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Abstract: Diabetic peripheral neuropathy (DPN) is a very common neurological disorder in diabetic
patients. This study presents a new percussion-based index for predicting DPN by decomposing
digital volume pulse (DVP) signals from the fingertip. In this study, 130 subjects (50 individuals 44 to
89 years of age without diabetes and 80 patients 37 to 86 years of age with type 2 diabetes) were enrolled.
After baseline measurement and blood tests, 25 diabetic patients developed DPN within the following
five years. After removing high-frequency noise in the original DVP signals, the decomposed DVP
signals were used for percussion entropy index (PEIDVP) computation. Effects of risk factors on the
incidence of DPN in diabetic patients within five years of follow-up were tested using binary logistic
regression analysis, controlling for age, waist circumference, low-density lipoprotein cholesterol,
and the new index. Multivariate analysis showed that patients who did not develop DPN in the
five-year period had higher PEIDVP values than those with DPN, as determined by logistic regression
model (PEIDVP: odds ratio 0.913, 95% CI 0.850 to 0.980). This study shows that PEIDVP can be a major
protective factor in relation to the studied binary outcome (i.e., DPN or not in diabetic patients five
years after baseline measurement).

Keywords: diabetic peripheral neuropathy (DPN); percussion entropy index; baroreflex sensitivity
(BRS); digital volume pulse (DVP); photoplethysmography (PPG); ensemble empirical mode
decomposition (EEMD)

1. Introduction

Recently, many studies have reported that patients with type 2 diabetes could be at highly
increased risk of developing atherosclerosis and autonomic nervous dysfunction [1–4]. Microvascular
diseases are widespread among patients with long-term type 2 diabetes mellitus [5,6]. Generally,
diabetic microvascular diseases are characterized by nerve damage caused by chronically high blood
sugar and diabetes (e.g., diabetic peripheral neuropathy (DPN)) [7], exudate leakage from retinal small
vessels (i.e., diabetic retinopathy), or persistent proteinuria and progressive decline in kidney function
(i.e., diabetic nephropathy). DPN is a very common neurological disorder in diabetic patients [8,9].
The goals of caring for patients with type 2 diabetes mellitus are to reduce symptoms and to prevent,
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or at least slow down, the development of complications [10]. Glucose control in these patients
undoubtedly has benefits for major microvascular endpoints; good glucose control does improve
microvascular disease and should be achieved early and maintained over as long a period of time
as possible [11–14]. On the other hand, early prediction of the signs of DPN through signal-analysis
methods is urgently needed by diabetic patients and clinic doctors.

In recent years, the small-scale multiscale entropy index (MEIRRI) and the first proposed percussion
entropy index (PEI1st) were developed to reflect autonomic function based on a nonlinear method
for studying heart-rate variability (HRV) using only RR interval (RRI) datasets [15,16]. PEI1st was
also found to be suitable for analyzing diabetic patients [17]. In addition, percussion entropy–based
indices are a generalized application of the method developed by Wei et al. (PEI1st) [18] and Xiao et al.
(PEINEW) [19] for specific time series, using amplitudes of successive digital volume pulse signals
versus changes in RR intervals [15]. Wei et al. showed that PEI1st can be used as a prognostic
indicator with electrocardiography (ECG) and photoplethysmography (PPG) for future peripheral
neuropathy in patients with type 2 diabetes [20]. However, using an ECG device is not convenient
for many real-time applications. Considering surrogate data and cost reduction, a new percussion
entropy index (PEIPPI) using only PPG (i.e., original amplitude series and peak-to-peak interval (PPI)
series of the sixth decomposed intrinsic mode function (IMF6) from digital volume pulse (DVP))
was proposed to assess baroreflex sensitivity (BRS) complexity in elderly and diabetic patients with
regard to type 2 diabetes associated autonomic dysfunction [21]. Moreover, PPG-derived DVP signals
were further used for clinical applications in ubiquitous blood-pressure monitoring, congestive heart
failure, and hypertension assessment [22–24]. However, it is not easy to filter out the high frequencies
around peaks in the original DVP signals of diabetic patients, which can cause a big problem in error
peak determination.

The investigation presented herein was conducted as follows: We hypothesized that the ensemble
empirical mode decomposition (EEMD) method could be utilized for PPG-derived DVP signals to
obtain two IMFs for decomposed DVP signals (IMF5 and IMF6) free of high-frequency noise [25].
Our second hypothesis was that a new lower value of percussion entropy index (PEIDVP) with the
adoption of decomposed DVP-derived amplitude series and PPI series could estimate the prognosis of
diabetic peripheral neuropathy for diabetic patients in the five years after baseline measurement.

