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Abstract: Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms.
Recently, researchers conducted several studies to identify natural bioactive compounds, particularly
secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as
antibacterial agents. These molecules exert several mechanisms of action at different structural,
cellular, and molecular levels, which could make them candidates or lead compounds for devel-
oping natural antibiotics. Research findings revealed that these bioactive compounds can inhibit
the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability,
and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial
strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this
resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum
sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not
only overcome the resistance problems but also to treat infections. In this respect, various bioactive
molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mech-
anisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and
deregulation of QS gene expression. However, clinical applications of these molecules have not been
fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present
work was to discuss the role of the QS system in bacteria and its involvement in virulence and
resistance to antibiotics. In addition, the present review summarizes the most recent and relevant
literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to
antibacterial activity.
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1. Introduction

Infectious diseases are a group of pathologies caused by microorganisms, such as
bacteria and viruses. Bacteria are considered the most implicated pathogens in infec-
tious diseases. In fact, despite the discovery of antibiotics, bacteria have been able to
develop resistance against these drugs via different mechanisms. Therefore, researchers
have been searching for alternatives to conventional antibiotics. Within this context, natu-
ral substances, particularly those extracted from medicinal plants, constitute a source of
drugs against various pathologies, including diabetes, cancer, inflammation, and patholo-
gies linked to stress and microbial infections [1–17]. The antibacterial activity of these
natural products is linked to different mechanisms of action, such as the increase in
membrane permeability, the decrease in membrane integrity, and the disruption of ef-
flux pumps [10,13,18,19]. However, the efficacy of these compounds is not significant for
therapeutical applications, because some pathogenic strains continue to induce the problem
of resistance, which, until recently, remained unrecognized.

Importantly, it has been shown that bacteria–bacteria communications or quorum
QS allow them to develop resistance against antimicrobials. In this regard, QS is an
intercellular communication system between the same strain (self-communication) or
different strains that co-ordinates the transcriptional regulation of genes responsible for
several vital functions of these microorganisms [20–22]. Depending on the type and nature
of the bacterial strain, the mode of regulation of this system involves certain signaling
molecules [20,23–25].

Research findings indicated that Gram-positive bacteria use oligopeptides as auto-
inducers to regulate gene expression. These molecules, after their secretion, bind to mem-
brane receptors of the same bacteria, and the signal transduction can generate signaling
pathways that result in the activation of transcription of a specific gene. On the other hand,
Gram-negative bacteria regulate gene expression in the function of their density. They
secrete other self-inducing molecules via the activation of the Lux operon, which regulates
the transcription of main enzymes involved in QS mediators. These fluctuations of gene
expressions occur according to the density and physiological state of bacteria [26].

Published research showed that QS regulates some major bacterial activities, including
biofilm formation, pathogenicity, and antibiotic resistance. To limit the development of
bacterial resistance to existing antibiotics and, subsequently, the emergence of infectious
diseases, it is, therefore, necessary to search for anti-QS molecules [27,28]. For this, numer-
ous studies were carried out in recent years [29–31]. Medicinal plants are rich sources of
bioactive compounds, which target QS mediators with different modes of action [27,28],
such as degradation, transcriptional inhibition of QS signal molecules, and the transport
system between the intra- and extra-cellular media [32]. In this context, the effects of certain
natural substances against QS are obtained from the phylogenetic relationships established
between secondary metabolites of medicinal plants and QS intermediates [33–35]. There-
fore, exploration of this path could assist in the discovery of anti-QS drugs. In this work,
we have summarized the literature related to the role of the QS system in bacteria and its
involvement in virulence and resistance to antibiotics, highlighting the effects of secondary
metabolites, such as flavonoids, terpenoids, and phenolic acids, which exhibit anti-QS
action. This will be beneficial in dealing with bacterial infections and with anti-resistant
strains and assist in the development and discovery of novel drugs to treat these infections.
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2. Natural Products from Medicinal Plants as Antibacterial Drugs

