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Abstract: Dodonaea viscosa is a medicinal plant which has been used to treat various diseases in
humans. However, the anti-insect activity of extracts from D. viscosa has not been evaluated. Here,
we found that the total saponins from D. viscosa (TSDV) had strong antifeedant and growth inhibition
activities against 4th-instar larvae of Spodoptera litura. The median antifeeding concentration (AFC50)
value of TSDV on larvae was 1621.81 µg/mL. TSDV affected the detoxification enzyme system of
the larvae and also exerted antifeedant activity possibly through targeting the γ-aminobutyric acid
(GABA) system. The AFC50 concentration, the carboxylesterase activity, glutathione S-transferases
activity, and cytochrome P450 content increased to 258%, 205%, and 215%, respectively, and likewise
the glutamate decarboxylase activity and GABA content to 195% and 230%, respectively, in larvae
which fed on TSDV. However, D. viscosa saponin A (DVSA) showed better antifeedant activity
and growth inhibition activity in larvae, compared to TSDV. DVSA also exerted their antifeedant
activity possibly through targeting the GABA system and subsequently affected the detoxification
enzyme system. Further, DVSA directly affected the medial sensillum and the lateral sensillum of the
4th-instar larvae. Stimulation of Spodoptera litura. with DVSA elicited clear, consistent, and robust
excitatory responses in a single taste cell.

Keywords: antifeedant; Dodonaea viscosa; Spodoptera litura; taste sensillum; GABA; detoxification enzyme

1. Introduction

Dodonaea viscosa (Sapindales: Sapindaceae) is a shrub which forms part of the more than
60 species of Dodonaea in the world, which are distributed in tropical and subtropical regions,
especially in Oceania [1]. In China, D. viscosa is the only recorded species that can be found in
Southern Fujian, Taiwan, Guangdong, Hainan, Guangxi, Sichuan and Yunnan, etc.

D. viscosa is widely used in China; its seed oil is used to make soap or fuel; its
leaves are crushed to treat burns and pharyngitis; roots are used to kill insects and poison
fish; and the whole strain can be used to treat rheumatism [2]. In recent years, research
on this plant has mostly been on its physiological and ecological applications [3–5]. At
present, there are a few studies which have been conducted on the chemical constituents of
D. viscosa and their pharmacological activities. Flavonoids [6] and triterpenoids [7–9] have
been isolated from D. viscosa, and have been proven to show anti-inflammatory [10,11],
anti-ulcer, anti-spasm [12], anti-viral activities [13], as well as inhibitory effects on ATP
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citrate lyase [14]. Crude extracts of D. viscosa showed good insecticidal activity against a
variety of lepidopteran insects, antifeedant activity against Plutella xylostella, Pieris brassicae,
Helicoverpa armigera, Mythimna separata, and toxic activity against adult Sitophilus oryzae and
molluscicidal activity. However, only one active compound, dodoneaviscoside A, has been
identified and successively isolated from the seeds of D. viscosa [15].

Spodoptera litura (Fab.) (Noctuidae: Lepidoptera) is one of the most pervasive pests,
infesting more than 300 crop species worldwide [16]. The larvae can seriously damage soy-
bean, cotton, tobacco, and cruciferous vegetables and other important economic crops [17],
and losses due to feeding ranging from 26 to 100% are possible in the field [18]. Due to the
high reproductive capacity and migration over large distances in the adult stage, its popu-
lations can expand rapidly and move across fields quickly. At present, chemical pesticides
are still the main effective method to control S. litura in many countries, but some chemical
pesticides have had detrimental effects. For example, organochlorine pesticides are banned
in China because of their long residual period, difficult decomposition and environmental
pollution. Therefore, studies on naturally-derived or plant-originated antifeedants have
become important sources of pesticides [19–22]. The primary mechanisms of antifeedants
are through their effects on the taste sensillum, which include three aspects. One is the
stimulation of a special sensillum, and the other is the changes caused to the activity of
sensillum that sense other compounds, or a combination of the two [23]. Taste sensillum
plays an important role in the feeding behavior of insect larvae [24,25] and in lepidopteran
larvae for instance, which are located in the medial and lateral sensillum of the maxillary
gland [26]. Although most antifeedants act directly on the taste system of insects, some
other possible mechanisms have been reported as well. For example, some antifeedants act
through antagonizing the action of the γ-aminobutyric acid (GABA) on insect neurons to
induce feeding deterrence. For example, the P450 content in Manduca sexta was reported to
have increased after feeding on nicotine, an antifeedant, and the induced P450-mediated
detoxification activity permitted increased consumption of a toxic plant compound [27].

Although several studies have reported on the insecticidal activities of crude extracts of
D. viscosa, few studies have focused on the insecticidal active compound and its insecticidal
mechanism. Therefore, this study identified the major insecticidal active compound of
D. viscosa and its insecticidal mechanism by phytochemistry, electrophysiology, enzyme
activity, and bioassays.

