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The energy-level crossing behavior 
and quantum Fisher information 
in a quantum well with spin-orbit 
coupling
Z. H. Wang1,2, Q. Zheng2,3, Xiaoguang Wang4 & Yong Li2,5

We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba 
and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic 
Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via 
performing a unitary transformation. We find that the energy-level crossing can occur in the quantum 
well system within the available parameters rather than in cavity and circuit quantum eletrodynamics 
systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive 
explanation from the viewpoint of the stationary perturbation theory is given.

In semiconductor physics, the spin-orbit coupling (SOC), which is available to generate the so-called spin-orbit 
qubit1, is widely studied in the field of both spintronics2 and quantum information3. In the low dimensional sem-
iconductor, there exist two types of SOCs, that is the Rashba SOC which comes from the structure inversion4 and 
the Dresselhaus SOC which comes from the bulk-inversion asymmetry5. In general cases, the two types of SOCs 
coexist in a material6.

The spin properties of the electron(s) in a semiconductor material have been studied widely and it shows that 
some novel features emerge when the SOC is present. Among the various properties, the ones for the ground state 
play crucial roles. In this paper, we study the ground state of the electron in a semiconductor quantum well, which 
is subject to the Rashba and Dresselhaus SOCs as well as a perpendicular magnetic field. The Hamiltonian in this 
two-dimensional structure can be mapped onto a Hamiltonian describes a qubit interacting with a single bos-
onic mode, where the spin degree of freedom of the electron serves as the qubit and the orbit degree of freedom 
serves as the bosonic mode7,8. Furthermore, the Rashba SOC contributes to the rotating wave interaction and the 
Dresselhaus SOC contributes to the counter-rotating wave interaction. When the strengths and/or the phases 
of the two types of SOCs are not equal to each other (this is the usual case in realistic material), the mapped 
Hamiltonian is actually an anisotropic Rabi model9 in quantum optics.

With the available parameters in quantum well systems, it will undergo the energy-level crossing between the 
ground and first excited states as the increase of SOC strength. This kind of energy-level crossing will induce a 
large entanglement for the ground state, and have some potential applications in quantum information process-
ing. Also, the steady state of the system when the dissipation is present is also affected greatly by the energy-level 
crossing. Although the same form of Hamiltonian (i.e., anisotropic Rabi Hamiltonian) can also be achieved in 
cavity and circuit quantum electrodynamics (QED) systems, such a crossing would not occur since the related 
coupling between the bosonic mode and the qubit is too weak. In this paper, we analytically give the cross-
ing strength of Rashba SOC in which the energy-level crossing occurs when the Dresselhaus SOC is absent. 
Furthermore, we study the crossing phenomenon numerically when both of the two kinds of SOCs are present.

The energy-level crossing behavior in our system is similar to the superradiant quantum phase transition in 
the Dicke model10, where the quantum properties (e.g., the expectation of photon number in ground state) are 
subject to abrupt changes when the coupling strength between the atoms and field reaches its critical value11. 
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Recently, it is found that the quantum Fisher information (QFI) is a sensitive probe to the quantum phase transi-
tion12,13. This inspires us to investigate the relation between the QFI and energy-level crossing in our system. The 
QFI, as a key quantity in quantum estimation theory, is introduced by extending the classical Fisher information 
to quantum regime, and can characterize the sensitivity of a state with respect to the change of a parameter. The 
QFI is also related to quantum clone14,15 and quantum Zeno dynamics16. In our system, we find that there exists an 
abrupt change in the QFI at the crossing point, so that the QFI can be regarded as a signature of the energy-level 
crossing behavior in quantum well system. Furthermore, the QFI increases with the increase of the Dresselhaus 
SOC. As the increase of Rashba SOC strength, the QFI nearly remains before the crossing but decreases monot-
onously after it. Actually, the QFI has a close connection with the entanglement17, and can be used to detect the 
entanglement18, so our results can be explained from the viewpoint of the entanglement and intuitively under-
stood based on the stationary perturbation theory.

Results
System and Hamiltonian.  We consider an electron with mass m0 and effective mass m moving in a two-di-
mensional xy plane, which is provided by a semiconductor quantum well. The electron is subject to the Rashba 
and Dresselhaus SOCs, and a static magnetic field in the positive z direction, i.e., = = ∇ ×







B Be Az . The 
Hamiltonian of the system is written as7

µ σ= Π + Π + +H
m

g B H1
2

( ) 1
2

, (1)x y B z
2 2

so

where Πx Π( )y  is the x- (y-) direction component of the canonical momentum Π ≡ +
�� �� ��

p eA with 
��
p the mechan-

ical momentum and 


A the vector potential. g is the Lande factor, and µ = e m/2B 0  is the Bohr magneton, σx,y,z are 
the Pauli operators. Here, ħ is the Plank constant and = +e e  is the electronic charge.

