting the accuracy and robustness of the result-
ing model. Second, DREM uses a hypergeometric test to
identify TFs whose target genes (TGs) are significantly en-
riched in subpaths derived from a specific bifurcation point;
however, this method is limited in its ability to determine
when these TFs exert their influence on the targets. Fi-
nally, SDREM can combine the predicted TFs into a net-
work covering the entire time-series process but cannot dis-
tinguish subnetworks occurring in specific periods. There-
fore, methods to construct time-specific gene regulatory net-
works from time-series expression data are still required.

To address these issues, we present a novel computational
framework called the time-series miner (TSMiner) that in-
tegrates three types of input files [(i) a time-series expres-
sion matrix, (ii) TF–TG interaction information and (iii)
gene sets of biological pathways] and constructs two TF–
pathway interaction networks (one activated and one re-
pressed) for each time point. TSMiner presents three key
innovations to address the limitations of DREM. First,
TSMiner uses a novel expression characteristic called the
‘bifurcation pattern’ to infer initial parameters for the
Baum–Welch algorithm. A bifurcation pattern represents
two groups of genes diverging from the same expression
level at a given time point; for subsequent time points,
they include activities where one group of genes is up-
regulated and the other is downregulated or vice versa.
Compared with the bifurcation points used by DREM,
those used by TSMiner consider expression information
from more time points and provide better initial parameters
for the Baum–Welch algorithm, allowing improved train-
ing from time-series data to generate a better tree-structure
model. Second, in addition to using the hypergeometric
test to identify significantly enriched TFs for each sub-
path, TSMiner applies a permutation test to determine TF
activation/repression time points. Third, TSMiner can pre-
dict pathways showing significant mutual interactions with
the TFs activated/repressed at a specific time to construct
time-specific TF–pathway interaction networks. These net-
works provide not only predictions of dynamic TF pathway
regulatory events but also insight into new TF–pathway in-
teractions.

To evaluate the core functions of TSMiner, TF and path-
way prediction, we downloaded an RNA-seq dataset asso-
ciated with liver regeneration (LR) in mice following partial
hepatectomy (PH) (9) and collected 113 TFs and 58 Ky-
oto Encyclopedia of Genes and Genomes (KEGG) path-

ways involved in LR by text mining and manual curation.
By applying TSMiner, DREM (v. 2.0) and four widely used
clustering tools for LR RNA-seq data, we demonstrated
the highest sensitivity and accuracy of TSMiner in detect-
ing known LR-associated TFs and pathways. Furthermore,
TSMiner promoted a deeper understanding of LR by dis-
covering a novel cascade of immune-regulatory pathways
activated during the late stage of LR, followed by experi-
mental validation. These results demonstrated the efficacy
of TSMiner for supporting the deep mining of rapidly ac-
cumulating time-series omics datasets.

MATERIALS AND METHODS

Workflow of the analytical framework

TSMiner accepts the following three types of input
data: (i) time-series expression data; (ii) TF–gene inter-
action data (from chromatin immunoprecipitation exper-
iments or bioinformatics prediction) and (iii) pathway
gene sets from the KEGG (https://www.genome.jp/kegg/
pathway.html) or Reactome (https://reactome.org/) path-
way database. TSMiner has modules with the following four
key functions: (i) dividing a time-series expression matrix
based on bifurcation patterns; (ii) predicting TFs undergo-
ing time-specific activation/repression; (iii) expanding the
time-specific TFs to upstream or downstream pathways and
(iv) interactively visualizing the results (Figure 1).

Dividing a time-series expression matrix according to bi-
furcation patterns. Given a time-series expression matrix
M = (G, T, v), where G represents a set of genes, T =
{t1, t2, t3, t4} represents an ordered set of continuous time
points, and v : G × T represents the expression-value ma-
trix, we developed an expression pattern classifier capable
of searching a complete set of bifurcation patterns and al-
lowing the division of the expression matrix, M, into two
submatrices. Using the division of M at time t1 as an ex-
ample (Supplementary Figure S1), we first calculated the
fold changes of all genes between t1 and t2 and divided the
genes into the following three classes accordingly: upregu-
lated, downregulated and unchanged. We then compared
the expression values of any two genes, g1 and g2, coming
from two different classes at time points t2, t3 and t4, generat-
ing a three-dimensional vector, nc (for j ∈ {t2, t3, t4}, when
v1, j > v2, j , nc j = 1; otherwise, nc j = 0). Notably, we en-
sured that the first element of nc was zero by exchanging
the order of g1 and g2. Thus, nc had four possible values:
(0, 0, 0), (0, 0, 1), (0, 1, 0) and (0, 1, 1). Each possible value
of nc was defined as one bifurcation pattern of M starting
at time t1. Based on each bifurcation pattern, we divided the
gene set G into two subsets based on the likelihood ratio test
(see Section 1.1 in the Supplementary Methods).