In developing countries, infectious diseases are among the major causes of morbidity
and mortality. In recent years, the scarcity of novel antimicrobials and resistance to currently
available antibiotics has prompted pharmaceutical companies to develop new antibacterial
drugs from natural substances. Genetic factors are behind the ability of numerous bacterial
species to acquire resistance, which protects them from the antibacterial agents. This
has been explained in several studies, which confirmed that the multi-resistance of some
bacteria to drugs exists while being sensitive to other commonly used drugs [36,37]. The
development of resistant bacterial species involves several factors, such as misuse of
antibiotics in the treatment of bacterial infections, and also in animal feed as a growth
promoter [38].

To supply the market with novel antibiotics, pharmaceutical companies have adopted
strategies to increase the effectiveness of existing drugs or to restore their lost (or weakened)
activity following bacterial resistance processes, which may be achieved by modifying their
molecular composition [39]. In contrast, given the biodiversity of our planet, the search for
antimicrobials of plant origin must have more interest from the point of the high number of
medicinal plants used for therapeutic purposes by different populations all over the world
for hundreds of years [39].

3. Classical Antibacterial Mechanisms of Natural Products Isolated from
Medicinal Plants
3.1. Terpenoids

The antibacterial mechanisms of terpenoids isolated from medicinal plants are multiple
and include several related to the inhibition of bacterial growth, as depicted in Figure 1.
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Figure 1. Antibacterial mechanisms of terpenoids. Terpenoids can exhibit their antibacterial actions
via different mechanisms, such as the reduction in biofilm formation, alteration of the membrane
fatty acids, coagulation of proteins, perturbation of oxidative phosphorylation, modulation of efflux
pumps, the decrease in membrane integrity, the increase in membrane permeability, and inhibition of
QS signaling.

The main isolated terpenoids from medicinal plants, which exert antibacterial mecha-
nisms, include L-carvone, phytol, limonene, linalool, β-caryophyllene, 1,8-cineole, myrtenol,
geraniol, carvacrol, and thymol (Figure 2); these compounds exhibit promising antibacterial
effects, as listed in Table 1.
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Linalool, isolated from Coriandrum sativum, exhibits antibacterial activity against vari-
ous strains, such as Acinetobacter baumannii [40], Pseudomonas aeruginosa [41], and Salmonella
Typhimurium [42]. This compound exerts its effect against A. baumannii according to three
mechanisms of action: QS, biofilm formation, and adhesion [40]. It exhibited antibiofilm
activity via dispersion and inhibition of the formation of biofilms of the bacterium studied.
In addition, this essential oil showed high antibacterial activity (MIC values between 2 and
8 µg/mL), with impaired bacterial adhesion and interference with the QS system. Against
P. aeruginosa, linalool disrupted the respiratory chain and cell morphology, with bactericidal
(MBC = 862 µg/mL) and bacteriostatic (MIC = 431 µg/mL) effects. It also exhibited the
destructive power of membrane integrity, evidenced by the production of nucleic acids
and a decrease in membrane potential [41]. To reduce the volatility of linalool and its low
solubility/stability, Prakash and colleagues encapsulated linalool in nanoemulsions. These
authors recorded a disruption of the membrane integrity in S. Typhimurium, with a decrease
in biofilm formation (>11.5%) on the surface of pineapple sections [42].
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Table 1. Antibacterial mechanisms of action of Terpenoids.