This paper describes the use of decomposed DVP signals for percussion entropy analysis to assess
the complexity of BRS for assessment of diabetic peripheral neuropathy prognosis. Descriptions of the
study population, study procedure, PEIDVP using synchronized PPI and Amp signals derived from
decomposed DVP signals, and statistical analysis are presented in Section 2. Baseline characteristics
of healthy and diabetic subjects; the failure of original DVPs to detect correct amplitudes in diabetic
subjects; an assessment of agreement between amplitudes from original and decomposed DVPs of a
healthy subject; a comparison of performance and computation time among PEIDVP, PEIPPI, PEI1st,
and MEIPPI to differentiate future peripheral neuropathy in type 2 diabetic patients; and the effects of
risk factors associated with developing DPN using a logistic regression analysis method are presented
in Section 3. All of our findings are discussed in Section 4. Finally, Section 5 concludes the paper.

2. Materials and Methods

2.1. Study Population

The study population consisted of 140 right-hand-dominant middle-aged subjects who underwent
PPG and ECG examinations in the hospital from June 2009 to July 2011. Ten participants were
excluded due to a history of atherosclerosis-associated complications, including permanent pacemaker
implantation, coronary heart disease, heart failure, and ischemic stroke, leaving 130 subjects remaining
in the study. In the study, diabetes mellitus was defined as a fasting glucose level higher than 126 mg/dL
and/or a glycated hemoglobin (HbA1c) level greater than 6.5%. In total, 50 subjects were not diabetic
patients (group 1, age range: 44–89 years), and 80 had type 2 diabetes. The diabetic patients were then
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divided into 2 groups: those who were diagnosed with type 2 diabetes without peripheral neuropathy
within 5 years (group 2, age range: 44–86 years, n = 55), and those with peripheral neuropathy within
5 years (group 3, age range: 37–75 years, n = 25), all with HbA1c ≥ 6.5%.

In the present study, there were 11 diabetic patients in group 3 with good blood-glucose control
(6.5% 5 HbA1c < 8%), and 14 diabetic patients who originally had poor blood-glucose control (HbA1c
= 8%) [26]. During follow-up screening, DPN in type 2 diabetes patients was defined based on
the presence of symptoms of numbness, tingling, or pain of distal extremities lasting for more than
3 months, along with a confirmed diagnosis by the clinic doctor in the same diabetes outpatient
department through a neurophysiological study. For unbiased analysis, the subjects in the diabetic
groups were age-controlled. This study was reviewed and approved by the Institutional Review Board
of Hualien Hospital (Hualien City, Taiwan) and Ningxia Medical University Hospital (Yinchuan City,
Ningxia, China).

2.2. Study Procedure

Anthropometric, demographic, and laboratory data for the analysis as well as medical history
were obtained at the clinic visit. Each subject’s resting blood pressure was measured once from
the left arm in a supine position using an oscillometric device (BP3AG1, Microlife, Taiwan).
Total cholesterol, triglyceride, low-density and high-density lipoprotein cholesterol, fasting blood
glucose, and glycosylated hemoglobin concentrations were obtained from blood samples after a 12 h
fast. Caffeine-containing beverages and theophylline-containing drugs were forbidden for 12 h before
each clinic visit. All measurements were taken in the morning (08:30–10:30). Moreover, to minimize
latent erroneous readings from the PPG sensors arising from involuntary body vibrations of the test
subjects and low environmental temperature, possibly resulting in constriction of the peripheral vessels,
all subjects underwent blood sampling before data acquisition. All test subjects were allowed to relax in
a supine position for 5 min in a quiet room with the temperature controlled at 26 ± 1 ◦C [26]. Data from
the first 1000 cardiac cycles were used for analysis in this study.