To train the time-series expression matrix, M, into a tree-
structure model comprising an optimal set of bifurcation
patterns, TSMiner first models M into a single chain of
Gaussian distributions based on an input–output hidden
Markov model (6,10). This chain is considered the first path
and is repeatedly divided into a tree structure in four steps:
(i) assign all genes in Mto the current paths using the Viterbi
algorithm (11); (ii) divide each path in the current model

https://www.genome.jp/kegg/pathway.html
https://reactome.org/


PAGE 3 OF 11 Nucleic Acids Research, 2021, Vol. 49, No. 18 e108

Figure 1. Overview of the TSMiner workflow. TSMiner accepts time-series expression profiles, TF–TG interaction data and pathway gene sets. The time-
series gene expression matrix is first repeatedly divided to generate a tree-structure model comprising multiple bifurcation patterns, followed by identification
of activated or repressed TFs with targets that are significantly enriched in an expression pattern and significantly upregulated/downregulated at a specific
time. Time-specific TFs are then used to infer significantly associated biological pathways. TSMiner enables visualization of the results, including tables of
the TFs/pathways activated or repressed at different time points, network maps showing TF–pathway interactions and heat maps showing TF and pathway
gene expression levels.

based on a complete set of bifurcation patterns, calculate
the initial parameters for each division and train the param-
eters by the Baum–Welch algorithm; (iii) update the cur-
rent model to one that can achieve the best likelihood score
and (iv) repeat steps 1–3 until the likelihood score converges
(see Supplementary Figure S2 and Section 1.2 in the Sup-
plementary Methods).

Predicting time-specific TFs. In the final tree-structure
model, we first used the Viterbi algorithm to assign all genes
in M to the most likely subpaths, followed by applying the
hypergeometric test to identify TFs significantly regulating
each of the subpaths (Supplementary Figure S3). The P-
values were corrected for multiple testing using Benjamini–
Hochberg (BH) correction. We considered that a TF, f , sig-
nificantly regulating a subpath may exert its influence on
the targets at any time point from the bifurcation point to
the last time point. Therefore, we calculated the activation
scores of f for each time point in the subpath according to
the expression changes of its targets. The significance of the
activation score was estimated using a permutation test, the
P-values from which were corrected by BH correction. Fi-
nally, the TF f was assigned to the time points upon receiv-
ing significant permutation test P-values and subsequently
classified as activated or repressed based on the average fold
change of its targets. Notably, TSMiner can distinguish pos-
itively and negatively correlated interactions in TF–TG in-
teraction data. A TF showing a positive correlation with
its targets is identified as activated/repressed when its tar-

gets are significantly upregulated/downregulated, whereas
the opposite is true for negative correlation.

Expanding time-specific TFs to upstream or downstream
pathways. Assuming that TF t f1 was identified as signifi-
cantly activating four target genes, TG = {g1, g2, g3, g4}, at
time point t0, given a pathway comprising five genes, P1 =
{g1, g2, g6, g7, g8}, we aimed to verify whether P1 was sig-
nificantly correlated with t f1 and significantly upregulated
at time point t0 along with the activation of t f1 (Supple-
mentary Figure S4). We first divided P1 into two parts: one
containing overlapping genes with TG ( PG1 = {g1, g2})
and another containing the other genes in P1 ( PG2 =
{g6, g7, g8}). We then built two TF–TG regulatory pairs us-
ing t f1 and the genes in PG1 (t f1-g1 and t f1-g2). Using
these two TF–TG pairs and genes in PG2, we built six TF–
TG–PG triple-gene blocks (t f1-g1-g6, t f1-g1-g7, t f1-g1-g8,
t f1-g2-g6, t f1-g2-g7 and t f1-g2-g8). Wei et al. (12) developed
the mutual interaction measure (MIM), a valuable scor-
ing method for evaluating triple-gene mutual interactions.
Therefore, we calculated the MIM for each triple-gene block
and then used a permutation procedure to determine the
triple-gene blocks with significant MIMs (see Section 1.5 in
the Supplementary Methods for details). A significant TF–
TG–PG gene block indicates that the TG is directly regu-
lated by the TF, whereas the PG is indirectly correlated with
the TF through the TG.