Molecules Bacterial
Species Experimental Approaches Key Results References

Linalool Acinetobacter
baumannii

Evaluation of biofilm formation
Anti-QS activity assay

Quantification of biofilm
biomass–CV staining

Inhibited biofilm
formation

Modified bacterial
adhesion to surfaces
Interfered with the

QS system

[40]

Linalool Pseudomonas
aeruginosa

Determination of cell membrane
permeability, membrane potential,

and respiratory chain
dehydrogenase

Damaged the
respiratory chain

Destroyed the integrity of
bacterial membrane

Disturbed normal cell
morphology

[41]

Linalool
nanoemulsions

Salmonella
typhimurium

Biofilm inhibition studies
Cell membrane integrity

Destroyed the integrity of
bacterial membrane

Induced high
antibiofilm activity

[42]

(+)-Limonene Escherichia coli BJ4 Cell permeabilization test Induced permeabilization
of bacterial membrane [43]

(+)-Limonene Escherichia coli lptD4213 Cell permeabilization test
Induced sublethal damage

in the cytoplasmic
membrane (at pH 4.0)

[43]

Limonene Listeria
monocytogenes

SEM analysis
Conductivity measurement

Determination of the effect of
limonene on the respiratory

chain complex I–V

Increased cell membrane
permeability

Destroyed the cell
integrity and bacterial

wall structure
Affected respiration and

energy metabolism

[44]

Limonene Streptococcus
pyogenes (SF370)

Analysis of antibiofilm potential,
SEM, and cell viability assay

Reduced biofilm
formation in a

dose-dependent manner
[45]

Limonene Streptococcus
mutans

Analysis of antibiofilm potential,
SEM, and cell viability assay

Inhibited acid production
and downregulated the

vicR gene
Targeted the

surface-associated
proteins, thus reducing

surface-mediated
virulence factors

[45]

Phytol Pseudomonas
aeruginosa

Membrane depolarization assay
DNA damage detection

NAD+ cycling assay
ROS measurement

Increased intracellular
ROS level

Increased transient
depletion of NADH

Induced DNA damage by
oxidative stress

Induced membrane
depolarization

Triggered inhibition of
cell division

[46]

L-carvone Hafnia alvei
In silico analysis
RT-qPCR studies

QS interference approach

Inhibited QS activity by
reducing AHL production

(0.5 µL/mL), biofilm
formation (52.41%),
swarming motility

(74.94%), and swinging
motility (61.49%)

[47]
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Table 1. Cont.

Molecules Bacterial
Species Experimental Approaches Key Results References

Carvacrol Escherichia coli and
Staphylococcus aureus

Antibiofilm activity
SEM analysis

Reduced biofilm
formation [48]

Carvacrol Salmonella enterica serotype
Typhimurium

MTT assay
Crystal violet assay

SEM analysis

Shriveled and retracted
appearance at

4 ×MIC
Reduced metabolic

activity (0.089 OD550)
Reduced biofilm biomass

(1.719 OD550)

[49]

Carvacrol
and thymol Escherichia coli Fluorescent dyes

Flow cytometry analysis
Disturbed cytoplasmic

membrane [50]

Carvacrol Listeria
monocytogenes

TEM analysis
Flow cytometric analysis

Disrupted the structure of
bacterial cells

Induced degenerative
changes in the

cytoplasmic membrane
and cell wall

Modified
respiratory activity

Increased membrane
permeability and

depolarization

[51]

Geraniol Staphylococcus
aureus

Antibiofilm activity
Biofilm biomass quantification

Reduced biofilm biomass.
Reduced cell viability [52]

Myrtenol Methicillin-resistant Staphylococcus
aureus

Extraction of staphyloxanthin
Autolysis assay

Ring biofilm inhibition assay

Inhibited production of
staphyloxanthin

Inhibited the synthesis
of major virulence factors

Inhibited biofilm
formation

[53]

Myrtenol Staphylococcus
aureus Antibiofilm effect Inhibited biofilm

formation [54]

1,8-Cineole Salmonella sp. D194-2 TEM analysis
Proteomics analysis

Damaged the structure of
cell walls and membranes

Downregulated the
carbohydrate metabolism

and membrane
protein-related genes

[55]

β-Caryophyllene Streptococcus
mutans

Confocal laser scanning
microscope

Real-time RT-PCR

Inhibited biofilm
formation

Reduced the expression of
gtf genes

[56]

β-caryophyllene Bacillus cereus
Measurement of UV-absorbing

materials
Zeta-potential measurement

Altered the membrane
permeability and integrity [57]