2. Results
2.1. Antifeedant Activity of TSDV

To evaluate the antifeedant activity of TSDV on S. litura, the leaf disc method was used.
Results on the feeding area and inhibition rates are shown in Table 1. The feeding area of
Spodoptera litura, which were exposed to the TSDV diet at concentration of 500–5000 µg/mL,
was significantly smaller than those exposed to the control diet. The inhibition rate of
3875 µg/mL TSDV and 500 µg/mL Azadirachtin did not show significant difference (Tukey
post hoc test, p < 0.05). These results revealed that TSDV has good antifeeding activity. The
regression equation of the antifeedant activity was y = 1.4557x + 0.3573 (R2 = 0.9641). The
AFC10, AFC30, and AFC50 values of TSDV on 4th-instar larvae were 204.17, 676.08, and
1621.81 µg/mL, respectively.

Table 1. Antifeedant activity of TSDV on 4th-instar larva of Spodoptera litura.

Concentration (µg/mL) No. of Tested Insects Feeding Area (mm2) Inhibition Rate (%)

0 10 985.36 ± 86.79 a

500 10 687.68 ± 83.06 b 30.21
1625 10 585.14 ± 45.89 c 40.62
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Table 1. Cont.

Concentration (µg/mL) No. of Tested Insects Feeding Area (mm2) Inhibition Rate (%)

2750 10 450.36 ± 62.50 d 54.33
3875 10 271.27 ± 38.30 e 72.47
5000 10 149.38 ± 7.50 f 84.84

Azadirachtin 10 302.70 ± 64.83 e 69.26
The positive control was 500 µg/mL Azadirachtin (purity,≥81%). Feeding area is presented as Mean± SE (n = 10).
Different superscript letters indicate significant differences according to Tukey post hoc test (p < 0.05).

2.2. Effects of TSDV on Life-History Traits

To further evaluate the toxic effect of TSDV, its effect on the life-history traits of S. litura
were recorded. The results showed that the duration of the 4th–6th instar stage of S. litura
larvae, which were exposed to the TSDV diet at the concentrations of AFC30 and AFC50,
was significantly longer than those exposed to the control diet (CK) (Table 2). The durations
of the pupal stage of females, which were exposed to the TSDV diet and control diet, did
not show significant differences. The duration of the male pupal stage, female adult stage,
and male adult stage of larvae exposed to the TSDV diet at the concentrations of AFC30 and
AFC50 were significantly shorter than those exposed to the control diet. The pupation rate
and emergence rate of larvae, which were exposed to the TSDV diet at the concentrations
of AFC30 and AFC50, were significantly lower than those exposed to the control diet
(Table 3). These results revealed that TSDV interfered with the normal development and
metamorphosis established at different stages of S. litura in a dose-dependent manner.

Table 2. The effect of TSDV on developmental period on Spodoptera litura.

Concentration
Developmental Period/d

4th–6th Instar Larva Female Pupae Male Pupae Female Adult Male Adult

CK 12.10 ± 0.067 c,d 12.73 ± 0.014 a 11.11 ± 0.070 a 6.84 ± 0.076 a 3.88 ± 0.101 a

AFC10 12.27 ± 0.094 b,c 12.75 ± 0.063 a 11.07 ± 0.047 a 6.79 ± 0.083 a 3.97 ± 0.056 a

AFC30 12.42 ± 0.268 a,b 12.83 ± 0.085 a 11.07 ± 0.051 a 6.78 ± 0.047 a 3.64 ± 0.050 b

AFC50 12.65 ± 0.106 a 12.73 ± 0.065 a 10.75 ± 0.084 b 5.59 ± 0.076 b 3.00 ± 0.035 c

Developmental period is presented as Mean ± SE (n = 10). Different superscript letters indicate significant
differences according to Tukey post hoc test, p < 0.05.

Table 3. The effect of TSDV on pupation rate and emergence rate in 4th-instar larva of Spodoptera
litura.

Concentration Pupation Rate Emergence Rate

CK 100.00 ± 0.00 a 88.00 ± 2.00 a

AFC10 98.00 ± 2.00 a 83.56 ± 2.65 a

AFC30 84.00 ± 5.10 b 69.12 ± 2.12 b

AFC50 76.00 ± 5.10 b 70.68 ± 2.76 b

Pupation rate and emergence rate are presented as Mean ± SE (n = 10). Different superscript letters indicate
significant differences according to Tukey post hoc test, p < 0.05.

2.3. Time-Course of the Change in Feeding Response to TSDV

S. litura exposed to the control and TSDV diet were observed every 6 has shown in
Figure 1A,B. The food intake of S. litura offered the control diet during the 0–6 h period
was significantly less than those who were offered the control diet during the 6–12 h
period. However, for the S. litura offered the TSDV diet, the food intake during 12–18 h
was significantly less than during the 18–24 h period (Tukey post hoc test, p < 0.05). Thus,
S. litura fed the TSDV diet displayed a 12h time lag in their first significant increase in diet
consumption.
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icantly in 24–42 h, compared to the control diet (Figure 1C–E). At 30 h, the CarE activity 