As shown in Supplementary Figure S4, (t f1 − g1 − g5)
and (t f1 − g2 − g7) were identified as significant triple-gene
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blocks, indicating that g5 and g7 were indirectly correlated
with t f1 through g1 and g2, respectively. Because gene sets
PG1 = {g1, g2} and PG2 = {g5, g7} included genes directly
and indirectly interacting with t f1, respectively, we con-
sidered the number of genes present in the union of PG1
and PG2 to be the interaction score between t f1 and pw1
(S = 4). Additionally, we calculated the interaction proba-
bility between t f1 and pw1 as their interaction score divided
by the total number of genes involved in pw1 ( S/5 = 0.8).
We considered pw1 to be significantly correlated with t f1
when both the interaction score and probability were higher
than the user-defined thresholds. The default thresholds for
the interaction score and probability are 50 and 50%, re-
spectively. For a pathway passing the two abovementioned
cut-offs, we employed a permutation test to verify whether
the genes involved in the pathway showed significant upreg-
ulation (downregulation) at the time point when their inter-
acting TF was significantly activated (repressed).

Interactive visualization of the results. TSMiner provides
two lists for each time point to display activated and re-
pressed TFs. Users can select one or more items in a TF list
and predict significantly associated pathways. The resulting
pathways are then displayed in a list, allowing users to se-
lect one or more items for generating heat maps or network
maps (see Supplementary Figure S5 and Section 1.6 in the
Supplementary Methods).

Data collection and preprocessing

We downloaded an RNA-seq dataset associated with LR
in mice following PH from the Gene Expression Omnibus
(record: GSE95135) (9). Liver samples were collected at 12
time points post-PH along with a negative control group.
Because several adjacent time points had intervals that were
too small, we used only the samples profiled at 10 of the
12 time points (0, 1, 4, 10, 20, 36, 48, 72, 168 h and 4
weeks). Among the initial 37 991 genes profiled, we used
only 22 707 protein-coding genes and filtered those with
more than one missing value or those in which all the ab-
solute fold changes between adjacent time points were < 1
(∀ t > 0, |log2vt − log2vt−1| < 1), resulting in 6253 genes.

We then constructed TF–TG interaction data for inte-
gration with the LR RNA-seq data. We collected 133 599
TF–TG interactions for 1222 TFs that might function in
the mouse liver according to CellNet (13), including 119,461
positively correlated interactions and 14 138 negatively cor-
related interactions. We further excluded TFs that were not
detected in the target RNA-seq data, consequently leaving
1027 TFs interacting with 13 578 and 5957 TGs through
87,386 positively and 13 395 negatively correlated interac-
tions, respectively (Supplementary Table S1).

Searching known LR-associated TFs

Among the 1027 TFs that remained after preprocessing, we
searched for those involved in LR by text mining. First,
we used BANNER (14) to search 31 624 408 abstracts in
MEDLINE with the keywords ‘liver regeneration’ and ‘par-
tial hepatectomy’, which provided 186 274 sentences associ-
ated with LR. We found that 163 of the 1027 TFs appeared

in these sentences and ultimately selected 113 TFs report-
edly associated with LR through manual curation. The gene
symbol, related text and PubMed ID of the 113 known LR-
associated TFs are described in Supplementary Table S1.

Searching known LR-associated KEGG pathways

We first constructed a background pathway set containing
499 KEGG pathways downloaded from the NCBI BioSys-
tems Database (https://www.ncbi.nlm.nih.gov/biosystems).
In the background pathway set, we searched for the path-
ways associated with LR in three steps: (i) we obtained
186 274 sentences using BANNER (14) to search abstracts
in MEDLINE using the keywords ‘liver regeneration’ and
‘partial hepatectomy’; (ii) we identified 100 pathways that
were mentioned in those sentences and included in the back-
ground pathway set and (iii) we selected 58 KEGG path-
ways reportedly associated with LR through manual cu-
ration. The name, related texts and PMIDs of the 58 LR-
associated pathways are shown in Supplementary Table S2.

Mice experiments

We conducted a series of experiments to validate the im-
mune cascade activated during the late stage of mouse LR
predicted by TSMiner. First, we employed flow cytome-
try experiments to study the number of leukocytes, neu-
trophils, macrophages and T cells in mouse liver post-PH.
Second, we detected the levels of several chemokines that
recruit neutrophils, macrophages and T cells, respectively.
Third, we performed reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) to evaluate the tran-
scription levels of multiple immunity-related TFs and path-
ways during LR. The detailed experimental procedures are
provided in the Supplementary Methods. All animal experi-
ments were approved by the Institutional Animal Care and
Use Committee of the Beijing Institute of Lifeomics (ID:
IACUC-DWZX-2020–572).