2.3. Calculation of Percussion Entropy Index (PEIDVP) Using Synchronized {PPI} and {Amp} Signals

2.3.1. Signal Processing for Percussion Entropy Indices

The PPG infrared sensor was placed on the tip of the index finger of the subject’s dominant hand
for data acquisition. After being run through a USB-based analog-to-digital converter (USB-6009
DAQ, National Instruments, Austin, TX, USA) with a sampling frequency of 500 Hz, the digitized
signals were subsequently stored on a personal computer (PC) and analyzed using the MATLAB
7.7 software package (MathWorks, Natick, MA, USA) [26]. In each pulse cycle, ensemble empirical
mode decomposition (EEMD) [27] was used to decompose the original DVP signals to many IMFs
(Figure 1). As we know, EEMD interpretation heavily depends on “empirical” knowledge of the
signals. In order to appropriately exploit the IMFs from original DVP signals, one has to be certain
whether an IMF carries information relevant to the human system [28,29], from which selection of
IMFs for further analysis can be made without doubt. Moreover, fluctuations resembling systolic
and diastolic peaks were also noted in IMF5. IMF6 is sine wave-like, caused by the impact of the
heartbeat on the digital volume pulse (DVP) signal from the fingertip, and exhibited a frequency close
to that of the heart rate (Figure 1). Since the peaks of IMF5 and IMF6 are in phase and with larger
amplitudes in IMFs from decomposed DVP in Figure 1, intuitively, the decomposed DVP signals
(i.e., IMF5 + IMF6) can be regarded as noise-free original DVP signals. As a result, decomposed DVP
signals were chosen for percussion analysis using the conventional method after decomposition of the
original signal by EEMD (Figures 1 and 2). We combined the fifth and sixth decomposed intrinsic mode
functions (IMF5, IMF6) as decomposed DVP signals with high-frequency noise removed. Subsequently,
the potential differences between peaks and valleys (defined as the lowest point after a peak) were
defined as the pulse amplitudes of the decomposed DVP signals ({Amp}). In addition, {PPI} series were



Entropy 2020, 22, 754 4 of 16

calculated from IMF6 (sine wave-like), caused by the impact of the heartbeat on the DVP, as addressed
in [21]. The decomposed DVP and IMF6 signals had to be synchronized in the same way. Moreover,
we checked whether peaks calculated from decomposed DVP signals were in phase with those from
IMF6 or not. Finally, PEIPPI [21], PEI1st [18], and MEIPPI [16] were computed and compared with the
PEIDVP proposed in this study (Figure 3).
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Figure 1. Representative illustration of original digital volume pulse (DVP) signals for group 1 subject;
7 intrinsic mode functions and residue were decomposed after ensemble empirical mode decomposition
(EEMD). The amplitudes of intrinsic mode function (IMF) 5 and 6 were remarkably higher than those
of IMF1–4. Moreover, fluctuations resembling systolic and diastolic peaks were noted in IMF5. IMF6 is
sine wave-like, caused by the impact of the heartbeat on DVP signals from the fingertip, exhibiting a
frequency close to that of the heart rate (i.e., 8 beats/6 (s) = 1.333 Hz).
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presented in Figure 1. Energy distribution analysis for IMF5 and IMF6 showed that their frequency
distributions were as between 1–5 Hz. Hence, IMF5 and IMF6 were the noise-free component required
in this study.
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Figure 3. New percussion entropy index (PEIDVP) computation flowchart. Standard deviation of added
noise was set as α = 0.2, and trial number was 200 for ensemble empirical mode decomposition (EEMD).
As in [21], peak-to-peak interval of the sixth decomposed intrinsic mode function (IMF6) was used for
multiscale entropy index (MEIPPI) calculation. After removing high-frequency noise in the original
DVP signals, decomposed DVP signals (IMF5 and IMF6) were used for percussion entropy-based
index computation.

2.3.2. PEIDVP Calculation from Decomposed DVP Signals

We tried to generate a new index using only DVP signals considering surrogate data and cost
reduction in this study. That is, two specific time series were adopted: amplitudes of successive digital
volume pulse signals, and changes in RR intervals of successive cardiac cycles from decomposed
DVP signals.

• Synchronized {PPI} and {Amp} signals after EEMD {Amp} = {Amp1, Amp2, . . . , Ampn} for time
series of decomposed DVP amplitude signals and {PPI} = {PPI1, PPI2, . . . , PPIn} for the PPI of
IMF6 after EEMD were simultaneously synchronized for each subject.

{Amp} = {Amp1, Amp2, Amp3, . . . , Ampn} (1)

{PPI} = {PPI1, PPI2, PPI3, . . . , PPIn)} (2)

• Synchronized {U} and {V} signals for fluctuation patterns were computed as follows:

{U} = {U1 U2 U3 . . . Un}, Ui = 0, if Amp(i+1) 5 Ampi, or Ui = 1, if Amp(i+1) > Ampi (3)

{V} = {V1 V2 V3 . . . Vn}, Vi = 0, if PPI(i+1) 5 PPIi, or Vi = 1, if PPI(i+1) > PPIi (4)
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• The percussion rate for each scale factor τwas computed as

Pm
τ =

1
n−m− τ+ 1

∑n−m−τ+1

i=1
count(i). (5)

where m is the embedded dimension vectors and count(i) represents the match number between
{U(i)} and {V(i + τ)}. A summation of all the numbers of matches (i.e., percussion number in
Equation (5)) is thus obtained and divided by the total number of vectors of pattern, giving the
“percussion rate,” where m is the impact point (e.g., m is set to be 2).

