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Abstract. Next generation sequencing (NGS) technology 
is an increasingly important clinical tool for therapeutic 
decision‑making. However, interpretation of NGS data 
presents challenges at the point of care, due to limitations in 
understanding the clinical importance of gene variants and 
efficiently translating results into actionable information for 
the clinician. The present study compared two approaches for 
annotating and reporting actionable genes and gene mutations 
from tumor samples: The traditional approach of manual cura‑
tion, annotation and reporting using an experienced molecular 
tumor bioinformationist; and a cloud‑based cognitive 
technology, with the goal to detect gene mutations of potential 
significance in Chinese patients with lung cancer. Data from 
285 gene‑targeted exon sequencing previously conducted on 
115 patient tissue samples between 2014 and 2016 and subse‑
quently manually annotated and evaluated by the Guangdong 
Lung Cancer Institute (GLCI) research team were analyzed 
by the Watson for Genomics (WfG) cognitive genomics 
technology. A comparative analysis of the annotation results 
of the two methods was conducted to identify quantitative 
and qualitative differences in the mutations generated. The 
complete congruence rate of annotation results between WfG 

analysis and the GLCI bioinformatician was 43.48%. In 65 
(56.52%) samples, WfG analysis identified and interpreted, 
on average, 1.54 more mutation sites in each sample than the 
manual GLCI review. These mutation sites were located on 
27 genes, including EP300, ARID1A, STK11 and DNMT3A. 
Mutations in the EP300 gene were most prevalent, and present 
in 30.77% samples. The Tumor Mutation Burden (TMB) inter‑
preted by WfG analysis (1.82) was significantly higher than 
the TMB (0.73) interpreted by GLCI review. Compared with 
manual curation by a bioinformatician, WfG analysis provided 
comprehensive insights and additional genetic alterations to 
inform clinical therapeutic strategies for patients with lung 
cancer. These findings suggest the valuable role of cognitive 
computing to increase efficiency in the comprehensive detec‑
tion and interpretation of genetic alterations which may inform 
opportunities for targeted cancer therapies.

Introduction

Lung cancer, common worldwide, is the leading cause of 
cancer deaths in China. Effective and efficient measures 
to target therapies are needed to reduce disease burden and 
improve patient prognoses and outcomes. Precision medicine 
uses genomic analysis, including next generation sequencing, 
to identify the genetic profile of individual patients and lung 
cancer cells to identify specific individual receptivity to avail‑
able therapies. The 2015 launch of the Precision Medicine 
Initiative by US President Obama accelerated the integration 
of next generation sequencing (NGS) methods in genomic 
medicine, especially in oncology care (1,2). NGS technology is 
becoming more widely employed as a novel genetic screening, 
prognostic and diagnostic technique for clinical disease 
management (3‑5) and is becoming an effective and accept‑
able method for clinical gene detection (6,7). Although it is 
still in the early stage of clinical application for the diagnosis 
and treatment of tumors (8‑10), its continuous innovation 
has generated increased awareness and interest in the role of 
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genetic markers and the molecular mechanisms of diseases. 
Genome alterations play a significant role in disease recur‑
rence for lung cancer (11). Large‑scale genomic sequencing 
studies have revealed the complex genomic landscape of lung 
cancer, with tumor heterogeneity (12).

NGS shows promise in the treatment of lung cancer to 
identify candidate biomarkers for early diagnosis, identify 
prognostic factors, and detect actionable mutations to guide 
targeted therapy decisions (13). However, NGS generates 
massive volumes of data. Analyzing and interpreting this data 
creates challenges for analysts and clinicians alike. As a result, 
the analysis of data and annotation of variation have become 
a major bottleneck that inhibits wider clinical adoption and 
usefulness of NGS technology.

There are many tools available to analyze NGS data for 
variants (14). The standard method for annotation of NGS 
mutations at cancer care centers like Guangdong Lung Cancer 
Institute (GLCI) includes retrieval, analysis and comparison 
of the annotation results with databases like DrugBank, 
COSMIC, dbSNP, OMIM, ClinVar, 5000 Exomes and 1000 
Genomes. Genes are further analyzed through screening under 
a series of conditions examining zygosity, variant type, variant 
effect, location, filtered coverage and minor allele frequency, 
on the basis of preliminary analysis of NGS data.