The last term in Hamiltonian (1), representing the SOCs, can be divided into two terms Hso =  HR +  HD, where

α σ σ= Π − ΠH ( ), (2)R x y y x

β σ σ= Π − Π .H ( ) (3)D x x y y

The Hamiltonian HR and HD represent the Rashba4 and Dresselhaus SOCs5 term, respectively. α and β, which 
are real and in units of velocity, describe the related strengths of the two types of SOCs and are determined by the 
geometry of the heterostructure and the external electric field across the field, respectively19.

Since we consider that 
��
B is along the positive direction of z axis, it is natural to choose the vector potential as 

= −


A B y x( , , 0)/2. By defining the operator7

= Π − Πb
eB

i1
2

( ),
(4)x y

it is easy to verify that [b, b†] =  1, so b (b†) can be regarded as a bosonic annihilation (creation) operator.
In terms of b and b†, the Hamiltonian can be re-written as

σ
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where σ± =  σx ±  iσy, and the parameters are calculated as

= =E eB
m

E geB
m

,
2

,
(6)

b a
0

 

 λ α λ β= = .i eB eB2 , 2 (7)1 2

Thus, we have mapped the Hamiltonian in quantum well with SOCs onto a standard anisotropic Rabi 
model9,20–23 which describes the interaction between a qubit and a single bosonic mode. Here the spin and orbit 
degrees of freedom serve as the qubit and bosonic mode respectively. In the language of quantum optics, the first 
two terms in Eq. (5) are the free terms of the boson mode with eig-energy Eb and the qubit with the transition 
energy Ea respectively. The first term as well as its hermitian conjugate in the braket in Eq. (5) represents the 
rotating-wave coupling with strength λ1  and the second term as well as its hermitian conjugate represents the 
counter-rotating coupling with strength λ2 , the relative phase between these two kinds of coupling is π/2 [see 
Eq. 7(b)]. Actually, such kind of mapping from spintronics to quantum optics can also be performed when an 
additional harmonic potential is added to confine the spatial movement of the electron8,24.

In our system, both of the bare energies of the qubit and bosonic mode as well as their coupling strength can 
be adjusted by changing the amplitude of the external magnetic field, so that the coupling strength can be either 
smaller or even (much) larger than the bare energies, this fact will lead to some intrinsic phenomena, such as the 
energy-level crossing25,26, which will be studied in what follows.
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The energy-level crossing.  To investigate the energy-level crossing in our system, we begin with the case 
without the Dresselhaus SOC analytically, and the crossing behavior for the full Hamiltonian will be numerically 
discussed subsequently.

When the Dresselhaus SOC is absent (β =  0, then λ2 =  0), the mapped Hamiltonian reduces to the exact 
Jaynes-Cummings (JC) Hamiltonian where the excitation number is conserved. The eigen-state without excita-
tion is = = ⊗E g g0; : 0 o s0 , which represents that the orbit degree of freedom is in the bosonic vacuum 
state and the spin degree of freedom is in its ground state (actually, is the spin-down state because the magnetic 
field is in + z direction in our consideration). The corresponding eigen-energy is E0 =  − Ea/2. In the subspace with 
only one excitation, the pair of dressed states are

θ θ
+ = − +g i e1 cos

2
1; sin

2
0; , (8)

θ θ
− = −e i g1 cos

2
0; sin

2
1; , (9)

and the corresponding eigen-energies are

λ= ± ∆ + .±E E
2

1
2 (10)

b
1

2
1

2

In the above equations, we have defined ∆ = −E E: b a, and

θ λ= ∆.tan / (11)1

Using the above results, it is shown that the ground state of the system is either the separated state E0  when 
E1− >  E0, or the entangled state −1  when E1− <  E0. A simple calculation gives the crossing Rashba SOC strength 
λ( )c

1  which distinguishes the entangled from separated ground state as

λ = .E E2 (12)c
a b1

On the other hand, when the Dresselhaus SOC is present, the mapped Hamiltonian yields an anisotropic Rabi 
Hamiltonian, in which the rotating-wave term and the counter-rotating-wave term coexist. In this case, the con-
servation of the excitation is broken, that is, σ + ≠†b b H[ /2 , ] 0z . The analytical solution of quantum Rabi model 
(λ1 =  λ2) was originally obtained by Braak27 and was developed to the case of anisotropic Rabi model (λ1 ≠  λ2)9. 
Their results however are based on a composite transcendental function defined by power series, and are difficult 
to extract the fundamental physics.

