
DNA methylation loci
identification for pan-cancer
early-stage diagnosis and
prognosis using a newdistributed
parallel partial least squares
method

Qi-en He1, Jun-xuan Zhu1, Li-yan Wang1, En-ci Ding2 and
Kai Song1*
1School of Chemical Engineering and Technology, Tianjin University, Tianjin, China, 2Tianjin First
Central Hospital, Tianjin, China

Aberrant methylation is one of the early detectable events in many tumors,

which is very promising for pan-cancer early-stage diagnosis and prognosis. To

efficiently analyze the big pan-cancer methylation data and to overcome the

co-methylation phenomenon, a MapReduce-based distributed and parallel-

designed partial least squares approach was proposed. The large-scale high-

dimensional methylation data were first decomposed into distributed blocks

according to their genome locations. A distributed and parallel data processing

strategy was proposed based on the framework of MapReduce, and then latent

variables were further extracted for each distributed block. A set of pan-cancer

signatures through a differential co-expression network followed by statistical

tests was further identified based on their gene expression profiles. In total,

15 TCGA and 3 GEO datasets were used as the training and testing data,

respectively, to verify our method. As a result, 22,000 potential methylation

loci were selected as highly related loci with early-stage pan-cancer diagnosis.

Of these, 67 methylation loci were further identified as pan-cancer signatures

considering their gene expression as well. The survival analysis as well as

pathway enrichment analysis on them shows that not only these loci may

serve as potential drug targets, but also the proposed method may serve as a

uniform framework for signature identification with big data.
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Introduction

Early diagnosis of cancer has been a worldwide hotspot of

research because it can obviously increase the opportunities for

effective treatment and appropriate monitoring of cancer

patients. Since it has been well-known that distinct types of

human cancer share similar traits, including rapid cell

proliferation, the ability to migrate, and seed malignant

tumors in distal locations (Zhang et al., 2012), tremendous

efforts have been taken in the development of reliable and

cost-effective early detection methods for common cancers

(Irizarry et al., 2009). It has been shown that the aberrant

variation of methylation, which is a major pattern of

epigenetics, is an early event in many tumors. It may also be

one of the first detectable biomarkers for the early detection of

cancer (Xu et al., 2017; Luo et al., 2020). Correspondingly, the

methylation pan-cancer study is an emerging research hotspot,

which is dedicated to find common or cancer-specific diagnostic

or prognostic biomarkers from a variety of cancers (Yang et al.,

2017; Ding et al., 2019; Tian et al., 2019).

Although good outcomes have been achieved over these

studies, there are still improvements that need to be made: 1)

there are few pan-cancer methylation studies focusing on the

early diagnosis of cancer. 2) Most of the existing methods do not

consider the functional relationships between methylation loci or

even the co-methylation phenomenon, resulting in many false-

positive results.

It is now a well-recognized fact that the main difference

between cancer and normal cells is a complex landscape of

genetic and epigenetic aberrations, which usually cause a

rewiring of gene regulatory networks (GRNs) at a system

level, finally impairing normal cell physiology (Hanahan and

Weinberg, 2011). Correspondingly, signature methylation loci

responsible for pan-cancer early-stage diagnosis should be

functionally related to each other by regulating their own

expression levels first (Matys et al., 2003). Therefore, our

study is aimed to identify functionally related methylation loci

for pan-cancer early diagnosis. It inevitably evolves the analysis

of pan-cancer genome-wide methylation and expression data.

Unfortunately, the most widely used methylation platform is

the Infinium HumanMethylation450 or 850 k platform. It

includes 485,000 or 850,000 CpG loci covering more than

99% of RefSeq genes (Price et al., 2013). Such high-

dimensional variables but only thousands of pan-cancer

patients bring up a typical problem: big data with a

comparatively very small sample size.

A new wave of deep learning in both academic and industrial

fields has gradually developed deep ANN (Elmarakeby et al.,

2021), graph convolutional networks (Wang et al., 2021), and

other deep learning methods with multilayer nonlinear

structures due to their superior visualization and classification

performance. Unfortunately, for machine learning methods,

especially for deep learning methods, the smaller the training

sample size is, the robustness or generalization ability of the

trained model is less. Additionally, although DeepLIFT (Trevino

et al., 2021) and other interpretation methods have been available

for deep learning methods, it is still hard for them to identify

biomarkers. In short, both high-dimensional big data and the

biomarker identification of our study exclude deep learning

methods.