• As previous study [19], PEIDVP calculation was as follows:

PEI (m, nτ) = ϕm(n) −ϕm+1(n). (6)

where ϕm(n) = ln (
∑nτ
τ=1 Pm

τ ), and nτ is the shift in number of scales considered.

Wei et al. [18] chose nτ = 5 (i.e., HbA1c independent shift number) for PEI1st in accordance
with MEISS. However, Xiao et al. proposed a speedy PEI index (PEINEW) [19] and chose nτ = 1 for
age-controlled healthy older subjects, nτ = 3 for diabetic subjects with good blood-sugar control (HbA1c
< 8), and nτ = 4 for diabetic subjects with poor blood-sugar control (HbA1c ≥ 8) (i.e., HbA1c dependent
shift number). Considering surrogate data and cost reduction (ECG was not used), PEIPPI was
addressed in [21] with an HbA1c independent shift number. In this study, we followed the latter study
in our choice of nτ with an HbA1c dependent shift number after EEMD for {PPI} and {Amp} from
decomposed DVP signals, and PEIDVP was subsequently presented (Figure 4).
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Figure 4. Flowchart of percussion entropy based index computations. Two synchronized
photoplethysmography (PPG) pulse amplitude (Amp) and RR interval (RRI) series were acquired
for PEI1st (i.e., the same as PEIoriginal and PEIRRI) and PEINEW. The difference between PEI1st and
PEINEW is in the shift number. Based on the previous findings, the baroreflex sensitivity regulation
capability could differ among different HbA1c controls. For HbA1c dependent shift number, the shift
number is set as 1 for subjects with HbA1c < 6.5, as 3 for subjects with 6.5 5HbA1c < 8, and as 4 for
subjects with HbA1c ≥ 8. Relatively, HbA1c independent shift number is always set as 5. On the
other hand, PEIDVP was calculated via decomposed digital volume pulses from the fingertip with
HbA1c dependent shift number, whereas PEIPPI was calculated via original {Amp} series and IMF6
with HbA1c independent shift number.
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2.4. Statistical Analysis

Data in Tables 1 and 2 are expressed as mean ± standard deviation. All tests were performed with
SPSS version 14.0 for Windows (SPSS Inc., Chicago, IL, USA). Normality was assessed both visually
(e.g., symmetry (skewness) and pointiness (kurtosis)) and with the Shapiro–Wilk test, provided by
the SPSS software. We tested whether the data had approximately normal distribution, and data
homoscedasticity was then verified. The comparisons of demographic, hemodynamic, anthropometric,
and serum biochemical information of the test subjects were analyzed using two independent-sample
t-tests with Bonferroni correction, and the differences between categorical variables were assessed using
a chi-square test. The significance of differences in anthropometric, hemodynamic, and parametric
values (PEIPPI, PEI1st, MEIPPI, and PEIDVP) among the groups was illustrated using independent sample
t-tests with Bonferroni correction. Pearson’s correlation test in SPSS was also used to verify correlations
between risk factors and the compared indices. A corrected p-value for multiple comparisons with
a test-specific significance level of 0.017 was regarded as statistically significant. The effects of risk
factors on the incidence of DPN in diabetic patients within 5 years of follow-up were tested by binary
logistic regression analysis [28] with the Hosmer–Lemeshow goodness-of-fit test, controlling for age,
waist circumference, low-density lipoprotein cholesterol, and the two PEI indices (PEIPPI and PEIDVP).

3. Results

3.1. Testing of Healthy and Diabetic Subjects

Table 1 shows the baseline characteristics of the three groups. Compared with test subjects in
healthy group 1, patients in group 2 were older and had higher body weight, waist circumference,
body mass index, triglyceride (TG) levels, TG/HDL cholesterol ratio, fasting blood glucose,
and glycosylated hemoglobin levels (all p < 0.001). It is worth mentioning that there were no
notable differences between groups 2 and 3 in any demographic, anthropometric, hemodynamic,
or serum biochemical information gathered from the test subjects (p > 0.017), as shown in Table 1.

Table 1. Characteristics of the study population.