To deal with the counter-rotating-wave coupling term approximately, we now resort to a unitary transforma-
tion to the Hamiltonian H20,28–30,

′ = −H e He (13)S S

with

ξ ξ σ= −† ⁎S b b( ) , (14)x

where the parameter ξ is to be determined. The detailed calculation is given in the method, and the final effective 
Hamiltonian is approximately obtained as H′  ≈  Ha +  Hb, where
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with η= − E E E:a a b, ξ λ λ= −

⁎E : Re[ ( )]b 1 2 , and η = ξ−e 2 2
.

It is obvious that the approximate Hamiltonian H′  has a similar form as the JC Hamiltonian, and the 
eigen-energies in the zero- and one-excitation subspace are obtained as
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The energy-level crossing then occurs when =−E Ed d
1 0 . In Fig. 1, we plot the energy gap ∆ = −−E E E:d d d

1 0  as 
a function of α and β.

As shown in Fig. 1, for small α, ∆ >E 0d , and the ground state is
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−G e g0;
1
2

( ; ; ),
(22)

S
1

where ±  are the eigen-states of the Pauli operator σx satisfying σ ± = ± ±x , and ξ±  are the bosonic 
coherent states with amplitudes ± ξ.

As the increase of α, the energy-level crossing occurs, that is, ΔEd becomes negative, and the ground state 
becomes
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Quantum Fisher information of the ground state.  From now on, the QFI of the ground state is 
adopted to further characterize the energy-level crossing behavior and we will study its dependence on α and β in 
details. We will also give an intuitive explanation about the obtained results based on the stationary perturbation 
theory.

The so-called quantum Cramér-Rao (CR) inequality, obtained by extending the classical CR inequality to 
quantum probability and choosing the quantum measurement procedure for any given quantum state to maxi-
mize the classical CR inequality, gives a bound to the variance ϕ


Var( ) of any unbiased estimator ϕ



31,

ϕ ≥
ϕ



N F
Var( ) 1 ,

(25)

where Fϕ is the QFI and N is the number of independent measurements. A larger QFI corresponds to a more 
accurate estimation to the parameter ϕ. Moreover, the QFI is connected to the Bures distance31 through

ρ ρ ϕ=ϕ ϕ ϕ ϕ+D F d[ , ] 1
4

, (26)B d
2 2

where the Bures distance is defined as ρ σ ρ σρ=
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

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−




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Figure 1.  The energy gap as a function of α and β. The parameters are chosen as g =  1.52, m0 =  9 ×  10−31 kg, 
m =  0.15m0, B =  0.01 T. Under these parameters, we will have ≈ .E / 1 35GHza  , ≈ .E / 1 70GHzb  , and 
λ λ α β| | | | ≈ . ×( / , / ) 5 52 ( , )MHz1 2  .
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For an arbitrary given quantum state, its QFI can be determined by the spectrum decomposition of the state. 
Fortunately, for a pure quantum state ψ , its QFI with respect to the parameter ϕ has a relatively simple form as32–35

ψ ψ ψ ψ= 〈∂ |∂ 〉 − |〈 |∂ 〉| .ϕ ϕ ϕ ϕF 4( ) (27)
2

In what follows, we will consider the external magnetic field B as the parameter to be estimated, and study the 
corresponding QFI for the ground state of the system under consideration.

Before the energy-level crossing occurs (ΔEd >  0), the ground state of the system is G1  in Eq. (22). Its corre-
sponding QFI with respect to the external magnetic field B is given as

ξ
=

∂
∂

F
B

4
(28)B

2

after some straightforward calculations.
After the energy-level crossing occurs (ΔEd <  0), the ground state is G2  in Eq. (23). The expression of the 

related QFI of the ground state with respect to B is tedious and we will only give the numerical results here.
In Fig. 2(a), we plot the QFI as a function of α and β. It obviously shows that the QFI undergoes a sudden 

change when the energy-level crossing occurs. Therefore, the QFI of the ground state can be regarded as a witness 
of the energy-level crossing behavior.