More importantly, it has been found that closer neighboring

CpG sites are more likely to share the same methylation status

(Affinito et al., 2020). An effective way to overcome this co-

methylation situation is to divide the methylation loci into

different groups and then select the important ones from the

most important ones of each individual group.

Therefore, to speed up the analysis, to avoid false-positive

results caused by co-methylation, and to improve the

performance for such a big-data problem, a MapReduce-based

partial least squares (MRPLS) method was proposed. The overall

pipeline of this study is shown in Figure 1.

Materials and methods

Datasets

Level 3 DNA methylation (HumanMethylation450), level-3

RNA-Seq V2, and clinical data were downloaded from TCGA.

Among them, the data of 12 types of cancer were used as the

training dataset. The data of other three types of cancer from

TCGA and three GEO datasets (GSE54503, GSE63409, and

GSE66695) were collected as the independent test dataset.

Their details are summarized in Table 1.

The methylation level of each locus is represented as a beta-

value β, which is defined as the ratio of the methylated allele

intensity and the overall intensity (Bibikova et al., 2011):

β � M

M + U + 100
, (1)

where M is the methylated intensity and U is the unmethylated

intensity of each locus. β is a continuous variable with a value

between 0 and 1, where 0 means no methylation and 1 means

completely methylated.

Data preprocessing

For each type of cancer, there are over 485,000 loci in the

downloaded methylation data with many missing values

represented as “NA.” This is due to the masking of CpGs

owing to single-nucleotide polymorphisms (SNPs) with a high

minor allele frequency within 10 bp of the targeted CpGs or a

substantial overlap between probe sequences and repetitive

elements (Yang et al., 2017). Therefore, the following multi-

step preprocessing procedure was performed before any further
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FIGURE 1
Overall pipeline of identified methylation loci for early-stage pan-cancer diagnosis. MRPLS, MapReduce-based partial least squares; DCN,
differential co-expression network; ST, statistical test; S, the number of samples; V, the number of variables.

TABLE 1 Details of the training and independent test sets.

Training set

Cancer Full name/access number DMa GEb Stage

Tc Nd T N

BLCA Bladder urothelial carcinoma 52 21 132 18 I and II

BRCA Breast invasive carcinoma 308 96 176 113 I

CHOL Cholangiocarcinoma 28 9 19 9 I and II

COAD Colon adenocarcinoma 43 38 78 41 I

ESCA Esophageal carcinoma 39 16 16 11 I

HNSC Head and neck squamous cell carcinoma 36 50 94 44 I

LIHC Liver hepatocellular carcinoma 263 50 172 50 I and II

LUAD Lung adenocarcinoma 248 32 282 59 I

LUSC Lung squamous cell carcinoma 143 42 242 49 I

PAAD Pancreatic adenocarcinoma 21 10 21 4 I

PRAD Prostate adenocarcinoma 140 50 187 52 I and II

READ Rectum adenocarcinoma 10 7 28 10 I

Total 1,331 421 1,447 460

Independent test set

KIRC Kidney renal clear cell carcinoma 155 160 — — I

KIRP Kidney renal papillary cell carcinoma 167 45 — — I

THCA Thyroid carcinoma 285 56 — — I

Liver GEO-GSE54503 66 66 — — —

AMLe GEO-GSE63409 44 30 — — —

Breast GEO-GSE66695 80 40 — — —

aDM, DNA methylation.
bGE, gene expression.
cT, tumor samples.
dN, non-malignant samples.
eAML, acute myelogenous leukemia.
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analysis to reduce the computational complexity as well as to

improve the accuracy of the final results:

1) Identifying common loci among all types of cancers.

2) Removing the explicitly built-in SNP loci (identifiers start

with “rs”) and non-CpG-targeting loci (identifiers start

with “ch”).

3) Removing loci with “NA” values in more than 30% of the

samples.

4) Replacing “NA” values with the corresponding average values

of non-NA values of other samples.

5) Removing loci with SD (standard deviation) < 0.01 to reduce

significantly unrelated or redundant loci.

6) An empirical Bayesian method ComBat (Johnson et al., 2007)

is employed to eliminate batch effects caused by the system

bench effect or abiotic differences using R package “sva.”

At this point, 292,610 high-quality loci are obtained for each

type of cancer.