Parameter

Group 1 Group 2 Group 3

N = 50 N = 55 N = 25

Female/Male Female/Male Female/Male

(27/23) (18/37) (10/15)

Age (years) 58.24 ± 9.38 67.20 ± 8.72 ** 62.48 ± 8.45
Body height (cm) 160.74 ± 6.90 159.49 ± 6.88 163.72 ± 8.82
Body weight (kg) 61.71 ± 9.98 67.92 ± 9.73 ** 71.76 ± 7.23

WC (cm) 83.72 ± 10.49 92.67 ± 8.43 ** 95.48 ± 6.59
BMI (kg/m2) 23.85 ± 3.41 26.70 ± 3.59 ** 26.94 ± 3.71
SBP (mmHg) 132.30 ± 36.37 126.45 ± 16.10 125.12 ± 30.33
DBP (mmHg) 81.22 ± 15.04 73.91 ± 9.89 * 71.84 ± 17.23
PP (mmHg) 52.60 ± 14.75 52.55 ± 12.37 53.28 ± 18.03

HDL (mg/dL) 51.82 ± 14.79 46.60 ± 15.98 39.28 ± 5.80
LDL (mg/dL) 121.15 ± 23.13 118.41 ± 38.38 105.28 ± 22.52

Cholesterol (mg/dL) 195.74 ± 40.65 179.30 ± 44.63 178.19 ± 28.57
Triglyceride (mg/dL) 99.71 ± 32.65 139.89 ± 65.41 ** 160.82 ± 62.74

TG/HDL 2.06 ± 0.97 3.54 ±2.31 ** 4.18 ± 2.38
FBS (mg/dL) 99.15 ± 17.88 148.22 ± 39.33 ** 158.24 ± 54.18
HbA1c (%) 6.03 ± 1.37 7.87 ± 1.32 ** 8.30 ± 1.45

Data are expressed as mean ± standard deviation. Group 1: healthy subjects; group 2: diabetic patients without
peripheral neuropathy within 5 years; group 3: diabetic patients with peripheral neuropathy within 5 years.
WC, waist circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP,
pulse pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG/HDL, triglyceride/HDL ratio; FBS,
fasting blood sugar; HbA1c, glycosylated hemoglobin. * p < 0.017 group 1 versus group 2, ** p < 0.001 group 1
versus group 2.
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3.2. Failure of Original DVPs to Detect Correct Amplitudes in Diabetic Patients

Figure 5 shows the failure of chaotic and subtle digital volume pulses measured at the fingertip
of the dominant hand to detect the amplitudes for two diabetic subjects (Figure 5b,c), as compared
with the stable peaks of a middle-aged nondiabetic subject (Figure 5a). The results can be attributed to
interfering noise, such as that observed in patients with impaired peripheral circulation and respiration,
and involuntary vibrations. By implementing EEMD, these noises were removed to obtain decomposed
DVP signals (IMF5 and IMF6) for the calculation of exact amplitude series.
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Figure 5. Digital volume pulse (DVP) signals, corresponding to decomposed sixth intrinsic mode
function (IMF6), and decomposed DVP signals (IMF5 and IMF6) from one representative subject in
each group: (a) subject A: healthy subject in group 1 (age: 49 years; WC: 88 cm; BMI: 23.8; HbA1c: 6.4%);
(b) subject B: diabetic patient without peripheral neuropathy in group 2 (age: 57 years; WC: 90 cm; BMI:
25.2; HbA1c: 8.4%); (c) subject C: type 2 diabetic patient with peripheral neuropathy within 5 years in
group 3 (age: 63 years; WC: 89 cm; BMI: 28.8; HbA1c: 10.1%). Peaks of DVP, IMF6, and decomposed
DVP were in phase for subject A. It was difficult to calculate exact amplitudes from DVP for subjects B
and C, due to high-frequency noise embedded in the original DVP signals. For all decomposed DVP
signals, exact amplitudes could be calculated easily and accurately. Intuitively, the decomposed DVP
signals can be regarded as noise-free original DVP signals for (a–c).
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3.3. Assessment of Agreement between Amplitudes from Original and Decomposed DVPs

Figure 6 was prepared to verify the hypothesis that the decomposed DVP (IMF5 and IMF6) signals
could replace the original DVP for amplitude series determination. Figure 6a shows Bland–Altman
plots of these two measurements ({Amp} from decomposed and original DVP) for a subject from
group 1. Good agreement was shown between the two measurements for the test subject. In addition,
In Figure 6b, the strength of association between the variables is very high (r = 0.92), and the correlation
coefficient is very highly significantly different from zero (p = 0.001).
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3.4. Performance Comparison of PEIDVP, PEIPPI, PEI1st, and MEIPPI to Differentiate Future Peripheral
Neuropathy Prognoses in Type 2 Diabetic Patients

The results of comparing the three previous indices (MEIPPI, PEI1st, and PEIPPI) with the proposed
PEIDVP using Equation (6) in BRS evaluation of autonomic function assessment in the three groups are
shown in Table 2.
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MEIPPI and PEI1st were significantly higher in group 1 than group 2 (p < 0.001); however, there was
not a statistically notable difference between groups 2 and 3. Relatively, PEIDVP and PEIPPI successfully
discriminated between the test subjects in the three groups with statistically significant differences (all
p < 0.017) (Table 2). Diabetic patients without DPN within five years (group 2) had significantly higher
PEIDVP than those who had developed DPN within five years (group 3) (0.63 ± 0.08 vs. 0.57 ± 0.08,
p = 0.007, 95% CI of difference 0.016 to 0.095) (Table 2).