This study compared the annotation and interpretation of 
NGS results at a large volume cancer center in Guangdong, 
China using standard methods and using IBM Watson for 
Genomics (WfG), a cloud‑based cognitive computing system. 
WfG is trained to analyze molecular data at a massive scale 
to provide clinically actionable insights that are supported 
by all available relevant evidence. The tool is built on several 
different predictive models that can perform analysis across the 
whole‑genome and accesses a comprehensive database of struc‑
tured and unstructured data sources using Natural Language 
Processing (NLP). (Over 200 sources include DrugBank, NCI, 
COSMIC, ClinVar, and 1000 Genomes, as well as evidence 
extracted from the universe of biological and medical litera‑
ture.) WfG is in use in selected markets (13,15,16), however, 
its application in the analysis and annotation of results of NGS 
data in Chinese patients has not been reported. This study 
examined and compared the NGS data annotation process 
by comparing the results of the gene mutation annotation for 
Chinese patients with lung cancer generated by Guangdong 
Lung Cancer Institute (GLCI) bioinformaticians and WfG. 
The ultimate goal of this study was to leverage insights from 
the analysis to inform individual treatment decisions to benefit 
future Chinese patients with lung cancer.

Materials and methods

Materials. In terms of patient specimen collection and analysis, 
we do have approval from our institutional ethics board and 
informed consent from each patient. Actually, we have estab‑
lished a tissue repository center (Tumor Sample Bank) in our 
cancer center which was approved by Human Biomaterial and 
Genetic Resource Office of China. Researchers at Guangdong 
Lung Cancer Institute (GLCI) obtained a variety of tissue 
samples from the Tumor Sample Bank in GLCI of Guangdong 
Provincial People's Hospital, Guangzhou, China. The samples, 
from 115 randomly selected patients diagnosed with lung 

cancer at Guangdong General Hospital between 2014 and 
2016, included 10 formalin fixed paraffin‑embedded (FFPE) 
samples, 12 small samples collected after puncture, 4 plasma 
samples and 89 large tumor samples collected during surgery. 
All patients were well informed and signed the informed 
consent.

DNA extraction. Researchers used QIAGEN QlAampDNA 
Mini Kit and QIAGEN QlAampBlood Mini Kit for the 
gDNA extraction process from each tissue sample (i.e., the 
FFPE samples, small samples collected after puncture and 
large samples collected in surgery) and DNA from 1‑4 ml 
plasma samples, respectively. DNA quantitative analysis was 
completed using Qubit analyzer.

Design and synthesis of target capture probe. Hybrid capture 
in target areas was implemented using SureSelectXT Custom 
library. This probe library was designed through SureDesign 
software based on genome hg19/GRCh37; target areas were 
lung cancer‑related high‑frequency mutation gene exon areas.

Establishment of NGS library. The NGS library was 
established using free DNA in plasma and gDNA in tissue 
samples. Free DNA was extracted from 1‑2 ml plasma to 
establish the library, without requirement of fragmentation. 
Approximately, 50‑1,000 ng of gDNA was extracted from 
each tissue sample and cut into 100‑200 bp segments through 
enzyme digestion to establish the library. The NGS library 
was established using Ion Xpress™ Plus Fragment Library 
Kit and Ion Xpress™ Barcode Adapters 1‑16 Kit, and the 
selection, purification and recovery of DNA was completed 
via Agencourt AMPure XP beads. Target areas were captured 
after hybridization through SureSelectXT Custom library 
at 65˚C for 16‑24 h following 11 cycles of polymerase chain 
reaction (PCR) amplification in pre‑library after segment 
selection. The target area sequencing library was obtained 
from the captured library after purification and 9 cycles of 
PCR amplification. Finally, QIAxcel and Qubit were used to 
detect the library segment length and library concentration, 
respectively.