The new MapReduce-based partial least
squares method

Several analysis methods like SVM (support vector machine)

were used in our study. For readers’ convenience and for the clear

context, only PLS and MapReduce, which are the basis for our

newly proposed MRPLS, are briefly introduced here. Other

regular existing methods are available in the Supplementary

Material.

⁃ Partial least squares (PLS)

PLS is a widely used algorithm for modeling relationships

between sets of observed variables. Although PLS was not

originally designed as a tool for statistical discrimination,

applied scientists routinely use PLS for classification, and

there is substantial empirical evidence to suggest that it

performs well in that role (Barker and Rayens, 2003). It

iteratively extracts the latent variables (LVs) ti, ui, X-loading

vectors pi, and Y-weight vectors qi from X and Y matrices in

decreasing order of their corresponding singular values as follows

(Word et al., 2001):

X � ∑A
i�1
t ip

T
i + E � TPT + E, (2)

Y � ∑A
i�1
uiq

T
i + F � UQT + F, (3)

where E and F are the residual matrices of X and Y, respectively; n

is the number of variables; and i � 1, 2,/, A,where A (A << n) is

the number of LVs, which is usually determined by cross-

validation. The non-linear iterative partial least squares

(NIPALS) method is the most widely used algorithm for PLS

(Mehmood et al., 2012), and the details of the NIPALS method is

available in the Supplementary Material.

The variable importance in projection (VIP) index based on

PLS can be used to evaluate the importance of each variable (in

our case, it is the methylation value of each locus) in the

classification model (Mehmood et al., 2012). The definition is

VIP �
�������������
n × (k/sum(s))

√
, (4)

s � diag(T′ × T × Q × Q′), (5)
k � s′ × w, (6)

where k stands for the explained variance of Y by each variable, s

represents the total variance explained by LVs, and w is the

unitized form of W.

⁃ MapReduce framework

MapReduce is a programming framework proposed by

Google for modeling and analyzing those massive amounts of

data in a parallel manner. The MapReduce programming

FIGURE 2
Data flow overview of the MapReduce model with four Map workers and three Reduce workers.

Frontiers in Genetics frontiersin.org04

He et al. 10.3389/fgene.2022.940214

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.940214


framework employs the Hadoop Distributed File System (HDFS)

to store data. It saves researchers from organizing and managing

files in computer stations. Researchers only need to pay attention

on how the Map and Reduce functions are written. In the

MapReduce model, all the computation is organized by <key,
value> pairs, especially in the Map phase, each worker node takes

the initial organized <key1, value1> pairs as input and produces a

list of intermediate <key2, value2> pairs as output. This can be

represented as

Map: < key1, value1>→ list< key2, value2> . (7)

Then, the system merges and groups these intermediate pairs

by the same key2 and passes them to the Reduce function.

Afterward, the Reduce function takes a key and a related

value list as input and generates the expected < key2, value3>
pair lists as output, which can be represented as

Reduce: < key2, list(value2)>→ list< key2, value3> . (8)

The simplified data flow overview of MapReduce is shown in

Figure 2.

The newly proposed MRPLS method

In the traditional PLS method, VIP is usually used to evaluate

the importance of features in the classification model (Mehmood

et al., 2012). When it comes to VIP calculation for big data,

however, NIPALS would become very slow or even out of the

computer’s memory. Hence, MRPLS (MapReduce-based partial

least squares) algorithm was first proposed by us to handle

massive amounts of biological data. As mentioned previously,

the core task of MRPLS is to design appropriate <key, value>
pairs for the Map and Reduce process, respectively. Therefore,

MRPLS is designed consisting of three MapReduce modules in

series:

◆ MapReduce1 is used to calculate w;

◆MapReduce2 takes w and X as input and calculates t and p,

respectively;

◆ MapReduce3 takes t, p, and X as input to calculate new X

for the next iteration.

The details of each Map and Reduce function and the

corresponding algorithm pipeline and pseudo-codes are

shown in Figure 3. The package can be made available on request.

A modified prognostic index for survival
analysis

To integrate both expression and methylation values of genes

for each type of cancer, we modified the prognostic index (PI)

(Yang et al., 2017) (the original method is described in the

Supplementary Material) to include both expression values

and methylation levels to evaluate the survival risk of a

patient using a multivariate Cox proportional hazard model

(R package “survival”):

PIi � ∑N
n�1

αnmni + βneni, (9)

where N is the number of signature genes, αn and βn are the

regression coefficients of the Cox proportional hazard model for

gene n, and mni and eni are the methylation and gene expression

level of gene n in sample i, respectively. Samples were divided

into high- and low-risk groups according to the median PI of the

patients in the whole cohort. Then, the Kaplan–Meier (KM)

FIGURE 3
MapReduce-based partial least squares (MRPLS) algorithm flow chart and pseudo-code.
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method and log-rank test were used to test the difference between

survival risks of these two groups.