Figure 1. The effects of total saponins from D. viscosa on the detoxification enzyme in 4th-instar
larva of S. litura. (A,B) The effect of consumption of a control diet or a AFC50 total saponins from
D. viscosa diet by 4th-instar larvae of S. litura over a 48 h period. (C) The effects of total saponins
from D. viscosa on the detoxification enzyme CarE activity in 4th-instar larva of S. litura. (D) The
effects of total saponins from D. viscosa on the detoxification enzyme GST-s activity in 4th-instar
larva of S. litura. (E) The effects of total saponins from D. viscosa on the detoxification enzyme P450
content in 4th-instar larva of S. litura. (F,G) Total saponins from D. viscosa affects detoxification
system through CarE, GST-s, and P450. The effect of treatment with detoxification enzyme inhibitor
triphenyl phosphate (TPP), diethyl maleate (DEM), and piperonyl butoxide (PBO) on total saponins
from D. viscosa consumption time within 30 min. Data is presented as Mean ± SE (n = 10). * indicates
significant differences according to Tukey post hoc test, p < 0.05.

2.4. Time-Course of Detoxification Enzyme Induction by TSDV

Detoxification enzymes play important roles in the metabolism of xenobiotics in insects.
The CarE activity, GST-s activity, and the levels of P450 content in treated S. litura were
measured. The CarE activity of larvae exposed to AFC50 TSDV diet increased significantly
in 24–42 h, compared to the control diet (Figure 1C–E). At 30 h, the CarE activity increased
to 258% (Figure 1C), and the GST-s activity of those exposed to TSDV increased significantly
in 24–36 h, compared to the control diet (Tukey post hoc test, p < 0.05). At 24 h, the GST-s
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activity increased to 205% (Figure 1D). Similar results were obtained for the P450 content;
the P450 content increased to 215% (Figure 1E). These results indicated that TSDV activated
the detoxification enzyme system in S. litura.

2.5. Effect of Inhibition of Detoxification Enzymes on the Feeding Response to TSDV

TPP, DEM, and PBO are inhibitors of CarE, GST-s, and P450, respectively. To further
determine the relationship between the detoxification enzyme system and antifeedant
effect, the feeding response by larvae to inhibitors were determined. Pre-treatment with
TPP, DEM, and PBO caused dramatic increases in antifeedant activity in S. litura which fed
on the TSDV diet (Figure 1F,G). We ascertained whether the inhibition of detoxification
enzymes would reduce the tolerance of larvae to the TSDV diet. The TPP, DEM, and PBO
treatment, in the absence of TSDV, did not influence total feeding time. Among the larvae
pre-exposed to the TSDV diet, those treated with TPP, DEM, and PBO spent significantly
less time than those without TPP, DEM, and PBO. However, the total feeding times of the
larvae fed on the TSDV diet and TPP, DEM, and PBO were still significantly longer than
that fed on the control diet and TSDV diet only (Tukey post hoc test, p < 0.05). These results
suggested that inhibition of CarE, GST-s, and P450 partially increased the antifeedant
activity of TSDV. This further indicated that the activation of the detoxification enzyme
system resulted in the decline of the antifeedant effect.

2.6. Time-Course of GAD Activity and GABA Content Induction by TSDV

GAD can catalyze the decarboxylation of glutamic acid to form GABA, which is an
important marker to show the excitement of the nervous system. GABA receptors are
important biochemical sites for insecticides action. Results showed that the GAD activity
in S. litura exposed to the AFC50 TSDV diet increased significantly in 3–25 min, compared
to the control diet (Figure 2A,B). At 5 min, the GAD activity increased to 195%. The levels
of GABA content in larvae which were exposed to AFC50 TSDV significantly increased in
5–55 min (Tukey post hoc test, p < 0.05). Treatment with TSDV for 45 min increased the
GABA content to 230%. These data showed that TSDV obviously increased GABA content.
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Figure 2. The effects of total saponins from D. viscosa on the GAD (A) activity and GABA (B) content
in 4th-instar larva of S. litura. The GAD activity and GABA content are presented as Mean ± SE
(n = 10). * indicates significant differences according to Tukey post hoc test, p < 0.05.

2.7. Isolation of Antifeedant Active Compound

To identify the active compound of TSDV, we used RP-18, MCI, and HPLC to isolate
the major active compound from the seeds of D. viscosa. The active compound identified
was D. viscosa saponin A (DVSA) (Figure 3).
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2.8. Evaluation of the Antifeedant Activities of DVSA

To evaluate whether DVSA was the major active compound responsible for the an-
tifeedant activity of TSDV, the feeding area and inhibition rates were recorded and the
results are shown in Table 4. The regression equation of the antifeedant activity was
y = 1.0094x + 2.5091 (R2 = 0.9721). The AFC10, AFC30, and AFC50 values of DVSA on
4th-instar larvae were 18.2, 92.0, and 288.4 µg/mL, respectively.

Then the effects of DVSA on the life-history traits of S. litura were further evaluated.
Similar life-history traits were observed in larvae that fed on the DVSA diet compared to
the TSDV diet (Tables 5 and 6). DVSA also interfered with the normal development and
metamorphosis established at different stages of S. litura in a dose-dependent manner.