RESULTS

Evaluating TF prediction ability

To evaluate TSMiner, we downloaded an RNA-seq dataset
associated with mouse LR from the Gene Expression Om-
nibus (record: GSE95135) (9). We then constructed TF–TG
interaction data containing 1027 TFs that might function in
the mouse liver according to CellNet (13). Among the 1027
TFs, we further identified 113 TFs reportedly involved in
LR by text mining and manual curation. The preprocess-
ing of the RNA-seq data and TF–TG interaction data as
well as the collection of known LR-associated TFs are de-
scribed in the Materials and Methods. Because TSMiner
and DREM are the only tools capable of detecting time-
specific TFs from time-series expression profiles, we used
them to integrate the LR RNA-seq data and TF–TG inter-
action data, respectively, and compared their performances
in detecting known LR-associated TFs. Notably, DREM
cannot distinguish between positively and negatively cor-
related TF–TG regulatory interactions; thus, we used only
those that were positively correlated in the TF–TG interac-
tion data, which accounted for 90% of the total interactions.

https://www.ncbi.nlm.nih.gov/biosystems
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Moreover, to compare the two methods using multiple pa-
rameters, we set the ‘Maximum number of subpaths out of
a bifurcation point’ to four values (3, 4, 5 and unlimited),
which generated four tree-structure models from TSMiner
and DREM (Supplementary Figures S6 and S7).

In each of the resulting models, we searched the min-
imum enrichment P-value (BH corrected) for each TF
among all the subpaths (Supplementary Table S3) and
found that TSMiner and DREM obtained lower P-values
for 66 and 41 known LR-associated TFs, respectively, with
the remaining six displaying equal P-values (Supplemen-
tary Figure S8). We then counted the number of known
LR-associated TFs identified as being significant (Supple-
mentary Figure S9). Using P-value <0.01 as the significance
cut-off, DREM identified 60, 60, 64 and 62 known TFs un-
der different parameter settings, with 48 overlapping TFs.
In contrast, TSMiner identified 70, 64, 67 and 66 known
TFs under different parameter settings, with 57 overlap-
ping TFs. At P-value < 0.05, DREM identified 79, 75, 74
and 82 known TFs (66 overlaps), and TSMiner identified
80, 85, 81 and 82 known TFs (71 overlaps). These find-
ings indicated that TSMiner identified more known LR-
associated TFs than DREM (Figure 2A). At P-value cut-
offs of 0.01 and 0.05, TSMiner uniquely identified 10 and
9 known TFs, respectively, whereas DREM provided only
1 and 4 unique results, respectively (Figure 2B). Addition-
ally, TSMiner maintained superior sensitivity for detect-
ing known LR-associated TFs at a P-value cut-off rang-
ing from 0 to 1 (Supplementary Figure S10). Furthermore,
TSMiner showed better robustness than DREM because
the overlapping TFs accounted for a higher proportion of
the TFs identified under different parameters (Figure 2C).
These results suggested that the TSMiner-specific applica-
tion of a bifurcation pattern promoted the training of time-
series data into better tree-structure models than those of
DREM.

We then evaluated the accuracy of TSMiner and DREM
in determining the TF activation time. Taub (15) reported
that in the post-PH mouse liver, the rate of DNA synthesis
in hepatocytes increased after ∼12 h, peaked at ∼36–40 h
and then continuously decreased until 168 h, when the liver
mass was restored. This finding suggests the possibility of
extracting two time periods, namely, cell proliferation (10–
36 h post-PH) and growth suppression (72–168 h post-PH),
from the LR RNA-seq data. Additionally, Kurinna et al.
(16) reported 27 and 10 TFs activated in the cell prolifer-
ation and growth suppression periods of LR, respectively
(Figure 2D). Therefore, we expected TSMiner and DREM
to detect the 27 TFs associated with cell proliferation at 10,
24 or 36 h post-PH and to detect the 10 growth suppres-
sors at 72 or 168 h post-PH. Figures 2E and 2F present the
receiver operating characteristic (ROC) curves of TSMiner
and DREM for selectively identifying or excluding TFs as-
sociated with cell proliferation or growth suppression at
their designated periods. We found that TSMiner showed
not only a larger area under the ROC curve (AUC) but also
a smaller deviation between different parameters. These re-
sults showed that TSMiner not only outperformed DREM
in detecting true-positive TFs but also in determining their
activation time points.

Evaluating pathway prediction

Although some clustering methods can segregate genes into
subsets and identify their significantly enriched pathways,
only TSMiner assesses the temporal dynamics of pathways
from time-series data. Here, we collected 58 KEGG path-
ways involved in LR (see Materials and Methods) and com-
pared the sensitivity and accuracy of TSMiner with those of
clustering methods in detecting known LR-associated path-
ways without considering their temporal dynamics.