Differential co-expression network
inferring method

The steps for inferring a differential co-expression network

(DCN) are shown as follows and in Figure 4B:

⁃ Inferring tumor co-expression network: Pearson’s

correlation coefficient (PCC) between any two gene

pairs in tumor samples was calculated, and each p-value

of PCC was corrected by the false discovery rate (FDR).

Then, the gene pairs with the corrected p-value < 0.05 were

chosen as the edges of the tumor co-expression network.

⁃ Inferring normal co-expression network: PCC between any

two gene pairs in non-malignant samples was calculated,

and each p-value of PCC was corrected by the FDR. Then,

the gene pairs with the corrected p-value < 0.05 were chosen

as the edges of the normal co-expression network.

⁃ Selecting the common part between tumor and normal co-

expression networks.

⁃ Selecting tumor-specific GRN and normal-specific GRN by

removing the common part from the tumor or normal co-

expression network, respectively.

⁃ Common genes between the normal-specific and the tumor-

specific networks were selected for further statistical tests.

⁃ Checking whether the gene expression in tumor or non-

malignant samples was normally distributed: if the number

of samples >50, the Jarque–Bera test was used, otherwise the
Shapiro–Wilk test was used.

⁃ For normal distribution genes, a two-sided t-testwith the corrected

p-value< 0.05was used to select geneswhose expression values are
significantly different between tumor and non-malignant samples.

Otherwise, the Wilcoxon rank sum test was used.

After performing the aforementioned process, each type of

cancer received a set of genes, which were 1) functionally related

both in tumor and non-malignant samples and 2) significantly

differentially expressed between tumor and non-malignant samples.

Identification of signature loci for pan-
cancer based on genome-wide
methylation and expression data

To overcome the drawbacks caused by the huge difference

between the sample number and locus number, to reduce high

noise inherent in the genome data, to reduce the false-positive

rate, to improve the efficiency in analyzing the big pan-cancer

data, and to identify the functionally related real signature

FIGURE 4
(A)Overview of identification process of signature genes for pan-cancer, (B) Inferring of differential co-expression network (DCN). Blue nodes
represent genes in normal network, red nodes represent genes in tumor network, and yellow nodes represent genes in both networks (intersection).
Perform statistical tests on yellow nodes and green nodes represent statistically significant genes, i.e., signature genes for pan-cancer early-stage
diagnosis.

Frontiers in Genetics frontiersin.org06

He et al. 10.3389/fgene.2022.940214

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.940214


methylation loci, a multi-step method of data preprocessing, the

MRPLS- andDCN-based procedure was performed and summed

up as follows (Figure 1):

1) Data preprocessing using the aforementioned multi-step

method;

2) Potential methylation locus identification using MRPLS;

3) Functionally related gene identification using the DCN

inferring method followed by statistical tests;

4) Early-stage signature methylation locus identification by

mapping these genes back to methylation loci.

The major merit of using MRPLS is that it is a linear method.

This is the reason it is used to select highly related methylation

loci rather than the final signature loci. The major function of

MRPLS is to select methylation loci highly related to pan-cancer

early-stage diagnosis effectively and as precisely as possible.

Therefore, the following steps 3 and 4 are equally important

for real-signature loci identification.

After this procedure, the identified methylation loci were

highly related to early-stage tumor diagnosis and prognosis and

functionally related to each other through their gene expression

levels for pan-cancer.

1) SVM (support vector machine, see Supplementary Material)

was used to distinguish early-stage tumor from non-

malignant samples using only methylation values of

potential methylation loci as input.

2) To verify the roles of early-stage signature methylation loci in

tumor diagnosis and prognosis, GO and KEGG

(Supplementary Material) pathway enrichment analyses

and survival analysis of patients were performed.

It is reasonable to consider them as signature methylation loci

that can serve as early-stage diagnosis and prognosis biomarkers.

Results

Potential methylation loci identified using
MRPLS

To further speed up the calculation and overcome

neighborhood co-methylation, the preprocessed genome-wide

methylation loci (292,610 loci) were divided into 11 blocks

according to their chromosome locations. In this way, the

number of loci in each block ranged from 20,000 to 60,000.