The feeding response against DVSA was then recorded. S. litura which fed on the
DVSA diet displayed a 12-h time lag in their first significant increase in diet consumption,
compared to those that fed on the control diet (Figure 4A,B). This phenotype was also
observed in S. litura that fed on the TSDV diet. All these results suggested that DVSA might
be the active compound of TSDV.

Table 4. Antifeedant activity of DVSA on 4th-instar larva of Spodoptera litura.

Concentration (µg/mL) No. of Tested Insects Feeding Area (mm2) Inhibition Rate (%)

0 10 985.36 ± 86.36 a

50 10 658.12 ± 89.57 b 23.52
100 10 565.31 ± 45.93 c 32.35
200 10 499.28 ± 55.33 c 39.57
400 10 359.81 ± 39.11 d 52.63
800 10 292.06 ± 20.95 d 70.36

Azadirachtin 10 302.70 ± 64.83 d 69.26
The positive control was 500 µg/mL Azadirachtin (purity,≥81%). Feeding area is presented as Mean± SE (n = 10).
Different superscript letters indicate significant differences according to Tukey post hoc test, p < 0.05.
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Table 5. The effect of DVSA on developmental period in 4th-instar larva of Spodoptera litura.

Concentration
Developmental Period/d

4th–6th Instar Larva Female Pupae Male Pupae Female Adult Male Adult

CK 12.09 ± 0.014 c 12.68 ± 0.014 a 11.11 ± 0.010 a 6.84 ± 0.011 a 3.88 ± 0.016 a

AFC10 12.12 ± 0.012 c 12.71 ± 0.015 a 11.10 ± 0.012 a 6.79 ± 0.013 a 3.88 ± 0.011 a

AFC30 12.48 ± 0.008 b 12.70 ± 0.019 a 10.92 ± 0.014 b 6.08 ± 0.012 b 3.90 ± 0.012 a

AFC50 13.04 ± 0.011 a 12.35 ± 0.018 b 10.85 ± 0.016 c 5.51 ± 0.017 c 3.87 ± 0.016 a

Developmental period is presented as Mean ± SE (n = 10). Different superscript letters indicate significant
differences according to Tukey post hoc test, p < 0.05.
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Figure 4. The effects of D. viscosa saponin A on the detoxification enzyme in 4th-instar larva of
S. litura. (A,B) D. viscosa saponin A could change the feeding response of 4th-instar larvae of S. litura.
The effect of consumption of a control diet or a AFC50 D. viscosa saponin A diet by 4th-instar larvae of
S. litura over a 48 h period. (C) The effects of D. viscosa saponin A on the detoxification enzyme CarE
activity in 4th-instar larva of S. litura. (D) The effects of D. viscosa saponin A on the detoxification
enzyme GST-s activity in 4th-instar larva of S. litura. (E) The effects of D. viscosa saponin A on
the detoxification enzyme P450 content in 4th-instar larva of S. litura. (F,G) D. viscosa saponin A
affects detoxification system through CarE and P450. The effect of treatment with detoxification
enzyme inhibitor triphenyl phosphate (TPP), diethyl maleate (DEM), and piperonyl butoxide (PBO),
on D. viscosa saponin A consumption time within 30 min. Data is presented as Mean ± SE (n = 10).
* indicates significant differences according to Tukey post hoc test, p < 0.05.
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Table 6. The effect of DVSA on pupation rate and emergence rate in 4th-instar larva of Spodoptera
litura.

Concentration Pupation Rate Emergence Rate

CK 100.00 ± 0.000 a 96.00 ± 2.449 a

AFC10 98.00 ± 2.000 a 94.00 ± 4.000 a

AFC30 90.00 ± 3.162 b 79.89 ± 5.512 b

AFC50 78.00 ± 3.741 c 76.98 ± 2.403 b

Pupation rate and emergence rate are presented as Mean ± SE (n = 10). Different superscript letters indicate
significant differences according to Tukey post hoc test, p < 0.05.

2.9. Time-Course of Detoxification Enzyme Induction by DVSA

To evaluate the detoxification enzyme induction by DVSA, the CarE activity, GST-s
activity, and the levels of P450 content of S. litura were measured. Compared to the control
diet, the DVSA diet increased CarE activity, GST-s activity, and the P450 content level to
228%, 189%, and 247%, respectively (Figure 4C–E). These results indicated that DVSA also
activated the detoxification enzyme system in S. litura.

2.10. Effect of the Inhibition of Detoxification Enzymes on the Feeding Response to DVSA

Pre-treatment with TPP, DEM, and PBO to inhibit detoxification enzymes in lar-
vae caused a similar antifeedant activity in the DVSA diet compared to the TSDV diet
(Figure 4F,G). The results suggested that the activation of detoxification enzyme system in
larvae which fed on the DVSA diet resulted in the decline of the antifeedant effect, which
was observed for the TSDV diet.

