
New role for alpha cells as a source for new
beta cells
The endocrine pancreas consists of the
islets of Langerhans, which contain clus-
ters comprising at least five types of cells:
glucagon-producing a-cells, somatostatin-
producing d-cells, pancreatic polypeptide-
producing (PP)-cells, ghrelin-producing
e-cells and insulin-producing b-cells. An
inadequate mass of functioning pancreatic
b-cells is a common feature of both
type 1 and type 2 diabetes. Increasing the
mass of functioning pancreatic b-cells can
be viewed as a new strategy in the treat-
ment of diabetes.

The mass of functioning pancreatic
b-cells is determined by a balance between
the ratio of regeneration and death of
pancreatic b-cells. Enhancement of b-cell
regeneration is one strategy to increase
b-cells mass. Although b-cell regeneration
is probably accounted for by b-cell replica-
tion and neogenesis, b-cell replication to
increase b-cells mass solely occurs under
a physiological setting, at least in mice1.
In contrast, neogenesis or transdifferentia-
tion of b-cells is reported in cultured cells
derived from the pancreas2,3. In addition,
new b-cells are formed from endocrine
precursor cells in a murine pancreatic
duct ligation model4. Accordingly, in
certain tissue injury models, neogenesis of
b-cells can occur in vivo. However, the
pancreatic duct ligation model shows an
inflammatory reaction in the pancreas.
Such inflammation should be circum-
vented before one can apply the pancre-
atic duct ligation model to clinical
treatment. For example, viral-mediated
expression of transcription factors impor-
tant for b-cell differentiation in pancreatic
exocrine cells can reprogram the cell fate
from non-b-cell to b-cells5. However, the
use of viral vectors also induces an

inflammatory reaction and thus should
be avoided. Induction of b-cell neogenesis
or transdifferentiation without the associ-
ated inflammatory reaction would be
helpful in increasing b-cell mass. In this
regard, the recent study of Thorel et al.6

is intriguing. In their study, they used a
transgenic mouse model of diphtheria-
toxin-induced acute selective b-cell abla-
tion. This method chemically destroyed
more than 99% of b-cells in adult mice.
Then, they kept the mice alive by insulin
administration and followed b-cell regen-
eration in the pancreas of these mice. In
that study, they used the lineage-tracing

method to identify the fate of the cells that
express or previously expressed glucagon.
They found that most regenerated b-cells
arose from cells that expressed glucagon,
not from the limited number of residual
b-cells after destruction by diphtheria
toxin. In contrast, this event was not
observed when only half of the b-cells
were destroyed. Thus, these experiments
provided evidence for transdifferentiation
of a-cells to b-cells and that such process
occurred only when b-cells were specifi-
cally and almost completely destroyed.

During fetal pancreatic development,
glucagon is the earliest peptide hormone
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Figure 1 | Under physiological states, glucagon counteracts the effect of insulin. Glucagon secre-
tion is affected by insulin and insulin secretion is affected by glucagon. Thorel et al.6 showed the
new role of glucagon producing a-cells. When b-cells are completely destroyed, new b-cells can
be generated from pre-existing a-cells.
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present at appreciable levels in the pan-
creatic primordial. These cells sometimes
co-express insulin. Thus, it was proposed
previously that all islet cell types seem to
arise from glucagon-positive cells7. In fact,
exogenous Pdx-1 expression in a-cell-
derived cell lines induces endogenous
expression of some b-cell-specific genes8,9,
suggesting the likelihood of a- to b-cell
transition. However, the results of lineage
tracing analysis showed that adult a- and
b-cells are derived from cells that have
never transcribed insulin or glucagon10.
Accordingly, during the fetal pancreatic
development process, adult b-cells are not
derived from glucagon-expressing cells.

In contrast, Thorel et al.6 provided
clear evidence for a to b transition in
adult mice. Intriguingly, several recent
studies have also provided in vivo evi-
dence of plasticity of a-cell differentiation
into b-cells. For example, Menin is a
well-known tumor suppressor gene.
Mutation of this gene causes multiple
endocrine neoplasma type 1 (MEN1),
characterized by multiple endocrine
tumors affecting the parathyroid, anterior
pituitary and endocrine pancreas. As
expected, disruption of b-cell-specific
menin in mice induces insulinomas. In
contrast, ablation of a-cell-specific menin
induces the appearance of cells that share
the characteristics of both a- and b-cells
in young mice. Eventually, growth of not
only glucagonomas, but also a large num-
ber of insulinomas, was noted in the pan-
creas of the mutant mice11. In addition,
ectopic expression of Pax4, a transcription
factor essential for differentiation of
b-cells, was reported to cause reprogram-
ming of the cell fate of a-cells into
b-cells12.

Under physiological states, hypo-
glycemia induces glucagon secretion to
counteract the action of insulin, predomi-
nantly in the liver. Although insulin
inhibits hepatic gluconeogenesis and gly-
cogenolysis, glucagon promotes hepatic
gluconeogenesis and glycogenolysis, and
ultimately increases blood glucose levels
to counter hypoglycemia. Similar to the
relationship between the actions of gluca-

gon and insulin, the secretion of insulin
and glucagon affects each other. Indeed,
insulin suppresses glucagon secretion
from a-cells and glucagon stimulates
insulin secretion from pancreatic b-cells.
In addition, blocking the early expression
of glucagon prevents b-cell differentiation
in the early embryonic pancreas.

Taken together, these facts show that
the physiological role of a-cells is to
maintain glucose homeostasis in collabo-
ration with b-cells. Transdifferentiation of
a- to b-cells would definitely be helpful
in maintaining glucose homeostasis as a
long-term compensatory reaction, should
a substantial loss of b-cells occur. In the
meantime, we should consider the plastic-
ity of a- to b-cells as a new role for
a-cells to maintain glucose homeostasis
(Fig. 1).

There are still many unsolved questions
regarding the plasticity of a- to b-cells.
Why is the transdifferentiation of a- to
b-cells active only when b-cell counts are
substantially low? What kind of signal(s)
regulates the transdifferentiation of a- to
b-cells? Clarification of the signal involved
in this phenomenon should help resolve
the mechanism that controls the transdif-
ferentiation of a-cells to b-cells. Augmen-
tation of b-cell mass by enhancing a-cell
differentiation into b-cells is an innovative
therapeutic strategy in diabetes.
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