Evaluation of the bactericidal activity of the main constituent of citrus EOs, (+)-
limonene, against E. coli BJ4 (wild type) showed a decrease in bacterial resistance and
cell wall permeability following sublethal thermal shock [43]. This was in line with the
findings of Han et al. [43], who observed an increase in the conductivity and release of
the intracellular contents of L. monocytogenes, indicating an alteration in the integrity of
the cell wall. Additionally, the function of the respiratory complex can be inhibited by
the disruption of energy and respiratory metabolism. This monoterpenoid also showed
dose-dependent anticariogenic and antibiofilm activity against S. mutans and S. pyogenes,
respectively [45], by preventing the formation and adhesion property of S. pyogenes biofilm,
and inhibiting acid production and downregulating vicR gene expression in S. mutans.
On the other hand, the pro-oxidant/antioxidant imbalance can be used as a therapeutic
strategy against bacterial infections. In this context, the antibacterial activity of a chlorophyll
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component, phytol, was to induce a response to oxidative stress in P. aeruginosa [46]. Phytol
produces excessive levels of intracellular reactive oxygen species (ROS), leading to a
decrease in enzymatic antioxidants (glutathione peroxidase) and, consequently, inducing
cell cycle arrest and severe DNA damage, ultimately leading to cell death.

The food industry is threatened by the emergence of pathogenic microorganisms. In
this field, the QS system has been used by the bacterium Hafnia alvei to establish harmful
virulence factors [58]. To deal with the threats of this opportunistic pathogen, Li et al. [47]
treated it with L-carvone, a major compound of spearmint Eos, at sublethal concentrations.
Results showed an inhibition of biofilm formation (52.41%) and the QS system, charac-
terized by reduced synthesis of AHL (0.5 µL/mL). In contrast, an antibiofilm property of
carvacrol has been demonstrated following its incorporation in a polyethylene-co-vinyl
acetate film against S. aureus and E. coli. This led to disruption of the initial phase of
bacterial attachment, which subsequently reduced the formation of biomass on the surfaces
in comparison with the control (pure copolymer) [48].

Permeabilization and depolarization of the cytoplasmic membrane of E. coli growth
was inhibited by carvacrol and its isomer (thymol) at a dose of 200 mg/L [50]. This agrees
with the results of Churklam and colleagues, who found, in addition to these findings, an
inhibition of the respiratory function of Listeria monocytogenes associated with degenerative
changes [51]. This was also verified against Salmonella Typhimurium [49], with an MIC and
MBC value of 312 µg/mL and inhibition of biofilm biomass (1.719 OD550) at 4 ×MIC. On
stainless steel and polypropylene, a decrease in bacteria counts was observed with carvacrol
(4 ×MIC) against the biofilm of this strain. With some monoterpenes, this reduction in
biofilm biomass could reach 100%, as was the case with S. aureus treated with geraniol,
which reduced bacterial viability at 1 mg/mL and biofilm formation at concentrations
ranging from 0.5 to 4 mg/mL [52].

The antibacterial potential of certain terpenoids is little investigated, as is the case with
myrtenol [53,54]. This bicyclic monoterpene alcohol exhibited promising results against
methicillin-resistant S. aureus (MRSA) through biofilm inhibitory and anti-virulence activity
against the main virulence factors (α-hemolysin, staphyloxanthin, autolysin, slime, and
lipase) [53]. Likewise, myrtenol affected autolysis by releasing extracellular DNA, causing
impairment of self-aggregation. Similarly, a bactericidal (MIC = MBC = 128 µg/mL) and
antibiofilm action against S. aureus was noted with this molecule by blocking the synthesis
of the cell envelope. The combination of myrtenol with conventional antibacterial agents
highlighted these effects [54]. Another monoterpene constituent known as eucalyptol or
1,8-cineole, when tested against Salmonella sp. D194-2, altered the bacterial wall structure
and downregulated the membrane protein genes at the mRNA level [55]. Finally, β-
caryophyllene, in turn, exhibited significant anti-S. mutans effect [56]. Indeed, this bicyclic
sesquiterpene inhibits cell growth and biofilm formation, with a decrease in the expression
of gtf genes. Impairment of membrane permeability and integrity of Bacillus cereus was
also induced by this molecule, subsequently leading to leakage of intracellular contents,
causing cell death [57].