Table 2. Performance comparison among the three groups of test subjects for baroreflex sensitivity
(BRS) and autonomic function assessment.

Parameters Group 1 (N = 50) Group 2 (N = 55) Group 3 (N = 25)

MEIPPI 0.52 ± 0.18 0.37 ± 0.20 ** 0.36 ± 0.19
PEI1st 0.71 ± 0.05 0.59 ± 0.11 ** 0.61 ± 0.11
PEIPPI 0.68 ± 0.03 0.66 ± 0.04 * 0.63 ± 0.06 †

PEIDVP 0.83 ± 0.18 0.63 ± 0.08 ** 0.57 ± 0.08 †

Data are expressed as mean ± standard deviation. Group 1: healthy subjects; group 2: diabetic patients without
peripheral neuropathy within the study period; group 3: diabetic patients with peripheral neuropathy. MEIPPI:
mean value of sample entropy on a scale from 1 to 5 using the {PPI} dataset only [16]. PEI1st: percussion entropy
index using synchronized {RRI} and {Amp} from original DVPs [18]. PEIPPI: percussion entropy index using
synchronized {PPI} and {Amp} from original DVPs [21]. PEIDVP: percussion entropy index using synchronized
{PPI} and {Amp} from decomposed DVPs in this study. * p < 0.017 group 1 versus group 2, ** p < 0.001 group 1
versus group 2, † p < 0.017 group 2 versus group 3. p-value of unpaired student t-test less than 0.017 was noted as
statistically significant in this study.

3.5. Effects of Risk Factors

3.5.1. Correlation of Risk Factors with PEIDVP, PEIPPI, PEI1st, and MEIPPI

The associations of computational indices (MEIPPI, PEI1st, PEIPPI, and PEIDVP) with anthropometric
(body weight and waist circumference) and serum biochemical (low-density and high-density
lipoprotein cholesterol, triglycerides, triglyceride/HDL cholesterol ratio, fasting blood glucose,
and glycated hemoglobin) factors of the three groups of test subjects were determined and analyzed
using the Pearson correlation test in SPSS (Table 3). Compared to PEIPPI, PEIDVP was associated with
more risk factors.

Table 3. Associations of anthropometric and serum biochemical risk factors with parameters in all
test subjects.

Risk Factor
MEIPPI PEI1st PEIPPI PEIDVP

r p r p r p r p

Age (years) −0.21 0.02 −0.14 0.09 −0.01 0.90 −0.13 0.12
BW (kg) −0.05 0.52 −0.26 <0.001 −0.02 0.80 −0.30 <0.001
WC (cm) −0.11 0.21 −0.33 <0.001 −0.07 0.46 −0.31 <0.001

LDL (mg/dL) 0.04 0.64 0.12 0.15 0.13 0.13 0.05 0.56
HDL (mg/dL) 0.09 0.31 0.19 0.03 0.03 0.70 0.16 0.05
TG (mg/dL) −0.01 0.93 −0.30 <0.001 −0.04 0.61 −0.29 <0.001

TG/HDL −0.02 0.76 −0.30 <0.001 −0.01 0.91 −0.28 <0.001
FBS (mg/dL) −0.24 <0.001 −0.33 <0.001 −0.12 0.17 −0.37 <0.001
HbA1c (%) −0.21 0.01 −0.38 <0.001 −0.19 0.02 −0.34 <0.001

MEIPPI: mean value of sample entropy on a scale from 1 to 5 using {PPI} dataset only [16]. PEI1st: percussion
entropy index using synchronized {RRI} and {Amp} from original DVPs [18]. PEIPPI: percussion entropy index using
synchronized {PPI} and {Amp} from original DVPs [21]. PEIDVP: percussion entropy index using synchronized
{PPI} and {Amp} from decomposed DVPs. r: Pearson’s correlation coefficient is a measure of the linear correlation
between index (e.g., MEIPPI, PEI1st, PEIPPI, and PEIDVP) and risk factor. It has a value between +1 and −1; 1 stands
for total positive linear correlation, 0 means no linear correlation, and −1 signifies total negative linear correlation.
p-values less than 0.05 were considered statistically significant.BW, body weight; WC, waist circumference; LDL,
low-density lipoprotein; HDL, high-density lipoprotein; TG, triglyceride; TG/HDL, triglyceride/HDL cholesterol
ratio; FBS, fasting blood sugar; HbA1c, glycosylated hemoglobin.
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3.5.2. Effects of Risk Factors Associated with the Risk of Developing DPN