Furthermore, in Fig. 2(b), we plot the QFI as a function of α for different values of β. On one hand, the QFI 
nearly keeps constant when α approaches the crossing point from small values, and decreases monotonously 
when α surpasses the crossing value αc (αc ≈  550 m/s within our chosen parameters and it corresponds to 

Figure 2.  (a) The QFI FB of the ground state with respect to the external magnetic field B, as a function of α and β. 
(b) FB as a function of α for different β. (c) FB as a function of β for different α. The other parameters are the same 
as those in Fig. 1.
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λ ≈/ 3GHzc
1  ). On the other hand, a larger β will lead to a larger QFI, which implies a more precise measure-

ment about the magnetic field. This result is also demonstrated in Fig. 2(c), where the QFI is plotted as a function 
of β for different values of α. It shows that the curves for α =  200 m/s and α =  400 m/s, which are both below the 
crossing values, coincide with each other. As for the values above the crossing point, we observe a decreasing 
behavior of QFI as the increase of α, for example, the QFI for α =  600 m/s is larger than that for α =  800 m/s as 
shown in Fig. 2(c).

The above results can be naturally recovered to the case of β =  0 (i.e., only the Rashba SOC is present). In 
Fig. 3, we plot the QFI of the ground state for β =  0 based on the approximate Hamiltonian H′  ≈  Ha +  Hb after the 
transformation (see the empty circles). Actually, in the case of β =  0, we can also obtain the QFI of the ground 
state exactly according to the Hamiltonian H without the transformation. As shown in the above discussions, in 
this case the ground state is the separated state g0;  [the entangled one −1  in Eq. (9)] before (after) the 
energy-level crossing occurs. The corresponding QFI with respect to B is FB(β =  0) =  0 for g0;  or 
β θ= = ∂F ( 0) ( )B B

2 for −1  according to the general formula of QFI in Eq. (27). This exact result of the QFI 
FB(β =  0) is plotted in Fig. 3 (see the solid line). We find that these approximate and exact results agree well with 
each other and the QFI shows a sensitive dependence on α after the energy-level crossing occurs.

The dependence of QFI on the strengths of the Rashba and Dresselhaus SOCs can be explained from the 
viewpoint of the stationary perturbation theory qualitatively as what follows. In our consideration, the strength 
of Dresselhaus SOC is much weaker than that of the Rashba SOC and the bare energy of spin/orbit degree of the 
freedom, so it can be regarded as a perturbation. In this sense, the mapped Hamiltonian [Eq. (5)] can be divided 
into H =  H0 +  HI, where the un-perturbation part is

σ
λ
σ

λ
σ= + +





+


− +

† †
⁎

H E b b E b b
2 2 2

,
(29)b

a
z0

1 1

and the perturbation part is

λ
σ

λ
σ=





+


.− +

⁎
†H b b

2 2 (30)I
2 2

For small α or λ1 , the ground state of H0 is g0;  which is independent of the field B and yields a zero QFI. The 
perturbation part, which is contributed from the Dresselhaus SOC, mixes the state g0;  with e1; , yields an 
entangled ground state and gives a non-zero β λ( )2  dependent QFI. It is obvious that the Dresselhaus SOC will 
enhance the entanglement, so that the QFI also increases as β becomes larger.

For large α or λ1 , the energy-level crossing occurs, and the ground state of H0 becomes the wave function 
given in Eq. (9), which is an entangled state, yields a non-zero QFI. Furthermore, the entanglement decreases 
(increases) with the increase of α (β), and so the QFI behaves in a similar way.

Method
By applying the unitary transformation defined in Eq. (13), the Hamiltonian H′  is obtained as H′  =  Ha +  Hb +  Hc where

σ σ= + − +




†H E E E b b E
2

( ) , (31)a
a

z b b z

λ λ ξ σ

ησ
λ λ

=
+ − + . .

−
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− 
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

†

†

H E b h c

i E E b h c

[( 4 ) ]
4

4
,

(32)

b
b x

y a c

1 2

1 2

Figure 3.  The QFI FB of the ground state with respect to the external magnetic field B, as a function of 
α when β = 0. The other parameters are same as those in Fig. 1. Here, we use the solid line to represent the 
approximate result (which is obtained based on the approximate Hamiltonian H′  ≈  Ha +  Hb) and the empty 
circles to represent the exact result.
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with ξ λ λ= −

⁎E i: Im[ ( )]c 1 2 . Here λ λ ξη σ= − + . .

†O b h c: ( ) /2z1 2
2  corresponds to the “two-photon” processes. 