Using in vitro and in vivo experiments, Wan et al. [59] evaluated the antibacterial effect
of patchouli alcohol against bacteria and drug-resistant bacterial strains. Results revealed
that patchouli alcohol exhibits antibacterial activities against all bacteria tested. In this
regard, both Gram-negative (25–768 µg/mL) and Gram-positive bacteria (1.5–200 µg/mL)
were sensitive to this compound. Importantly, patchouli alcohol was active against certain
drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Results
also demonstrated that patchouli alcohol at 100 and 200 mg/kg, could protect infected
mice with MRSA, while, at a low dose of 50 µg/mL, could protect 80% of mice injected
with MRSA. Furthermore, patchouli alcohol, isolated from Pogostemonis Herba, exhibited a
selective antibacterial effect against Helicobacter pylori and was not active against the main
normal gastrointestinal bacteria [60]. This antibacterial effect was superior to amoxicillin
and associated with urease inhibitory potential.
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Similarly, the potential anti-Staphylococcus aureus effect of andrographolide was demon-
strated by Banerjee and colleagues [61]. This compound caused specific inhibition of intra-
cellular DNA biosynthesis in a dose-dependent manner and mediated inhibition of biofilm
formation by S. aureus. On the other hand, Wolska and collaborators [62] showed that
oleanolic acid is active against some bacterial species, particularly mycobacteria. The study
of the mechanism of its antibacterial activity showed that this acid affects bacterial gene
expression, inhibits the formation and maintenance of biofilms, and causes cell autolysis
and peptidoglycan turnover. The same acid displayed antibacterial activities against the
tested bacteria, thus 1/4 MIC can reduce bacterial biofilm formation [63].

3.2. Antibacterial Actions of Flavonoids

The likelihood of bacterial strains becoming resistant increases steadily as they coexist
with substitute compounds for the majority of existing antibacterial agents. It is, therefore,
obvious to move towards other synthetic compounds devoid of these substitutions, and
to find new natural substances or new molecular targets. In this regard, flavonoids have
protected plants as well as humans against pathogens through their antibacterial poten-
tial [64]. Most pathogens cannot develop resistance to natural substances, which make
them a therapeutic alternative in bacterial infections [65]. In this sense, we have focused on
the different antibacterial mechanisms and therapeutic targets of various flavonoids.

3.2.1. Inhibition of Cell Envelope (Wall) Synthesis

The FAS-II pathway is essential in the biogenesis of the envelope in Gram-negative
bacteria, which makes it a prime therapeutic target for numerous antibacterial agents [66].
Inhibition of this pathway has in fact blocked the generation of signaling molecules,
such as AHLs, implicated in cellular communication [67]. In another investigation on
Helicobacter pylori, three flavonoids: apigenin, sakuranetin, and quercetin, inhibited
β-hydroxyacyl-ACP dehydrase, one of the FAS-II constituents, with IC50 values of 11.0 ± 2.5,
2.0 ± 0.1, and 39.3 ± 2.7 µM, respectively [68]. On the other hand, epigallocatechin gallate
(EGCG) and DL-cycloserine can synergistically inhibit synthesis of cell wall (MIC = 128 µg/mL),
while catechins can bind to the peptidoglycan layer of this cell wall [69]. Mycobacteria
contain fatty acids called mycolic acids in their cell wall, synthesized by the mammalian
type FAS-I and the bacterial type FAS-II, allowing them to have a high resistance. Findings
by Li et al. [70] showed that two flavone derivatives: luteolin (IC50 = 2.52 ± 1.0 µM) and
baicalein (IC50 = 111.69 ± 2.29 µM), exhibit inhibitory activity against FAS-I by targeting
this pathway. Other flavonoids, such as taxifolin (IC50 = 41.16 ± 0.59 µM), hesperetin
(IC50 = 68.86 ± 4.49 µM), fisetin (IC50 = 18.78± 0.49 µM), myricetin (IC50 = 27.18 ± 0.24 µM),
morin (IC50 = 2.33 ± 0.9 µM), quercetin (IC50 = 4.29 ± 2.5 µM), and kaempferol
(IC50 = 10.38 ± 0.07 µM), exhibited similar antibacterial activities using the same mecha-
nism of action [70].