Sequencing and data analysis. The library was diluted 
into 12 pM using water according to its concentration and 
connected with microballoon using Ion PI™ Template OT2 
200 Kit v2, after which the samples were spotted on P1 chips 
for sequencing. The sequencing data were compared with 
human genome Hg 19 using Suite software (Life Technologies, 
Version 5.0.2), and mutations were detected using Variant 
Caller software (Life Technologies, Version 5.0.2.1), so as to 
form corresponding variant calling files (VCF).

Target sequencing data interpretation by GLCI using stan‑
dard methods. Integrative Genomics Viewer (IGV) software 
was applied by GLCI bioinformaticians to annotate the 
gene mutation information by comparing with the databases 
DrugBank, COSMIC, dbSNP, OMIM, ClinVar, 5000 Exomes 
and 1000 Genomes.

Gene variant interpretation executed by Watson for 
Genomics. Upon sequence completion by GLCI lab, the 
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research team accessed the cloud‑based cognitive computing 
tool, Watson for Genomics (WfG). The following infor‑
mation was uploaded to WfG: (a) tumor type, (b) a list of 
variants as a variant calling file (.vcf). Uploading this data 
required approximately 1 min for each sample, by a data 
technician. After these data were uploaded, WfG performed 
the Molecular Profile Analysis (MPA) for each gene with a 
variant. A subpart of the WfG cognitive tool, the MPA reviews 
evidence from functional studies and protein structure and 
applies programming logic to classify variants into five cate‑
gories: Pathogenic, likely pathogenic, benign, likely benign, 
and variables of unknown significance (VUS). Alterations 
categorized as benign or likely benign were removed from 
the report. Next, WfG identified a gene as actionable if: a) the 
variant was pathogenic or likely pathogenic; b) the variant 
was directly targetable or part of a pathway that was targe‑
table based on evidence from the literature; and c) a U.S. 
Food and Drug Administration‑approved or investigational 
target therapy was available.

Statistical analysis. Statistical analysis of the difference 
between tumor mutation burden obtained by WFG and 
GLCI was performed by the paired t‑test analysis. Counting 
data was expressed by the number of cases/percentage n(%), 
and the measurement data were expressed by mean number 
(mean ± SD). t‑test analysis was performed using SPSS v22.0 
software (IBM Corp.). P<0.05 was considered to indicate a 
statistically significant difference.

Results

Congruence rate of gene mutation interpretation results of 
GLCI and WfG analyses/between two methods. ‘Complete 
congruence’ was defined as having completely consistent 
interpretation results from the two methods, which included 
the following two scenarios: In the first scenario, no muta‑
tion sites were identified by either method, i.e., Complete 
Congruence, 0 alterations reported. In the second scenario, 
the same single or multiple mutation sites were interpreted by 
both methods, i.e., Complete Congruence, 1 or more identical 
alterations reported by both methods. 

‘Partial congruence’ was defined as the partially consistent 
interpretation results from the two methods, i.e., mutation 
sites interpreted by WfG analysis contained those by GLCI 
bioinformaticians. ‘No congruence’ was defined as totally 
inconsistent interpretation results from the two methods, i.e., 
no mutation sites were interpreted by GLCI bioinformati‑
cians while 1 or more mutation site were interpreted by WfG 
analysis, or vice versa. 

After annotation of the sequencing results of all 115 
samples, across all samples WfG identified 180 alterations 
whereas GLCI identified 80 mutation sites. The congruence 
rate in detecting mutation sites across the entire sample was 
44.44%. Complete congruence was found in the analyses of 
50 samples (congruence rate 43.48%.) Of these completely 
congruent samples, 29 had no reported mutation sites 
(Complete Congruence, 0 alterations), and 21 had 29 mutation 
sites (Complete Congruence, 1 or more alterations). 

In the remaining 65 samples (56.52%), a total of 180 muta‑
tion sites were found after analysis by both methods. Compared 
with GLCI bioinformaticians, WfG analysis interpreted more 
mutation sites (100), with an average of 1.54 more mutation 
sites in each sample. (In one sample, WfG interpreted 11 more 
mutation sites than were interpreted by the GLCI bioinforma‑
tician). In 37 samples (32.17%) Partial Congruence was found 
in the analysis: GLCI interpreted 51 mutation sites and WfG 
interpreted 103 mutation sites. (WfG interpreted an average 
of 1.41 more mutation sites in each sample). Finally, in the 
28 samples with no congruence, WfG reported 48 mutation sites 
and GLCI reported zero mutation sites. In these samples, WfG 
analysis interpreted 1.71 more mutation sites in each sample 
when compared to GLCI analysis WfG (Fig. 1 and Table I). 