2.11. Time-Course of GAD Activity and GABA Content Induction by DVSA

We also examined the GAD activity and GABA content induction by the DVSA diet.
The dynamic changes in GAD activity and GABA content in S. litura exposed to the
AFC50DVSA diet was similar to the AFC50TSDV diet (Figure 5A,B). At 5 min, the GAD
activity increased to 235%, compared to the control diet, whereas at 45 min, the GABA
content increased to 220%. These data showed that DVSA obviously increased GABA
content.
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Figure 5. The effects of D. viscosa saponin A on the GAD activity (A) and GABA content (B) in
4th-instar larva of S. litura. The GAD activity and GABA content are presented as Mean ± SE (n = 10).
* indicates significant differences according to Tukey post hoc test, p < 0.05.

2.12. Effects of DVSA on the Taste Sensillum of S. litura

As the mechanism of antifeedant reaction is believed to be the effect on taste sensillum,
we further investigated whether DVSA acted directly on the taste cells of the insects. Cells
in the lateral sensillum and medial sensillum responded to DVSA in S. litura (Figure 6A,E).
The medial sensillum was slightly more sensitive than the lateral sensillum, and with a
slightly higher firing rate over the whole concentration range. Our results, together with
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that obtained from a previous study on the effect of diterpenoids on insect feeding behavior,
provide more evidence that natural products could directly act on the taste cells of insects.
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Figure 6. Effects of D. viscosa saponin A on the taste sensillum of S. litura. (A) Response
(spikes/second) of lateral and medial styloconic sensillum of S. litura caterpillars to D. viscosa saponin
A during the 1 s of stimulation. (B) Representative of the electrophysiological responses of medial
styloconic sensillum to D. viscosa saponin A, sinigrin and their mixture in S. litura. (C) Representative
of the electrophysiological responses of medial sensillum to D. viscosa saponin A, inositol, and their
mixture in S. litura.(D) Representative of the electrophysiological responses of medial sensillum to
D. viscosa saponin A, sucrose, and their mixture in S. litura. (E) Response frequency of the D. viscosa
saponin A in medial sensillum and lateral sensillum. (F) Comparisons of response firing rate in 1 s to
sinigrin and mixture with D. viscosa saponin A in the lateral styloconic sensillum. (G,H) Comparisons
of response firing rate in 1 s to D. viscosa saponin A, inositol, sucrose, and their mixtures in the lateral
styloconic sensillum and medial styloconic sensillum. Data is presented as Mean ± SE (n = 10).
* indicates significant differences according to Tukey post hoc test, p < 0.05.

Sinigrin is a common deterrent compound. To verify whether the target of DVSA were
neurons, the sensory responsiveness of S. litura fed with DVSA, sinigrin, and a mixture of
DVSA and sinigrin were measured. The isopotential map showed that the DVSA-sensitive
cell fired at the same rate as the sinigrin-sensitive cell (Figure 6B). It indicated that the
electrophysiological responses of the same cell in the taste sensillum were induced by
DVSA and sinigrin. DVSA had no significant inhibitory effect on sinigrin-induced nerve
impulses (Figure 6F). These results suggested that DVSA and sinigrin target the same cell.

Inositol is a common phagostimulants for medial sensillum. To verify whether DVSA
can inhibit the activity of an inositol-sensitive cell, the sensory responsiveness of S. litura fed
with DVSA, inositol, and a mixture of DVSA and inositol were measured. The isopotential
map showed that feeding on a mixture with 1 mM DVSA caused the inositol-sensitive cell
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to fire at a similar rate to that with inositol alone (Figure 6C). DVSA inhibited the activity
of the inositol-sensitive cell (Figure 6G). These results showed that DVSA suppressed the
response of inositol, indicating that DVSA inhibited the activity of the inositol-sensitive
cell.

Sucrose is a common phagostimulants for lateral sensillum. Similar results were
observed for sucrose-sensitive cells (Figure 6D,H). DVSA inhibited the activity of the
sucrose-sensitive cell.

Altogether these results indicated that DVSA was the major active compound respon-
sible for the antifeedant activity of TSDV.

3. Discussion

The study of botanical antifeedants have been reported as an important method of pest
control. In the present study, we investigated the antifeedant activity and mechanism of
D. viscosa. Azadirachtin is one of the compounds with the best antifeedant effect. We studied
the antifeedant activity of DVSA and found that the antifeedant activity of 500 µg/mL
Azadirachtin is equivalent to that of 800 µg/mL DVSA, which shows that DVSA has strong
antifeedant activity.

In this study, we observed that DVSA directly affected the taste cells of the medial and
lateral sensillum. Messchendorp et.al. found that the relationship between sensory input
and antifeedant supporting the hypothesis that the medial deterrent cell directly causes
the antifeedant in Pieris brassicae [28]. GABA and related aminobutyric acids are known to
stimulate feeding and evoke taste cell responses among herbivorous insects of various taxa,
such as Orthoptera, Homoptera, Coleoptera, and Lepidoptera [29]. Mitchell found that
an isoquinoline alkaloid induced antifeedant activity by affecting the GABA system [30],
which was consistent with our results.

We also found that Carboxylesterase and cytochrome P450 were the main targets of
the decline of antifeedant effect in the later stage. These results were consistent with those
obtained from studies on the effect of nicotine on the feeding response of tobacco moth and
poplar secondary metabolites antifeedant activity on Lymantria dispar; the CarE activity
and GST-s activity in L. dispar increased after feeding on the antifeedant poplar secondary
metabolites [31,32].