Using each resulting model generated by TSMiner (Sup-
plementary Figure S6), we predicted the pathways activated
or repressed at different time points from a background
pathway set containing 499 KEGG pathways. Supplemen-
tary Table S4 shows the minimum P-value for each pathway
among all the time points. We then applied four widely used
clustering-analysis packages [hclust (R package for hierar-
chical clustering), k-means (R package for k-means cluster-
ing), STEM (JAR file for clustering short time-series expres-
sion data) (17) and WGCNA (R package for identifying co-
expressed gene modules) (18)] to the RNA-seq data. We per-
formed enrichment analysis to identify significant pathways
(see Section 3 in the Supplementary Methods). The mini-
mum enrichment P-values for each of the 499 background
pathways are shown in Supplementary Table S4. Compared
with the clustering methods, we found that TSMiner dis-
played consistently and significantly higher sensitivity in de-
tecting known LR-associated pathways at P-value thresh-
olds ranging from 0 to 0.05 (Figure 2G). We also examined
pathways that were uniquely identified by one method and
not detected by the others, finding that TSMiner uniquely
identified 20 and 5 known LR-associated pathways at P-
value cut-offs of 0.01 and 0.05, respectively, whereas the
other methods provided almost no unique results (Figure
2H). These results indicated that TSMiner exhibited signifi-
cantly improved sensitivity in pathway discovery relative to
the tested clustering methods.

In many cases, high sensitivity is accompanied by a high
false-positive rate. Therefore, we generated a false-positive
pathway set that was unlikely to participate in LR and eval-
uated the ability of TSMiner to exclude false-positive re-
sults. Pathways are often interconnected and act as reg-
ulatory cascades, with overlapping genes being a feature
of interconnected pathways. Therefore, we searched all the
pathways either directly or indirectly associated with the 58
known LR-associated pathways in four steps: (i) we built a
positive-pathway set containing the 58 LR-associated path-
ways; (ii) we searched pathways in the parent set with at least
one gene overlapping with the current positive-pathway set;
(iii) we inserted the pathways identified in step 2 into the
positive-pathway set and (iv) we repeated steps 2 and 3
until the positive-pathway set converged. After processing,
the positive-pathway set contained 421 pathways possibly
involved in LR. After excluding these pathways from the
parent set, the remaining 78 pathways in the parent set
were highly unlikely to participate in LR. We then gener-
ated ROC curves for TSMiner and the clustering methods
depending on their ability to detect the 58 LR-associated
pathways and exclude the 78 negative pathways, finding
that TSMiner showed a significantly higher AUC than the
clustering methods (Figure 2I). These results indicated that
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Figure 2. Comparison of TSMiner and DREM for detecting known LR-associated TFs and pathways. (A) Box plots for the known LR-associated TFs
identified by DREM and TSMiner under different parameters at P-value cut-offs of 0.01 and 0.05, respectively. (B) Number of known LR-associated TFs
uniquely identified by TSMiner or DREM and undetected by the other at P-value cut-offs of 0.01 (turquoise cubes) and 0.05 (pink cubes). (C) Proportion
of overlapping TFs among the TFs identified from different parameters using P-value cut-offs of 0.01 and 0.05. (D) The 27 TFs known to regulate cell
proliferation 10 to 36 h post-PH and the 10 growth suppressors known to function from 72 to 168 h post-PH. (E) ROC curves of TSMiner and DREM
assessing their ability to identify TFs associated with cell proliferation and excluding those associated with growth suppression from 10 to 36 h post-
PH. The curve width represents the standard deviation of multiple parameter settings. (F) ROC curves of TSMiner and DREM assessing their ability to
identify TFs associated with growth suppression and excluding those associated with cell proliferation from 48 to 168 h post-PH. (G) Number of known
LR-associated pathways identified by TSMiner and four clustering methods at a P-value cut-off ranging from 0 to 0.05. The curve width (for TSMiner)
represents the standard deviation of multiple parameter settings. (H) Number of known LR-associated pathways uniquely identified by one method and
undetected by the others at P-value cut-offs of 0.01 (turquoise cubes) and 0.05 (pink cubes). (I) ROC curves of TSMiner and clustering methods assessing
their ability to identify known LR-associated pathways and excluding those highly unlikely to participate in LR.

TSMiner maintained high sensitivity while also effectively
excluding false positives.

Constructing TF–pathway interaction networks across LR

After comparing TSMiner with various state-of-the-art
methods, we evaluated whether TSMiner could detect im-
portant regulators and pathways in LR and accurately de-
termine their activation/repression time points. Among the
resulting models obtained from different parameters, we se-
lected the model with the parameter ‘Maximum number of
subpaths out of a bifurcation point’ set as 3 (Supplemen-
tary Figure S6A), which performed the best in detecting

both known TFs and pathways in LR at a P-value cut-off
of 0.01 (Supplementary Figures S9B and S11A). Because
TSMiner can distinguish between positively and negatively
correlated TF–TG regulatory interactions, we evaluated the
results obtained from the positive and negative interactions
separately.