Multivariate analysis showed that subjects without DPN within five years (group 2) had higher
PEIDVP and PEIPPI values than those with DPN within five years (group 3) (Table 2), as determined
by logistic regression model [30] in SPSS (PEIDVP: odds ratio 0.913, 95% CI 0.850 to 0.980; PEIPPI:
odds ratio 0.887, 95% CI 0.791 to 0.994).

Multivariate logistic regression analysis with a backward stepwise approach (likelihood ratio)
in SPSS for incidence risk factors of DPN was conducted; the estimated model was with the
Hosmer–Lemeshow test: χ2 = 10.03, degrees of freedom = 8, p = 0.263. R2 for logistic regression:
Cox–Snell R2 = 0.243 and Nagelkerke R2 = 0.342. Overall percentage in classification table = 76%.
There were four significant covariables in the fitted model: age (p = 0.011), waist circumference
(p = 0.025), low-density lipoprotein (p = 0.031), and PEIDVP (p = 0.017).

3.6. Computation Time for PEIDVP, PEIPPI, and PEI1st in All Test Subjects

The computation times for the three indices for both nondiabetic and diabetic test subjects were
obtained and compared. For this purpose, a personal computer (PC) was used, with specifications as
follows: Hasee Notebook with Intel (R) Core (TM) i7-8750H CPU@2.200 GHz 2.20 GHz, Windows
10 Home. The computation program MATLAB R2016b (MathWorks Inc., Natick, MA, USA) was
adopted. Two “tic” and “toc” instructions from the MATLAB package were used for the computation
of CPU time.

Computation times for PEIDVP, PEIPPI, and PEI1st for all subjects were computed and compared
(Table 4). There are no differences in CPU time for PEIDVP and PEIPPI. However, both PEIDVP and
PEIPPI need decomposing time for EEMD computation, whereas PEI1st can save EEMD decomposing
time (Table 4).

Table 4. Computation times for PEIDVP, PEIPPI, and PEI1st in all test groups.

Computation Time for Index Group 1 Group 2 Group 3

PEI1st
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CPU time for index (ms) 6.16 ± 0.86 17.69 ± 1.54 ** 17.88 ± 1.64

PEI1st: percussion entropy index using synchronized {RRI} and {Amp} from original DVPs [18]. PEIPPI: percussion
entropy index using synchronized {PPI} and {Amp} from original DVPs [21]. PEIDVP: percussion entropy index
using synchronized {PPI} and {Amp} from decomposed DVPs. Group 1: healthy subjects; group 2: diabetic
patients without peripheral neuropathy in study period; group 3: diabetic patients with peripheral neuropathy.
** p < 0.001: group 1 vs. group 2. Average EEMD time: CPU time for 3000 point DVP signals by ensemble empirical
mode decomposition.

4. Discussion

To quantify the asynchronism between two time series, many entropy-based analysis indices have
been used in different research fields, including medicine, mechanics, civil engineering, environment,
and finance [15]. To validate whether the dissimilarity of constitutive patterns in synchronized signals
(i.e., {Amp} and {PPI} derived from decomposed DVP) in these two states could predict the severity
of peripheral neuropathy impairment in this retrospective study, we looked backwards to examine
exposure to suspected risk or protection factors in relation to an outcome established at the start of the
study (i.e., diabetic patients who developed DPN five years after baseline measurement). As a result,
decomposed DVP signals were chosen for percussion analysis using the conventional method after
decomposition of the original signal by EEMD (Figures 1 and 2). The decomposed DVP signals can be
regarded as noise-free original DVP signals in Figure 5.
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There were no statistically notable differences between the diabetic patients in groups 2 and
3 in anthropometric, hemodynamic, demographic, or serum biochemical parameters (all p > 0.017)
(Table 1). That is, using these parameters, it would be very difficult to predict how many and which
patients would develop peripheral neuropathy within five years. Previous studies [18,20] in which
ECG and PPG signals were used proposed PEI1st and presented its sensitivity in differentiating between
diabetic subjects without DPN (e.g., with high PEI1st) and with DPN (e.g., with low PEI1st). However,
an electrocardiogram (ECG) device is not convenient for some real-time applications. Considering cost
reduction, PEIPPI was addressed in [21], in which EEMD was used to separate noises to acquire refined
DVP signals (IMF6) for exact PPI calculation in clinical applications. Nevertheless, accurate amplitude
calculation from unstable DVP signals is still a problem, as there is always high-frequency noise
around the peaks. After EEMD was conducted as proposed in [27,31], the DVP signals measured from
fingertips were decomposed as many IMFs (the same IMF6 as used in [21]). In this study, IMF6 and
IMF5 (fluctuations resembling systolic and diastolic waveforms in [25]) were added as noise-free
decomposed DVP signals. We successfully identified the systolic and diastolic peaks proposed in [32]
from the IMF5 component through EEMD for the diabetic patients (Figures 2 and 3). Hence, this study
looked at the results from PEIDVP, which showed statistically notable differences between all pairs
of groups (group 1 versus group 2 versus group 3: 0.83 ± 0.18 versus 0.63 ± 0.08 versus 0.57 ± 0.08,
all p < 0.017) (Table 2), which was consistent with the same finding in [33].