4. Materials and Methods
4.1. General Experimental Procedures

Azadirachtin (purity,≥81%) was purchased from Yunnan Zhongke Biological Industry
Co., Ltd. (Kunming, Yunnan, China). The Insect GABA enzyme-linked immunosorbent
assay (ELISA) kit, insect glutamate decarboxylase (GAD) ELISA kit, insect CarE ELISA kit,
insect GST-s ELISA kit, and insect cytochrome P450 ELISA kit were purchased from Jianglai
Biological Co., Ltd. (Shanghai, China). HPLC-grade acetonitrile (J.T. Baker, Phillipsburg,
NJ, USA) and ultra-pure water prepared from a Milli-Q purification system (Millipore, MA,
USA) were used for semi-preparative HPLC analysis.

Electrospray ionization (ESI) were recorded on Aglient 1290 UPLC/6540, and the
1D and 2D NMR spectra were measured on the Bruker 500 MHz spectrometer, with
TMS as the internal standard. RP-18 column (50 µm, YMC Co., Ltd., Kyoto, Japan) gel,
MCI gel (75–150 µm, Sci-Bio Chem Co., Ltd., Chengdu, China), and Sephadex LH-20
(40–70 µm, Amersham Pharmacia Biotech AB, Uppsala, Sweden), were used for column
chromatography. Semi-preparative HPLC was performed on an YMC Luna C18 (5 µm;
10 × 250 mm) reversed-phase column.

4.2. Plant Material

Seeds of D. viscosa were purchased from Yunnan Ecological Technology Co., Ltd.
(Kunming, Yunnan, China). Selected seeds were dried at room temperature and formed
into powder using a laboratory mill. A voucher specimen (No. 1906023) was deposited at
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the State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming
Institute of Botany, Chinese Academy of Sciences (CAS).

4.3. Insects

Spodoptera litura used in this study were obtained from Yunnan Agricultural University,
Kunming, Yunnan, China, and were cultured on cabbage leaves at 25 ◦C.

4.4. Assays for Nonselective Antifeedant Activity

The non-selective antifeedant activity of D. viscosa extract against 4th-instar larvae of
Spodoptera litura was determined using the leaf disc method [33]. The punch was used to
make the leaf into a leaf disc with a diameter of 1.5 cm. Five concentration gradients of the
extract (5000, 2500, 1250, 625, and 312.5 µg/mL) were prepared and used for treatment.
Treatment with distilled water served as the control. To each leaf disc, 50 µL of the different
concentrations of compound was dripped onto the leaf surface. After 24 h and 48 h of
culture, the leaf area of each tested insect was measured with checkerboard paper. The
regression equation of the antifeedant activity was obtained by linear regression. AFC10,
AFC30, and AFC50 was calculated. AFC10, AFC30, and AFC50 are the concentrations when
the inhibition rate is 10%, 30%, and 50%, respectively. The experiment was conducted three
times, and all treatments were performed with ten samples.

The experiment was completed in June 2020. Starvation began at 8:00 a.m. and ended
at 12:00 a.m. Then, the larvae and leaf discs were added to the feeding room, and the leaf
discs were replaced every 6 h.

4.5. Detoxification Enzymes Assays

The 4th-instar S. litura larvae was exposed to the control, AFC50, TSDV, and AFC50,
or DVSA diets. The experiment was completed in June 2020. The insects began to starve
for 4 h at 8:00 a.m., and at 12:00 p.m., the insects and leaf discs were added to the feeding
room. The timing began after the tested insects began to eat the leaf discs. After 6, 12, 18,
24, 30, 36, 42, and 48 h, the tested insects were grinded and centrifuged to obtain the crude
enzyme solution and tested.

The insect cytochrome P450 ELISA kit (Jianglai Biological Co., Ltd., Shanghai, China),
insect CarE ELISA kit (Jianglai Biological Co., Ltd., Shanghai, China), and insect GST-s
ELISA kit (Jianglai Biological Co., Ltd., Shanghai, China) were used for the measurement
of cytochrome P450 content, CarE activity, and GST-s activity, respectively, following the
manufacturer’s instructions. The experiment was conducted three times, and all treatments
were performed with ten samples.

4.6. Effect of the Inhibition of Detoxification Enzymes Activities on the Feeding Response in Larvae
to D. viscosa

The experiment was completed in July 2020. The insects began to starve for 4 h at
8:00 a.m., and at 12:00 p.m., the insects and leaf discs were added to the feeding room. We
measured detoxification enzymes activity in larvae against TSDV (DVSA) after: (i) pre-
exposure to control diet for 24 h, (ii) pre-exposure to the TSDV (DVSA) diet for 24 h, or (iii)
pre-exposure to the TSDV (DVSA) diet for 22 h, and then a diet containing TSDV (DVSA)
plus 300 µg/mL inhibition for the next 2 h.