The details of the 11 blocks are shown in Supplementary Table

S1. They were fed into MRPLS in parallel. Then, the top

22,000 loci (smaller than one-tenth of 292,610 loci) with the

biggest VIP values were selected for further analysis.

To verify whether these methylation loci were highly related

to early-stage tumor diagnosis, their methylation values were

used to classify early-stage tumor from non-malignant samples

using SVM algorithm with a five-fold cross-validation. If the

classification results are good enough, it means the methylation

values of these loci contain enough information for early-stage

tumor diagnosis. The training dataset consists of 12 types of

cancers from TCGA, and the independent test set includes the

other six methylation profiles from TCGA and GEO databases

(Table 1). The definition of the classification performance

measurements is available in the Supplementary Material.

Table 2 shows the classification performance of the training

set and independent test set. For the training dataset, we can see

that, except for PAAD, the accuracies of all other types of cancer

are >90%, and the average accuracy is >95%. Particularly, two

types of cancer, CHOL and READ, reach 100%. Given that there

are extremely unbalanced sample sizes in BRCA, LIHC, and

LUAD (the number of non-malignant samples is much smaller

than that of tumor samples), precision, recall, and F1 score (the

harmonic average of precision and recall) were used to further

evaluate the performance of the classification model. We can see

that the averages of these three measurements are all >90%.

AUCs are also shown in Table 2 and Supplementary Figure S1A.

The average AUC is 0.958, and 5 out of 12 types of cancer even

reach 1. Among the 12 types of cancer, only ESCA and PAAD

have comparatively poorer results, whose AUCs are <0.90.
Similarly, for the independent test set, we also obtained good

results (Table 2 and Supplementary Figure S1B). For both TCGA

and GEO datasets, all measures are >90, and their average values

are all >95. In summary, we can conclude that these potential

methylation loci selected by MRPLS can successfully diagnose

early-stage tumor samples from non-malignant samples for

different cancers. Consequently, these loci were proven to be

highly related to early-stage pan-cancer.

The 22,000 loci are located at different positions of

4,973 genes. Specifically, 29.37% of them are located at the

transcription start site (TSS) and 47.19% of loci are located at

the gene body (Supplementary Figure S2A). In addition, 36.5% of

loci are distributed on the island, 7.6% on the shelf, and 20.14%

on shore (Supplementary Figure S2B).

Functionally related loci identified for pan-
cancer early-stage diagnosis

After obtaining the potential loci, functionally related and

differently expressed genes were further identified using DCN

inferring method and statistical tests (Figure 4). As shown in

Figure 5A, after applying statistical tests, we obtained different

numbers of significant genes for different types of cancer. Among

them, no such kind of genes could be identified only for PAAD,

which may be because of the small sample size of this type of

cancer. Then, 67 common genes among the remaining 11 types of

cancers were selected as the final signature genes whose

methylation variations may be responsible for the early-stage
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tumor diagnosis and prognosis. The detailed information of these

67 genes and their corresponding methylation loci is summarized

in Supplementary Table S2.

GO and KEGG enrichment analyses were applied to these

67 genes, and the results are shown in Figures 5B,C. The top five

GO biological processes include “cell division,” “cell cycle,”

“mitosis process,” “metabolic process,” and “regulation of

signaling.” The top enriched KEGG pathways are “cancers,”

“metabolism,” “endocrine system,” “signal transduction,” and

“cell growth and death.”

To further test whether methylation and gene expression

levels of the 67 signature genes are clinically related to early-stage

tumor patients, survival analysis using a multivariate Cox

proportional hazard model was applied to them. KM survival

curves are shown in Figure 6. It shows that they are highly related

to the survival risk of patients with 10 out of 11 types of cancer

(except for PRAD). It strongly proved that they could serve as

potential targets for early-stage tumor prognosis.

Discussion

In the past decade, results have been remarkably accelerated

in the validation of the concept that cancer is a disease of

epigenetic, as well as genetic, abnormalities. There is even an

emerging view on what is now called “the cancer epigenome.”

DNA methylation is a major epigenetic modification that is

involved in differentiation and development, aging,

tumorigenesis, and other diseases. Aberrant methylation,

including hypomethylation of oncogenes and

hypermethylation of tumor suppressor genes (Irizarry et al.,

2009), is a central feature of carcinogenesis and is an early

event in many tumors (Luo et al., 2020). All these facts have

laid down a solid foundation for identifying methylation loci for

pan-cancer early-stage diagnosis.