3.2.2. Inhibition of Nucleic Acid Synthesis

In addition to the aforementioned therapeutic strategies, inhibition of DNA topoiso-
merases can also constitute an important therapeutic target against bacteria. At a dose of
0.1 µM, genistein altered the cell division of Vibrio harveyi, which subsequently inhibited its
growth [71]. Similarly, DNA gyrase, a protein involved in the replication of the bacterial cir-
cular chromosome, was inhibited (IC50 = 3.3 µg/mL) by ellagic acid in a treatment against
E. coli. Other flavonoids, such as apigenin, 3,6,7,3′,4′-pentahydroxyflavone, and quercetin,
exhibited marked inhibitory activities against DNA gyrase, with IC50 values of 67.6, 55,
and 47 µg/mL, respectively [72]. This last flavonoid also blocked E. coli DNA supercoiling
(KD = 15 µM) [73]. Additionally, EGCG inhibited the growth of three bacterial strains:
Mycobacterium tuberculosis, E. coli, and Streptomonas maltophilia, by inhibiting the activity of
an enzyme responsible for DNA synthesis called dihydrofolate reductase (DHFR) [74,75].



Molecules 2022, 27, 1484 9 of 29

3.2.3. Inhibition of Bacterial Motility

In order to multiply, bacteria need to colonize and invade host tissues by displacement
and adhesion through their surface components and biofilms [76]. Flavonoids are proposed
to prevent this multiplication (adhesion and colonization) by paralyzing bacteria via block-
ing their motility [77]. Numerous flavonoids, including luteolin (IC50 = 12.5–50 µg/mL),
naringenin (IC50 = 100 µg/L), quercetin (IC50 = 0.085 µg/mL), EGCG (IC50 = 40 µg/mL),
nobiletin (IC50 = 100 µM), sinensetin (IC50 = 100 µM), and morin (IC50 = 30 µg/mL), inhib-
ited bacterial motility (twitching motility) [78]. Moreover, other flavonoids have shown
antibiofilm and anti-QS effects on P. aeruginosa [79]. Interestingly, quercetin was the con-
stituent that strongly inhibited its twitching motility (MIC = 0.085 µg/mL) as well as biofilm
formation (95%).

3.2.4. Inhibition of Biofilm Formation

As previously mentioned, bacteria form biofilms on surfaces to adhere, grow, and
subsequently synthesize polymers that can induce alterations related to gene transcription
and growth rate [80]. In this respect, it is difficult to target bacteria within a fully formed
biofilm, as they receive the elements necessary for their survival through water channels
that irrigate the biofilm [80]. Phloretin acted as an antibiofilm agent against E. coli [81],
indicating the inhibitory potential of hydrophilic flavonoids against biofilm formation [82].
This agrees with the findings of Vikram and colleagues, who recorded a decrease in the size
of biofilms formed by V. harveyi and E. coli via the action of sinensetin, quercetin, kaempferol,
rutin, naringin, neohesperidin, naringenin, neoeriocitrin, and apigenin [83]. EGCG also
destroyed the established biofilm of Porphyromonas gingivalis [84] and E. faecalis [85].