Differential genes and signal pathways in data interpretation 
results between two methods. NGS data from 115 samples 
were annotated by WfG and GLCI bioinformaticians respec‑
tively. In 50 samples (43.5%), no mutations were found by 
either GLCI or WfG. However, in the remaining 65 samples 
(56.5%), WfG analysis interpreted more mutation sites (100), 
whereas in 54 (47.0%) samples, WfG analysis interpreted 1‑2 
more mutation sites when compared with GLCI bioinformati‑
cians' results (Table II). 

Figure 1. Comparing patient‑paired samples using different annotation methods of Watson for Genomics and Guangdong Lung Cancer Institute bioinformationist.
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The 100 mutation sites that were additionally identified 
by WfG analysis were located on 27 genes, including EP300, 
ARID1A, STK11 and DNMT3A. The mutation rate was 30.77% 
(20/65) in EP300 gene; 18.46% (12/65), 16.92% (11/65) and 
13.85% (9/65) in ARID1A, STK11 and DNMT3A genes, 
respectively. In the 37 (32.17%) samples out of 65, 51 mutation 
sites were interpreted by GLCI bioinformaticians while 103 
by WfG analysis, with 51 co‑interpreted mutation sites located 
on EGFR, KRAS and TP53 genes. WfG interpreted 52 more 
mutation sites located on EP300, ARID1A, STK11, DNMT3A, 
PIK3R1, PTEN, ATM, BCL2, MSH6, NF1, PTPN11, ATR, 
BRCA1, CDKN2A, CREBBP, MET, RNF43 and TSC1 genes. In 
another 28 (24.35%) samples out of 65, no mutation sites were 
interpreted by GLCI bioinformaticians while 48 mutation sites 
were interpreted by WfG analysis and were located on EP300, 
ARID1A, STK11, TSC2, BRCA2, MSH6, BRCA1, DNMT3A, 
NF2, ATM, PIK3R1, PTEN, BRAF, CDKN1B, IDH1, IDH2, 
KIT, PMS2, RNF43 and TSC1 genes (Fig. 2).

Analysis of congruence rate of common driver gene mutation 
annotation. The two methods reported similar annotation 
results in the mutations analysis of 4 common driver genes 
of EGFR, KRAS, TP53 and ERBB2. Of the 115 samples, the 
total number of mutation sites for these 4 genes was 82, 80 of 
which were identically reported by both methods (congruence 
rate 97.56%). The congruence rates of EGFR, KRAS, TP53 and 
ERBB2 were 100% (29/29), 100% (12/12), 94.87% (37/39) and 
100% (2/2) respectively (Fig. 3). 

Analysis of tumor mutation burden (TMB) interpretation 
results between two methods. The average number of missense 
mutations obtained before preliminary analysis and filtration 
of NGS data of target 0.947 kb genes in the 115 samples was 
130.43, with a TMB of 137.78. After WfG interpretation and 
filtration, the average number of missense mutations and TMB 
obtained was 1.72 and 1.82, significantly higher than the 0.69 
and 0.73, respectively, obtained by GLCI bioinformaticians 
(P<0.05) (Fig. 4). 

New high‑Minor Allele Frequency (MAF) mutations indicated 
by WfG. In one of the 37 samples with Partial Congruence, 
(sample no. 29002) WfG analysis identified 4 new mutation 
sites with high MAF. The MAF of TP53 G245V mutation 
found by both methods was 5.25%, while the MAF was 
11.95, 14.05, 35.15 and 32.02% in new mutation sites ATR 
G492fs, DNMT3A A222fs, PTEN R130Q and STK11 G257fs 
interpreted by WfG only, respectively (Fig. 5). 