Poor glycemic control is a well-known risk factor for DPN [34,35]. In this study, out of the
25 diabetic patients in group 3, 11 had good blood-glucose control (HbA1c < 8%), and the other
14 had poor blood-glucose control (HbA1c = 8%). Thus, 44% of DPN patients (11 out of 25) had
good blood-glucose control at baseline measurement, but unfortunately developed further peripheral
neuropathy within the study period. These results were consistent, and the associations of PEIDVP

with anthropometric (body weight and waist circumference) and serum biochemical (triglycerides,
high-density lipoprotein cholesterol, fasting blood glucose, and glycated hemoglobin) parameters of
all test subjects were statistically significant (Table 3). That is, another option (except for appropriate
glucose control) exists for diabetic patients. Low PEIDVP in a diabetic patient is recognized as the
primary factor in prognosis (i.e., whether the patient is going to develop DPN in the near future), and is
still considered the key component in clinical practice [36]. Previous study [36] demonstrated that
a useful diagnosis is defined by patient prognosis. In this study, low PEIDVP in a diabetic patient is
recognized as the primary factor in prognosis (i.e., whether the patient is going to develop DPN in
the near future). In addition, there is another important issue: we need to know the suspected risk or
protective factors in relation to an outcome (e.g., diabetic patients developing DPN five years after
baseline measurement) by using logistic regression analysis [30] in SPSS (PEIDVP: odds ratio 0.913,
95% CI 0.850 to 0.980; PEIPPI: odds ratio 0.887, 95% CI 0.791 to 0.994). The results confirmed again that
both PEIDVP and PEIPPI were protective factors with regard to the binary outcome (i.e., whether diabetic
patients developed DPN or not within five years after baseline measurement). Based on previous
findings [19], the baroreflex sensitivity regulation capability could differ among different levels of
HbA1c control. PEIDVP was calculated via decomposed digital volume pulses from the fingertip
with HbA1c dependent shift number, whereas PEIPPI was calculated via original {Amp} series and
IMF6 with HbA1c independent shift number (Figure 4). Accordingly, Figure 4 and Table 4 report
percussion entropy based index computations. The computation times for PEI indices were determined
by decomposing time for EEMD and CPU time for the index computations. The indices with HbA1c
dependent shift number can save computation time (PEINEW and PEIDVP). The results in Table 4 show
that CPU time for decomposed DVP signals by ensemble empirical mode decomposition would take
longer. It goes without saying that the proposed method could be used in real time clinical applications
in the near future.

This study still had some limitations. As a retrospective study, the number of test subjects enrolled
was relatively small. Second, PEIDVP was more complex for IMF5 and IMF6 computation than PEI1st,
but the number of scales was smaller (five for PEI1st, three or four for PEIDVP in Equation (6); Figure 4).
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Third, real-time processing was not possible for PEIDVP computation because EEMD requires many
operations. PEIDVP information could not be provided immediately to the test subjects. In the future,
using a real-time LabVIEW-based package could overcome this problem.

5. Conclusions

This study not only highlights that PPG-derived decomposed digital volume pulse signals
can be freed of high-frequency noise by ensemble empirical mode decomposition and can be a
major contributor to successfully determining amplitudes and stable peak-to-peak interval series
(i.e., synchronized {Amp} and {PPI} signals), but also recommends the possible clinical application of
a new percussion entropy index (PEIDVP) for use as a prognostic indicator of a protective factor for
diabetic patients with peripheral neuropathy dysfunction.
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