A group of larvae were pre-exposed to the control diet for 24 h and then exposed to
(a) the same diet, (b) the inhibition diet, or (c) the TSDV (DVSA) diet. For the inhibition
treatments, we added inhibitory agents to the diets during the last 2 h of the pre-exposure
period. We pre-exposed other larvae to the TSDV (DVSA) diet for 24 h and then exposed
them to (d) the same diet, or (e) the same inhibition diet. To determine whether prior
ingestion of inhibition diet inhibited TSDV (DVSA) consumption, we compared treatments
(d) and (e). The experiment was conducted three times, and all treatments were performed
with ten samples.
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4.7. Levels of GABA Content and GAD Activity Assays

The insect GABA ELISA kit (Jianglai Biological Co., Ltd., Shanghai, China) and GAD
ELISA kit (Jianglai Biological Co., Ltd., Shanghai, China) were used for the measurement
of GABA content and GAD activity, respectively, following the manufacturer’s instructions.
The experiment was completed in July 2020. The insects began to starve for 4 h at 8:00 a.m.,
and at 12:00 p.m., the insects and leaf discs were added to the feeding room. The timing
began after the tested insects began to eat the leaf discs. After 1, 2, 3, 4, 5, 15, 25, 35, 45, 55,
65, and 120 min, the tested insects were grinded and centrifuged to obtain the crude enzyme
solution and tested. Briefly, the samples were incubated in microtiter wells with appropriate
dilution solutions, according to the specific protocol of the kits. Then, biotinylated antibody,
HRP-streptavidin, substrate reagent, and stop solution were sequentially added to the wells.
Finally, absorbance was read at a wavelength of 450 nm immediately. The experiment was
conducted three times, and all treatments were performed with ten samples.

4.8. Effects of DVSA on the Taste Sensillum of S. litura

Each chemical (D. viscosa saponin A, sucrose, inositol, and sinigrin) was presented in a
series of concentrations from 0.1 mM to 10 mM in KCl as an electrolyte. In addition to the
single chemicals, we also tested binary mixtures of D. viscosa saponin A (DVSA) with sucrose,
inositol, or sinigrin. The concentrations of each component in the mixtures were 1 mM.

The single sensillum recording (SSR) method was used to determine the taste electro-
physiology of larvae. The experiment was completed in August 2020. Starvation began
at 8:00 a.m. and ended at 10:00 a.m. Then, the heads of the larvae were cut off from the
first and second thoracic segments of their bodies. One end of the silver wire was bent into
a spoon shape, and the head was gently inserted into the incision of the insect’s chest, so
that the larvae’s sensillum extended outwards. The wire was connected to a preamplifier
with a copper mini-connector. A glass capillary filled with the test compound, into which a
silver wire was inserted, was placed in contact with the sensilla. The stimulation solution
induced the taste cells in the sensillum to produce action potential. Electrophysiological
responses were quantified by counting the number of spikes in the first second after the
start of stimulation. The interval between two successive stimulations was at least 3 min
to avoid adaptation of the tested sensilla. Before each stimulation, a piece of filter paper
was used to absorb the solution from the tip of the glass capillary containing the stimulus
solution to avoid an increase in concentration due to evaporation of water from the capillary
tip. The temperature during recording ranged from 22 to 25 ◦C. The electrophysiological
signals were recorded by SAPID Tools software version 16.0, and analyzed using Autospike
software version 3.7. The experiment was conducted three times, and all treatments were
performed with ten samples.

4.9. Isolation of DVSA

The extract of the seeds of D. viscosa (5 kg) was obtained by extraction with ethanol
three times at room temperature and the solvent was evaporated in vacuo. The extract
solution was suspended in H2O (0.5 L) and subjected to gradual extraction with petroleum
ether, ethyl acetate, and n-BuOH (3 × 1.5 L). The n-BuOH extract was concentrated at a
reduced pressure to obtain TSDV. The TSDV (50.5 g) was chromatographed on an RP-18
column. Elution with water-methanol (97:3–0:100) was done to yield six fractions (1–6).
Fraction 6 (9.6 g) was separated using a Sephadex LH-20 column eluted with CH3OH.
Six subfractions (6A–6E) were collected. Fraction 6C (6.2 g) was applied to an MCI gel
column (CH3OH-H2O from 1:9 to 8:2) to yield seven fractions (6C1–6C7). Fr. 6C5 (4.8 g)
was purified by a semi-preparative C18 HPLC column with H2O-ACN-MeOH (10:1:9) to
obtain DVSA (1.2 g).

DVSA was a white amorphous powder and its molecular formula C57H90O24 was
determined by the protonated [M − H]− ion peak at m/z 1157.5745 (calcd 1157.5743) in the
HRESI-MS.
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White powder, [α]25
D –34.8 (c 0.20, MeOH), ESI-MS m/z: 1157.6 [M − H]−; 1H NMR