Using positively and negatively correlated TF–TG inter-
actions, we obtained 389 transcriptional activators and 49
transcriptional repressors that were either activated or re-
pressed at different time points (Supplementary Table S5).
The activators were mostly repressed in the early and late
periods (1–4 h and 72 h to 4 weeks post-PH) and activated
in the middle period (10, 20, 36 and 48 h post-PH), whereas
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the repressors showed exactly opposite temporal character-
istics (Supplementary Figures S12A and B). These findings
indicated that the activators and repressors had synergis-
tic effects on their TGs because gene upregulation can re-
sult from both activation of their positive regulators and re-
pression of their negative regulators and vice versa. We also
predicted 109 and 47 KEGG pathways that showed signifi-
cant mutual interactions with the activators and repressors,
respectively, and were significantly activated or repressed
during LR (Supplementary Tables S6 and S7). The path-
ways interacting with the activators and repressors showed
a similar repression–activation–repression trend during LR
(Supplementary Figure S12C and D) that resembled the
temporal characteristics of the activators and differed from
those of the repressors. This finding was consistent with the
liver possibly shutting down multiple biological processes to
preserve cell survival following PH, subsequently reactivat-
ing them following liver tissue regeneration and preventing
their activation after liver mass restoration (19,20).

The resulting pathways were classified into multiple
classes according to the KEGG Orthology, including
metabolism, genetic information processing, cellular pro-
cesses and organismal systems. In the present study, we
focused on the temporal dynamics of the pathways as-
sociated with metabolism, cell proliferation and the im-
mune system. First, we found that all three types of path-
ways showed a similar repression–activation–repression
trend during LR (Figures 3A and B, Supplementary Fig-
ures S13A and B). Second, all the pathways interact-
ing with the repressors were included in those interact-
ing with the activators, which may be due to the lim-
ited number of negative TF–TG interactions. Third, the
genes involved in these pathways tended to show common
upregulation/downregulation with the activators interact-
ing with them at the predicted activation/repression time
points (heat maps in Figure 3C) but displayed opposite ex-
pression changes with the repressors interacting with them
(heat maps in Supplementary Figure S13C). These findings
were consistent with the positive and negative regulatory ef-
fects of the two types of TFs in their interacting pathways,
indicating the reliability of the predictions that we obtained
from both the positive and negative TF–TG interactions.

We then explored the most representative pathways as-
sociated with metabolism, cell proliferation and the im-
mune system (Figure 3C and Supplementary Figure S13C).
First, numerous metabolic pathways, including energy
metabolism (e.g., oxidative phosphorylation), amino acid
metabolism (e.g. arginine and proline metabolism), carbo-
hydrate metabolism (e.g. glycolysis/gluconeogenesis), lipid
metabolism (e.g. steroid hormone biosynthesis) and nu-
cleotide metabolism (e.g. purine metabolism and pyrim-
idine metabolism), were suppressed from 1 to 4 h post-
PH and reactivated after 10 h. These findings were con-
sistent with disrupted metabolism preceding hepatocellu-
lar proliferation and ultimately being resolved with liver
restoration (20). Second, pathways associated with hepato-
cellular proliferation are divided into three classes: (i) ge-
netic information processing (e.g. DNA replication and mis-
match repair), (ii) cell growth (e.g. cell cycle) and (iii) cell
death (e.g. p53 signalling pathway and apoptosis). We found
that the genetic information processing pathways were sup-

pressed from 1 to 4 h post-PH, which may be due to the dis-
ruption of nucleotide metabolism. Then, genetic informa-
tion processing and cell growth were both reactivated dur-
ing 10 to 36 h post-PH, consistent with the rate of DNA
synthesis in mouse hepatocytes peaking at ∼36 h post-PH
(15). The subsequent level of genetic information process-
ing began to decrease at 72 h post-PH, but that of cell
growth decreased later, at 168 h. Third, immunity-related
pathways were activated across the entire LR process (Fig-
ure 3A), which included known mechanisms, such as acti-
vation of the IL-17 signalling pathway, Toll-like receptor
signalling pathway, NOD-like receptor signalling pathway
and the downstream MAPK signalling pathway during the
priming phase of LR (21–23). However, TSMiner also pro-
vided novel findings, including a cascade of immune path-
ways activated from 36 to 168 h post-PH. Finally, the ex-
pression of all three types of pathways was restored to nor-
mal levels following the restoration of liver mass at 4 weeks
post-PH.