Discussion

Several cancer centers are beginning to use artificial intelli‑
gence (AI) computing systems to analyze NGS data (14). The 
speed and volume of research, discovery and reporting on new 
genes and mutations, and their relationships to tumorigenesis 
is accelerating. Monitoring and integrating this knowledge for 
use in clinical decision‑making is a task well‑suited to cogni‑
tive computing technologies. WfG is a cognitive computing 

Table I. Number of mutation sites identified by WfG and GLCI.

  Mutation sites Mutation sites
Type of uniformity No. identified by WfG, n identified by GLCI, n

Complete congruence, 0 alterations 29 0 0
Complete congruence, 1 or more alterations 21 29 29
Partial congruence 37 103 51
No congruence 28 48 0
Total 115 180 80

GLCI, Guangdong Lung Cancer Institute; WfG, Watson for Genomics.

Table II. Variability in mutation sites interpreted by Watson for Genomics and Guangdong Lung Cancer Institute.

Variability (number of Incidence,  Share of  Cumulative 
different mutation sites) no. of samples samples, % percentage, %

0 50 43.5 43.5
1 41 35.7 79.1
2 13 11.3 90.4
3 3 2.6 93.0
4 4 3.5 96.5
5 2 1.7 98.3
6 1 0.9 99.1
11 1 0.9 100.0
Total 115 100.0 



MOLECULAR AND CLINICAL ONCOLOGY  14:  36,  2021 5

technology which can learn new information and analyze data 
at a rate that far exceeds manual curation and analysis (14). 
During this study, the number of cases analyzed and annotated 
by one GLCI bioinformatician working full time was approxi‑
mately 10 cases per one week. In contrast, WfG completed 
analysis and annotation of each sample in ~3 min, evidence 
that WfG was able to perform this analysis at a much faster 
rate than even a highly trained human analyst.

To compare the effectiveness of the WfG cognitive computing 
tool with human‑only targeted panels at identifying potentially 
actionable gene mutations for Chinese patients with lung cancer, 
we retrospectively analyzed 115 cases from GLCI that had 
undergone targeted DNA sequencing of 285 genes and subse‑
quent analysis by the GLCI bioinformaticians. We conducted 
an independent analysis of these 115 samples using WfG. WfG 

Figure 2. Mutation genes identified by GLCI and WfG. (A) Partial congruence and (B) no congruence. GLCI, Guangdong Lung Cancer Institute; WfG, Watson 
for Genomics.

Figure 3. Congruence rates of common driver gene mutation in analysis by both methods. GLCI, Guangdong Lung Cancer Institute; ERBB2, erb‑b2 receptor 
tyrosine kinase 2; WfG, Watson for Genomics.

Figure 4. Comparison of tumor mutation burden (across all samples) for 
the two methods. *P<0.05. GLCI, Guangdong Lung Cancer Institute; 
WfG, Watson for Genomics.
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was provided the full list of variants on each sequenced sample 
and identified 180 mutation sites in the 115 samples vs. only 80 
mutation sites identified by GLCI bioinformaticians. This indi‑
cated that WfG could interpret more mutation sites than GLCI 
bioinformaticians using standard methods. This is particularly 
valuable as it is well known that target therapy or individual‑
ized therapy focuses on specific variant genes or specified gene 
mutation sites. WfG's ability to interpret more gene mutation 
sites from 56.52% samples demonstrates that it can provide 
more opportunities for targeted therapy for patients with lung 
cancer and additional useful information for clinical doctors 
developing therapeutic strategies. 