(CD3OD, 125 MHz) δH: 1.67 (1H, m, H-1), 1.03 (1H, d, J = 8.8 Hz, H-1), 1.76 (1H, m, H-2),
1.45 (1H, s, H-2), 3.22 (1H, m, H-3), 0.80 (1H, s, H-5), 1.45 (2H, m, H-6), 1.77 (2H, m, H-7),
1.62 (1H, s, H-9), 1.97 (2H, m, H-11), 5.48 (1H, s, H-12), 3.77 (1H, m, H-15), 3.86 (1H, m,
H-16), 2.68 (1H, m, H-18), 2.62 (1H, m, H-19), 1.21 (2H, m, H-19) 5.89 (1H, d, J = 8.0 Hz,
H-21), 5.61 (1H, s, H-22), 1.11 (3H, s, H-23), 0.90 (3H, brs, H-24), 1.01 (3H, brs, H-25), 1.03
(3H, brs, H-26), 1.42 (3H, brs, H-27), 3.32 (1H, s, H-28), 3.04 (1H, s, H-28), 0.85 (3H, s, H-29),
1.09 (3H, s, H-30), 3.13 (1H, m, H21-3), 1.32 (3H, d, J = 4.4 Hz, H21-4), 1.48 (3H, s, H21-5), 2.41
(1H, q, J = 5.6 Hz, H22-2), 2.00 (1H, m, H22-3), 1.45 (1H, m, H22-3), 0.97 (3H, t, J = 6.0 Hz,
H22-4), 1.19 (3H, d, J = 5.6 Hz, H22-5), 4.53 (1H, m, H-1′), 3.77 (1H, s, H-2′), 3.77 (1H, s, H-3′),
3.51 (1H, s, H-4′), 3.84 (1H, s, H-5′), 4.69 (1H, m, H-1′′), 3.58 (1H, s, H-2′′), 3.88 (1H, s, H-3′′),
3.49 (1H, s, H-4′′), 4.13 (1H, s, H-5′′), 3.80 (1H, m, H-6′′), 3.68 (1H, m, H-6′′), 5.28 (1H, brs,
H-1′′′), 4.13 (1H, brs, H-2′′′), 3.86 (1H, s, H-3′′′), 4.13 (1H, brs, H-4′′′), 3.80 (1H, m, H-5′′′),
3.68 (1H, m, H-5′′′); 13C NMR (CD3OD, 500 MHz) δC: 40.2 (t, C-1), 27.0 (t, C-2), 91.9 (d, C-3),
40.4 (s, C-4), 56.7 (d, C-5), 19.2 (t, C-6), 37.2 (t, C-7), 42.3 (s, C-8), 48.3 (d, C-9), 38.0 (s, C-10),
24.6 (t, C-11), 126.9 (d, C-12), 143.4 (s, C-13), 48.0 (s, C-14), 68.5 (d, C-15), 73.89 (d, C-16),
48.5 (s, C-17), 41.6 (d, C-18), 47.6 (t, C-19), 36.6 (s, C-20), 81.7 (d, C-21), 73.8 (d, C-22), 28.4 (q,
C-23), 16.9 (q, C-24), 16.0 (q, C-25), 17.6 (q, C-26), 21.0 (q, C-27), 63.6 (t, C-28), 29.5 (q, C-29),
19.8 (q, C-30), 171.2 (s, C21-1), 60.7 (s, C21-2), 61.5 (d, C21-3), 13.8 (q, C21-4), 19.0 (q, C21-5),
178.1 (s, C22-1), 42.8 (d, C22-2), 27.5 (t, C22-3), 12.1 (q, C22-4), 16.8 (q, C22-5), 104.5 (d, C1′),
78.2 (d, C2′), 86.9 (s, C3′), 70.2 (d, C4′), 76.9 (d, C5′), 171.2 (s, C6′), 104.5 (d, C1′′), 73.6 (d,
C2′′), 77.9 (d, C3′′), 77.0 (d, C4′′), 77.9 (s, C5′′), 63.8 (t, C6′′), 110.7 (d, 1′′′), 83.2 (d, 2′′′), 78.9
(s, 3′′′), 85.4 (d, 4′′′), 62.5 (t, 5′′′).

4.10. Statistical Analysis

AFC10, AFC30, and AFC50 values were calculated using GraphPad Prism v7.0.0 and
statistical analysis was carried out in SPSS 26. The results presented in the study are given
as means ± standard error (SE) from three independent experiments including 10 repeats
for each experiment. The one-way analysis of variance (ANOVA) with comparisons of
means using Tukey’s honestly significant difference (HSD) test were used to compare
inhibition rate, life-history traits, activity of detoxification enzyme, activity of GABA, and
response frequency (p < 0.05).

5. Conclusions

In this study, we found that TSDV had strong antifeedant and growth inhibition
activities against S. litura, and studied its potential antifeedant mechanism. The results
showed that TSDV mainly acted on the detoxification enzyme system and GABA. The active
compound in TSDV was isolated and was identified to be DVSA. It was verified that DVSA
had similar growth inhibition activity and stronger antifeedant activity on 4th-instar larvae
of S. litura. Some typical antifeedant symptoms were found from symptomatology, which
led to the study of the antifeedant mechanism of DVSA. Results showed that DVSA acted
on the medial and lateral sensillum of larvae, resulting in the production of antifeedant
signal in the medial and lateral sensillum, which possibly passed through the larval γ-
aminobutyric acid system. Carboxylesterase and cytochrome P450 were the main targets of
the decline of antifeedant effect in the later stage.
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