Immune cascade during late-stage LR

Apoptosis and apoptotic cell clearance, which may regu-
late tissue homeostasis, are involved in LR (24,25); however,
the detailed immune responses and their activation time in
LR remain elusive. In this study, we identified significant
activation of nine immunity-related pathways in the late
stage of LR: two pathways (i.e. p53 signalling pathway and
apoptosis) were activated at 36 h post-PH; five pathways
(i.e. chemokine signalling pathway, leukocyte transendothe-
lial migration, Fc gamma R-mediated phagocytosis, endo-
cytosis and phagosome) were activated at 48 h post-PH; and
two pathways (i.e. cell adhesion molecule and Th1 and Th2
cell differentiation) were activated at 168 h post-PH.

These pathways were closely interrelated and composed
a cascade process involving phagocytes and T cells (Fig-
ure 4), which might provide important insights into the
immune responses in LR. At 36 h post-PH, the p53 sig-
nalling pathway and apoptosis were involved in a cascade
process (Supplementary Figure S14) that mediated cell cy-
cle arrest and the death of hepatocytes or other cells (26,27).
At 48 h post-PH, the chemokine signalling pathway and
leukocyte transendothelial migration pathway (Supplemen-
tary Figure S15) were activated to recruit leukocytes and
induce leukocyte migration from the blood to the liver tis-
sue (28,29). Three phagocytosis-related pathways (i.e. Fc
gamma R-mediated phagocytosis, endocytosis and phago-
some) were then activated in the leukocytes that migrated
to the liver (Supplementary Figure S16) and mediated en-
gulfment of the apoptotic bodies generated at 36 h (30–
32). At 168 h post-PH, the CD4+ T cells received cues
from the phagocytes and differentiated into T helper type
1 (Th1) and Th2 cells with the help of the cell adhesion
molecule pathway and Th1 and Th2 cell differentiation
pathway (Supplementary Figure S17) (33,34). In summary,
we reconstructed an immunity-related process that likely
played important roles in terminating LR and promoting
liver homeostasis restoration.

We further studied the TFs that significantly inter-
acted with the abovementioned pathways. First, the two
apoptosis-related pathways significantly interacted with
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Figure 3. Overview of the KEGG pathways interacting with transcriptional activators. Number of pathways related to cell proliferation, metabolism and
the immune system and (A) activated or (B) repressed at different time points post-PH. (C) Representative pathways activated (red) or repressed (blue) at
different time points. The upper half of each heat map shows the expression levels of TFs associated with the representative pathways. The lower half of
each heat map shows the expression levels of genes involved in the representative pathways. Activation or repression time points are marked in red boxes.
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Figure 4. Schematic of the immunity-related cascade activated in LR from 36 to 168 h post-PH. Two pathways related to cell apoptosis were activated at
36 h post-PH, and five pathways related to leukocyte migration into the liver and phagocytosis were activated at 48 h post-PH. In addition, two pathways
related to T-cell differentiation were activated at 168 h post-PH.

61 and 38 TFs, with 33 overlapping TFs (Figure 5A). Sec-
ond, 10, 9, 8, 9 and 11 TFs significantly interacted with the
5 pathways activated in the leukocytes, with 7 overlapping
TFs (Figure 5B). Finally, 21 and 18 TFs significantly in-
teracted with the cell adhesion molecule pathway and Th1
and Th2 cell differentiation pathway, respectively, with 17
overlapping TFs (Figure 5C). These results indicated that
the pathways involved in the same regulatory cascade were
likely to share common regulators, consistent with our ex-
perience. Moreover, the gene expression heat maps (Fig-
ures 5D–F) revealed that most of the pathways that we
predicted and the TFs significantly interacting with them
showed common upregulation at the predicted activation
time points.

We performed a series of experiments to validate the im-
mune pathways and their interacting TFs (see Supplemen-
tary Methods). First, we examined the number of leuko-
cytes per gram of mouse liver post-PH by flow cytometry
and found that the number of leukocytes in the regenerating
liver peaked at 48 h post-PH (Supplementary Figure S18A).
Analysis of the neutrophil and macrophage counts among
the leukocytes revealed significant increases in both at 48
h post-PH (Supplementary Figures S18B–E). Additionally,
detection of the levels of chemokine (C–X–C motif) ligand 1
(CXCL1; a major chemotactic factor for neutrophils) (35),
monocyte chemoattractant protein-1 (MCP-1; a chemotac-
tic factor that regulates monocyte/macrophage migration
into the liver) (36) and macrophage inflammatory protein-
1� (MIP-1�; a chemotactic factor involved in neutrophil
and macrophage recruitment) (37) in liver homogenates in-
dicated that they all peaked at 48 h post-PH (Supplemen-
tary Figures S18F–H). These results strongly supported
TSMiner predictions of activated leukocyte recruitment
and phagocytosis at 48 h post-PH. Moreover, we identi-
fied significant increases in the number of T cells, including
CD4+ and CD8+ T cells, as well as the levels of their chemo-
tactic factor, RANTES (CCL5) (38), at 168 h post-PH (Sup-

plementary Figure S19), further demonstrating that the
immunity-related cascade involving phagocytes and T cells
might play key roles in the late stage of LR.