As mentioned previously, however, the most widely used

methylation platform is Infinium HumanMethylation450k. It

includes 485,000 CpG loci, which means there are

485,000 variables in methylation data. For the HM850 k

platform and other platforms based on the whole-genome

bisulfite sequencing (WGBS) technique (Beck et al., 2022),

there are even much more loci/variables. One of the most

challenging problems is how to efficiently analyze big pan-

cancer methylation data. Correspondingly, MapReduce has

been taken into consideration to provide fast and cost-

effective solutions (Li et al., 2020). The MapReduce

framework is a solution originally provided by Google for

processing big data in a distributed and parallel way. It is a

software framework designed to parallelly run over a cluster of

machines/nodes. Up to now, Hadoop, Spark, and even

TABLE 2 Performance of the methylation loci-based diagnostic model for the training set and independent test set.

Cancer Accuracy Precision Recall F1 score AUC

Training data set

BLCA 97.260 100.000 90.476 95.000 0.997

BRCA 99.257 98.947 97.917 98.429 0.999

CHOL 100.000 100.000 100.000 100.000 1.000

COAD 98.765 100.000 97.368 98.667 1.000

ESCA 85.455 90.000 56.250 69.231 0.841

HNSC 93.023 95.833 92.000 93.878 0.973

LIHC 98.722 94.231 98.000 96.078 0.998

LUAD 99.643 96.970 100.000 98.462 1.000

LUSC 99.460 100.000 97.619 98.795 1.000

PAAD 83.871 77.778 70.000 73.684 0.738

PRAD 93.684 88.000 88.000 88.000 0.945

READ 100.000 100.000 100.000 100.000 1.000

Average 95.762 95.147 90.636 92.519 0.958

Independent test set

GEO-AML 98.649 100.000 96.667 98.305 1.000

GEO-breast 97.500 97.436 95.000 96.203 0.998

GEO-liver 97.727 97.015 98.485 97.744 0.987

TCGA-KIRC 99.683 100.000 99.375 99.687 1.000

TCGA-KIRP 99.528 100.000 97.778 98.876 1.000

TCGA-THCA 97.947 92.983 94.643 93.805 0.979

Average 98.506 97.906 96.991 97.437 0.994
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MATLAB provide an integrated MapReduce platform for

developers so that they only need to focus on the explicit

expressions of “Map” and “Reduce” (Li et al., 2020). It is an

excellent framework for processing and analyzing big data. On

the other hand, although new non-linear methods [for

example, convolutional neural networks (Wang et al., 2021)]

have been rapidly developed, PLS is still the most widely used

multivariate statistical method considering the model

interpretation of it in signature identification. Therefore, the

MapReduce-based PLS (MRPLS) was proposed as the first

application of a multivariate statistical method in modeling

and signature identification with big data. The whole genome-

wide methylation loci were divided into 11 blocks and were

analyzed with MRPLS parallelly.

Another challenging problem is that it has been reported that

methylation of CpGs located on the same DNA fragment occurs

non-stochastic. In other words, closer neighboring CpG sites are

more likely to share the same methylation status (Affinito et al.,

2020). Dividing genome-wide loci into different blocks and to

select the most important loci in each block can not only analyze

such a big genome-wide methylation data efficiently but also

avoid selecting false-positive important loci caused by co-

methylation.

MRPLS is supposed to select methylation loci highly related

to pan-cancer early-stage diagnosis, and then the DCN and the

following steps were supposed to identify functionally related

methylation loci from them. Therefore, MRPLS should not be too

time-consuming or computation-consuming. PLS has shown its

FIGURE 5
UpSet plot for differential genes’ intersection among 11 cancers and functional enrichment analysis. (A) In the UpSet plot, the intersection of
different cancers is represented by solid dots and lines, and the number of intersections is represented by the histogram above. Different numbers of
significantly differential genes for each cancer (marked blue) were identified. Finally, 67 early-stage pan-cancer biomarkers were identified by taking
the intersection of 11 cancers (marked red). (B) Gene Ontology (GO) enrichment analysis. The top five significantly enriched GO biological
processes and relevant genes. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The top five significantly
enriched KEGG pathways and relevant genes.
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superiority in supervised classification problems in

bioinformatics in several studies. Therefore, it was chosen in

our study. The basic PLS can be easily extended to other forms

such as nonlinear PLS and dynamic PLS.