We have also defined κ ξ ξ η= − −† ⁎^ b b: cosh[2( )]1  and κ ξ ξ ξ ξ= − − −† ⁎ † ⁎^ b b b b: sinh[2( )] 2( )2 , which are 
in the order of ξ 2 and ξ 3, respectively.

When ξ  1 (which is valid as shown in what follows), we will neglect Hc and then H′  ≈  Ha +  Hb. For further 
simplicity, we can properly choose ξ to eliminate the counter-rotating-wave terms in Hb, for which ξ satisfies

η
λ λ

ξ ξ λ λ ξ



+

−


 = + − −−

E E E
4

1
4

( ) ,
(34)b a c

1 1 2
1 2

and then

λ λ
ξ σ=




+

−


 + . .−

†H E b h c
2

2
(35)b b

1 2

Thus, the approximate Hamiltonian H′  ≈  Ha +  Hb can be solved exactly.
We note that, when both λ1 and λ2 are real numbers, ξ is also real, then our transformed Hamiltonian and the 

equation ξ satisfies coincide exactly with those in a recent paper20. However, as shown in Eq. (7), here λ1 is a pure 
imaginary number and λ2 is a real number, so that ξ is a complex number. We numerically solve Eq. (34), and plot 
the real and imaginary parts of ξ in Fig. 4 as functions of α and β for B =  0.01 T. It is obvious that ξ  is indeed 
much smaller than 1, so that we can safely neglect the effect of Hc which is at least in the order of ξ 2.

Discussion
We have shown that the Hamiltonian in the two-dimensional quantum well system can be mapped as an  
anisotropic Rabi model. Actually, the anisotropic Rabi model can also be realized in various systems, e.g., in the 
cavity or circuit QED systems. In a typical cavity QED system, in which the atom interacts with the optical cavity 
mode, the frequencies of the atomic transition and the cavity mode are of the order of 104 −  105 GHz, and the 
coupling strength reaches hundreds of MHz36. In a typical circuit QED system, where the artificial atom (super-
conducting qubit) couples to the transmission line resonator, the frequencies of the qubit and the resonator are 
about several GHz, and the coupling strength can be realized by hundreds of MHz37,38. In these two kinds of sys-
tems, which motivate many research interests during the past decades, the energy-level crossing can hardly occur 
since the coupling strength is not strong enough. However, the energy-level crossing can be available in  
the realistic quantum well material. Taking the AlAs material as an example, the Lande factor is g =  1.52,  
the mass of electron is m0 =  9 ×  10−31 kg, and the effective mass is m =  0.15m0 39. When the quantum well is  
subject to a magnetic field B =  0.01 T in + z direction, we will have  ≈ .E / 1 35GHza , ≈ .E / 1 70GHzb  , and 

Figure 4.  The real and imaginary parts of ξ as functions of α and β. The parameters are same as those in Fig. 1.



www.nature.com/scientificreports/

8Scientific Reports | 6:22347 | DOI: 10.1038/srep22347

λ λ α β| | | | ≈ . ×( / , / ) 5 52 ( , )MHz1 2  . When choosing the parameters α in the order of hundreds of m/s and β 
in the order of tens of m/s, which can be achieved easily with the recent available experimental techniques7, the 
coupling strength could be in the same order or even larger than the energies Ea and Eb. Therefore, the 
two-dimensional quantum well system provides a promising platform to simulate the energy-level crossing 
behavior and related phenomenon.

We would like to note that here we just focus on studying the QFI of the ground state (instead of excited states) 
to witness the energy-level crossing behavior. This is due to the fact that the property of the ground state is the 
simplest one to investigate but demonstrates clearly the energy-level crossing behavior in the quantum system 
under consideration, and the ground state is relative to the steady state when the dissipation is considered. This 
is similar to the case of the studies of quantum phase transition in the Dicke model, where only the QFI of the 
ground state is enough to probe the quantum phase transition12.

In summary, we investigate the energy-level crossing behavior and the QFI of the ground state with respect 
to the external magnetic field in a semiconductor quantum well. The Hamiltonian of the system with the Rashba 
and Dresselhaus SOCs simultaneously is mapped onto an anisotropic Rabi model in quantum optics. We find that 
although the mapped Hamiltonian is similar to that in cavity and circuit QED systems, the energy-level crossing 
behavior only occurs in our current system with the available parameters. As a probe of the energy-level crossing 
in our system, we discuss the QFI of the ground state and find that the QFI exhibits different dependencies on the 
strengths of the Rashba and Dresselhaus SOCs and has a sudden jump when the crossing happens. Based on the 
stationary perturbation theory, we give an intuitive explanation to the results.
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