We also performed RT-qPCR to validate the pathways
activated at 48 h post-PH (i.e. the chemokine signalling
pathway, Fc gamma R-mediated phagocytosis, endocytosis
and phagosome) as well as the TFs showing shared associ-
ations with them (Figures 5B and E). We randomly selected
eight genes from each of the abovementioned pathways and
used RT-qPCR to evaluate their transcription levels during
LR. The expression of eight, seven, seven and eight of the
selected genes showed significant upregulation at 48 h com-
pared to 36 h post-PH, and all the selected genes were signif-
icantly upregulated at 48 h post-PH relative to the control
group (Supplementary Figures S20–S23). Additionally, we
selected three TFs (Ikzf1, Sp100 and Trim30a) that shared
associations with these pathways and were previously un-
reported as being related to LR and evaluated their tran-
scription levels, as well as those of eight randomly selected
TGs for each TF, by RT-qPCR. The results showed that the
three TFs and nearly all their TGs were significantly upreg-
ulated at 48 h post-PH (Supplementary Figures S24–S26).
In summary, the pathways related to phagocytosis and their
correlated TFs predicted by TSMiner likely play critical reg-
ulatory roles in the regenerating liver at approximately 48 h
post-PH. All the experimental results are shown in Supple-
mentary Tables S8–S12.

DISCUSSION

Our evaluation of TSMiner using mouse LR data revealed
its potential efficacy; however, some issues require further
investigation. First, fewer results were obtained from the
negative TF–TG interactions than from the positive inter-
actions because the known repressors of many genes were
limited. Future collection of negatively correlated TF–TG
interactions may help address this issue. In addition to inte-
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Figure 5. Venn diagrams of the TFs interacting with (A) the two pathways activated at 36 h post-PH, (B) the five pathways activated at 48 h post-PH and
(C) the two pathways activated at 168 h post-PH. (D) Heat maps of the two pathways activated at 36 h post-PH and the 33 TFs showing shared associations
with the two pathways. (E) Heat maps of the five pathways activated at 48 h post-PH and the seven TFs showing shared associations with the five pathways.
(F) Heat maps of the two pathways activated at 168 h post-PH and the 17 TFs showing shared associations with the two pathways.

grating time-series gene expression profiles and TF–TG in-
teraction information, TSMiner may be applicable to other
types of time-series omics data, such as in integrating pro-
teomics time-series data and protein–protein interaction
(PPI) information to construct PPI networks activated or
repressed at different time points. This will be an interest-
ing area for future research. Finally, although all the ex-
perimental results strongly supported our predictions, the
precise regulatory mechanisms require more rigorous eval-
uation.

With the development of sequencing technologies, time-
series expression profiles have been rapidly accumulating;
however, the development of methods capable of appropri-
ately analysing these datasets has lagged. Here, we present
TSMiner, a novel analytic tool that captures dynamic TF
pathway regulatory events from time-series expression data.
The application of TSMiner to the LR RNA-seq data re-
vealed both known mechanisms of LR and mechanisms
that have not been previously reported. Specifically, we dis-

covered an immune response cascade that included cell
apoptosis, apoptotic cell clearance and T-cell differentia-
tion. A series of evaluations determined these results to be
highly reliable, expanding our knowledge of the LR process.
We note that TSMiner is the first tool to provide detailed in-
sight into the role of critical regulatory events in time-series
processes and their dynamic activation/repression.

DATA AVAILABILITY

The RNA-seq dataset analysed during the current study is
available in the NCBI GEO database with the accession
number GSE95135. The flow cytometry data from this pub-
lication has been deposited to the FlowRepository database
(flowrepository.org) and assigned the identifiers FR-FCM-
Z3RJ and FR-FCM-Z3RK. The other experimental data
are included in the Supplementary Data. The source codes
and the complied tool of TSMiner can be downloaded at
https://github.com/free1234hm/tsminer-tool.git.

https://github.com/free1234hm/tsminer-tool.git


PAGE 11 OF 11 Nucleic Acids Research, 2021, Vol. 49, No. 18 e108

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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