As a result, 22,000 potential loci were selected. Final real-

signature loci would be identified out of these followed by the

DCN inferring method. A closer relationship between them for

classification would make sure the performance of the final

signature loci and reduce the false-positive ratio. The SVM

model for classifying early-stage tumor from non-malignant

samples using the methylation values of only these

22,000 potential loci strongly proved that their methylation

profile contained enough information for early-stage tumor

diagnosis.

The third big challenging problem is that it is now a well-

recognized fact that the main difference between cancer and normal

cells is the complex landscape of genetic and epigenetic aberrations,

which usually cause a dynamic rewiring of GRNs at a system level

(Hanahan and Weinberg, 2011). There might be inconsistent

opinions about the effects of the methylation status on the

promoter or other parts of genes, but almost no argument on the

opinion that a gene can be directly regulated only by its own

methylation status (Matys et al., 2003). A reasonable hypothesis

is that the methylation status of signature loci regulates expression

values of their own genes, and then these genes are regulated through

their expression and functionally work together to initiate tumors.

Therefore, 22,000 highly related methylation loci were mapped to

4,973 genes. Then, functionally related genes were identified using

the DCN inferring method among these 4,973 genes.

To double-ensure that signature genes are not only

functionally related but also significantly differentially

expressed between tumor and non-malignant samples,

significance tests were performed following the DCN inferring

step. It is to be noted that statistical results have a lot to do with

the right choice of statistical methods according to the data

distribution and sample size (Bandyopadhyay et al., 2014).

Specifically, parametric statistical tests require data to be

normally distributed while non-parametric tests do not. For

normally distributed data, parametric tests usually get better

results than non-parametric tests. On the contrary, when data

distribution is non-normal, the p-value of parametric tests may

be misleading and non-parametric methods should be used.

Additionally, when the number of samples is less than 50, the

aforementioned situation needs to be carefully handled (Mallik

et al., 2017). So in our study, for both tumor and non-malignant

samples, if the number of samples >50, the Jarque–Bera test was
used to check the distribution of the sample, and if the number of

samples <50, the Shapiro–Wilk test was used. When both tumor

samples and non-malignant samples meet the normal

distribution, the two-sided t-test with the corrected p-value <
0.05 was used to filter genes; otherwise, the Wilcoxon rank sum

test was used.

After performing the aforementioned process, each type of

cancer received a statistically significant set of genes. Common

FIGURE 6
Kaplan–Meier survival curves for overall survival of different types of cancer. Statistical difference in the outcome between high and low PI
groups is indicated by the log-rank test p-value. “+” stands for the censoring samples.
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genes among all cancers were then selected as the final genes, and

their methylation loci were correspondingly selected as the final

signature methylation loci for pan-cancer early-stage tumor

diagnosis. The details are listed in Supplementary Table S2.

Figure 7 shows the distribution of 67 signature methylation

loci. Among them, 38 loci are distributed on the promoter region

(including TSS1500, TSS200, first exon, and 5′ UTR), 25 loci are
distributed on the gene body region, and 4 loci are located at 3′
UTR. One possible explanation for the effect of promoter

methylation is that the methylation status affects the binding

affinity between transcription factors with cognate DNA

sequences (i.e., methylation-sensitive or -resistant), and the

regulatory function of the affected transcription factors might

be either positive or negative on their target genes (Ma et al.,

2013).

Figure 6 shows the KM survival curves with the log-rank test

for all 12 training cancer sets. Because of the small size and

inherent characteristics of data, PAAD did not obtain any

significantly differential genes using the DCN inferring

method (see Methods). However, from Figure 6, we can see

that PAAD patients can still be significantly (p = 0.44E-4) divided

into high- and low-risk groups by 67 genes that were intersected

by other 11 cancers. The result once again proves that these genes

we selected can be considered pan-cancer early diagnosis

signatures.

On the other hand, among 12 cancers, only PRAD did not get

significant results in survival analysis (p > 0.05). For PRAD, there

are 498 early-stage cancer samples available, of which only

10 patients’ overall survival (OS) status is “deceased” and that

of the others is “living.” In other words, the proportion of failure

events in PRAD is too low (only 0.02) to get any meaningful

results. This phenomenon is in line with the basic laws of survival

analysis and has been supported by other published literatures

(Zupan et al., 2000; Nezhad et al., 2019).