In this study, the congruence rate of the analyses of NGS 
results was 43.48% and congruence rate of mutations was 
44.44% between WfG analysis and GLCI bioinformaticians', 
and is similar to the results of other studies which have 
compared WfG and manual mutation analysis (13,16). There 
are several possible reasons that fewer mutation sites were 
interpreted by GLCI bioinformaticians than by WfG. For 
example, the GLCI biological analysis was completed by one 
individual bioinformatician and was relatively conservative, 
emphasizing mutation sites that were common driver gene 
mutation sites that had been studied thoroughly, as demon‑
strated by the 97.56% congruence rate of significant driver 
gene mutation sites. This is because GLCI bioinformaticians 
mainly focus on driving genes, while the new analysis methods 
are more comprehensive, which not only does not lose the 
driving gene targets, but also increases the discovery of many 
new rare mutation targets. A defining feature of the WfG 
cognitive tool and its analysis is its ability to retrieve almost 
all the research published worldwide, and to extract actionable 
information to analyze and annotate gene mutation sites. In 
contrast, the bioinformatician relied on extensive individual 
experience in reading the literature and analyzing results. 
As to most uncommon variant genes, WfG annotation was 
superior to the GLCI bioinformatician's. In this study results, 
the genes in the list interpreted by WfG analysis only, such 
as MSH6, DNMT3A, NF2, ATM, PIK3R1, CDKN1B, IDH1, 
IDH2, KIT, PMS2, RNF43 and TSC1, reflect WfG's ability to 
access and integrate more recent research consistently during 
analysis. This may also explain discrepancies between the 

annotation results of bioinformaticians and WfG analysis in 
samples with mutation sites occurring in uncommon genes. 
This may also suggest that uncommon variant genes should be 
of increased concern to bioinformaticians, especially in this 
rapidly evolving arena.

This retrospective analysis of individual tissue samples 
representing 115 cases offers an opportunity to review treat‑
ment therapies with the benefit of new information gleaned 
from WfG. In 24.35% samples, targeted therapy was not 
performed for patients as no clinically significant mutation 
sites were found by GLCI bioinformaticians. In contrast, 
mutation sites were found in uncommon genes by WfG 
analysis in 56.52% of the samples. Patients with these muta‑
tions may have been eligible to participate in clinical trials 
with corresponding agents, had this information been avail‑
able to their clinicians at the point of care. Going forward, it 
is therefore possible that cognitive technologies such as WfG 
will be able to assist clinicians by providing the comprehen‑
sive and timely analysis needed to help them guide patients 
to appropriate therapies. This is consistent with the view of 
Itahashi et al (17). They believe that WFG is useful for a 
clinician at a general hospital additional survey of evidence 
by a clinician is required when evaluating functions (17). In 
our sample of Chinese patients with lung cancer, opportuni‑
ties for targeted therapy might have been available for 24.35% 
of patients, informed by the WfG analysis. Of particular 
interest, in one sample in which there was no congruence 
between GLCI and WfG analysis, and in which there was no 
common mutation gene variation, this analysis found that the 
MAF value of multiple new gene mutation sites interpreted 
by WfG analysis was evidently higher than that of discovered 
insignificant gene mutation sites. This finding suggests that 
the therapeutic strategies for patients with findings like these 
might be changed accordingly. 

This report is a preliminary study to compare AI‑aided 
analysis using the cognitive computing technology WfG to the 
standard manual method. Limitations of the study included 
relatively small sample size, absence of in‑association analysis 
with clinical therapy and, as a result, no specific information 
about how the results of this analysis might have affected 
clinical outcomes. Our study did not systematically measure 

Figure 5. MAF of five mutation sites in one sample (no. 29002) as interpreted by both methods. MAF, minor allele frequency; ATR, ATR serine/threonine 
kinase; DNMT3A, DNA methyltransferase 3α; STK11, serine/threonine kinase 11; GLCI, Guangdong Lung Cancer Institute; WfG, Watson for Genomics.
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the time required to annotate, interpret and report NGS results 
by either the standard method used by GLCI, or by WfG. 
Future studies will be necessary to address these limitations. 

In conclusion, this study provides evidence that analysis 
of NGS results by the cognitive computing technology WfG 
can provide an accurate and comprehensive interpretation of 
more gene mutation sites through a more rapid process than 
routine manual analysis, generating potential opportunities 
of targeted therapy for cancer patients. The basis of targeted 
therapy is to obtain the effective gene mutation information 
of patients in time. For patients diagnosed with lung cancer 
in China and elsewhere, the timely provision of actionable 
information that may affect treatment options can be critical 
to individual therapy and research. The abundance of mutation 
sites interpreted uniquely by WfG analysis in partial samples 
was relatively high, further suggesting opportunities to opti‑
mize clinical decision making for a greater number of affected 
patients in the future.
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