The biological process of GO refers to biological goals that

genes or gene products help to achieve, which is the most

important independent ontology that we care most about

(Ashburner et al., 2000). The top five remarkably involved

biological processes among 67 genes and relevant genes are

shown in Figure 5B. These biological processes include “cell

division,” “cell cycle,” “mitosis process,” “metabolic process,”

and “regulation of signaling,” which have been proved to be

highly related to the occurrence and development of a variety of

cancers (Susan et al., 1990; Jerby et al., 2012; Williams and

Stoeber, 2012; Dominguez-Brauer et al., 2015; Schmid, 2017;

Zhang et al., 2020).

A total of 43 genes are enriched in at least one biological

process. Among these genes, AURKA, AURKB, BIRC5, CENPJ,

CEP55, MAD2L1, and UBE2C are enriched in at least four

biological processes.

⁃ The latest review by Du et al. (2021) reports that the

activation of AURKA has been demonstrated to play an

important role in a wide range of cancers.

⁃ The research of Bertran-Alamillo et al. (2019) reveals that

AURKB constitutes a potential target in non-small cell lung

cancer (NSCLC) progressing to anti-EGFR therapy and not

carrying resistance mutations.

⁃ Gai et al. (2020) used integrative bioinformatics analysis to

reveal that BIRC5may be adopted as a promising predictive

marker and potential therapeutic target in breast cancer.

⁃ Dastsooz et al. (2019) performed a comprehensive

bioinformatics analysis and then concluded that UBE2C

is overexpressed in all 27 cancers they investigated and its

expression is significantly higher in late-stage tumors,

which might indicate its involvement in tumor

progression and invasion.

Figure 5C shows the main enriched KEGG pathways and

relevant 26 genes. They are “cancers,” “metabolism,” “endocrine

system,” “signal transduction,” and “cell growth and death.”

These pathways have also been proved to be highly related to

cancers (Gleeson and Shalet, 2004; DeBerardinis et al., 2008;

Shimizu et al., 2014; Sever and Brugge, 2015). The other genes of

67 signatures, which have not been verified yet, are likely to be

cancer vulnerability genes which are worth further exploring in

future studies.

In addition to finding the common signatures for pan-cancer,

we further explored the cancer-specific prognostic markers of

67 genes based on the HR of the Cox model. In the Cox model, an

HR above 1 indicates a covariate that is positively associated with

the event probability and thus negatively associated with the

length of survival. In other words, a covariate with HR > 1 is

called a bad prognostic factor. Cancer-specific prognostic

markers (HR > 1) are summarized for 12 cancers with p <
0.05 (Wald test) in Supplementary Table S3. It shows that the

number of expression prognostic markers is much more than

that of methylation prognostic markers in most cancers, which

indicates that gene expression plays more direct roles in cancer

FIGURE 7
Distribution of 67 signature methylation loci.
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initiation than methylation does. It also proved that methylation

can only function by regulating its own gene expression status.

Moreover, the main focus of this study was to propose an

interpretable method for analyzing big data cost-effectively.

Thus, the terms of nonlinearity or non-Gaussian distribution

have not been considered in this study. Because methylation data

measured by HM450k have been the most widely used data

currently, they were used as an example in our study. However,

based on the proposed modeling framework, other big data

(i.e., HM850k) can also be analyzed using our MRPLS

method. The basic PLS can be easily extended to other forms

such as nonlinear PLS and dynamic PLS.

Conclusion

In this study, we developed a new MapReduce-based PLS

method for analyzing methylation data parallelly and efficiently

to overcome the “curse of big data” brought up by pan-cancer

studies and the false-positive caused by neighboring co-

methylation. We analyzed methylation and expression profiles

of 12 cancers from TCGA and identified 67 signature

methylation loci and corresponding genes for early-stage pan-

cancer diagnosis and prognosis. Their methylation status and the

difference in their co-expression network and expression values

were all highly related to early-stage tumors and non-malignant

sample classification. The biological processes and pathways they

were significantly involved in were proved to play key roles in

cancer initiation. Most importantly, their methylation and

expression values are highly related to patient survival risk.

Furthermore, the selected biomarkers could provide a reliable

reference for understanding cancer progress mechanisms and

precision medicine. The data analysis workflow that we proposed

could be applied to any large-scale biological data for integrative

signature discovery.
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