3.3. Antibacterial Actions of Phenolic Acids

Phenolic acids are a group of secondary metabolites that are widely found in medic-
inal plants. These compounds exhibit remarkable antibacterial properties with different
mechanisms, including the perturbation of influx of protons, decreasing cell viability, and
increasing cell membrane permeability. Through their properties of absorption, digestion,
and metabolism in the circulatory system, the bioavailability of phenolic acids is linked
to the intensity of their pharmacological effects. These compounds represent the main
polyphenols and are the source of multiple biomolecules used in cosmetics, food, and
therapeutic industries [86]. In microorganisms, increased cell membrane permeability
is generally an important mechanism of action for a wide range of antimicrobials. This
mechanism of action was adopted by Campos et al. [87] to assess the activity of numerous
phenolic acids against Oenococcus oeni and Lactobacillus hilgardii, two wine lactic acid
bacteria, by measuring the influx of protons, cell viability, and the efflux of phosphate and
potassium. Therefore, hydroxycinnamic acids induced more ion loss and proton influx
than hydroxybenzoic acids. A decrease in cell viability in both strains tested was noted
after exposure to phenolic acids [87].

In 2015, Oh and Jeon [88] investigated the inhibitory potential of 12 phenolic acids
(salicylic acid, gallic acid, benzoic acid, p-hidroxybenzoic acid, tannic acid, protocatechuic
acid, syringic acid, p-coumaric acid, sinapic acid, ferulic acid, cinnamic acid, and vanillic
acid) in association with two synthetic antibiotics (ciprofloxacin or erythromycin) against
Campylobacter jejuni of poultry or human origin. Results showed that certain combinations
have synergistic inhibitory effects. Authors of this study attributed the modulatory effects
of certain acids (p-coumaric acid and gallic acid) on antibiotic resistance to reduction in
membrane transporter transcription and to disturbances in membrane envelope perme-
ability. Finally, in C. jejuni, gallic acid exhibited high transcription reductions in CmeABC,
acting as a multi-drug efflux system responsible for the resistance of this bacterium. A year
later, other researchers examined the activity of tannic acid alone or in combination with
norfloxacin, a broad-spectrum antibiotic, against the S. aureus strain [89]. This phenolic acid
inhibited overexpression of the norA gene encoding the efflux transporter protein NorA,
with an MIC value of 0.512 mg/mL. Tannic acid combined with norfloxacin also inhibited
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the growth of the tested strain synergistically. Likewise, this acid inhibited the NorA efflux
pump, indicating a modulation of antibiotic resistance [89].

Research findings [90] indicated that caffeic acid alone exhibits antibacterial activity,
with MIC values ranging from 256 to 1024 µg/mL, against a reference strain of S. aureus,
while it potentiated the antibacterial effect of clindamycin, cefoxitin, vancomycin, and
erythromycin. Other phenolic acids (p-coumaric, ellagic, protocatechuic, gallic acid, vanil-
lic, and syringic), isolated from grape pomace extracts, inhibited the growth of E. coli
and S. aureus, with MIC values ranging from 0.2 to 2.5 and 0.062 to 3 mg/mL, respec-
tively [91]. Salmonella Enteritidis and Listeria monocytogenes were also inhibited by ellagic
acid (0.2 mg/mL) identified in Vaccinium corymbosum L. [92]. In contrast, two studies in-
vestigating the activity of gallic acid against Helicobacter pylori [93] and E. coli [94] were
conducted by Díaz-Gómez and his colleagues. These researchers showed that the growth
of both bacteria was strongly inhibited by this molecule at doses of 0.2 and 3.25 mg/mL,
respectively [94].

Other molecules, such as gallic acid, vanillic acid, caffeic acid, protocatechuic acid,
and p-coumaric acid, were effective against methicillin-resistant S. aureus (MRSA), with
MIC values of 2.05, 2.05, 2.05, 4.09, and 1.30 mg gallic acid equivalent/mL (GAE/mL),
respectively [95]. Thus, phenolic acids can be suggested as food preservation due to the
chemical structure of these acids [96]. In fact, the antibacterial activity has been improved
following the increase in the length of the alkyl chain [97]. Additionally, two phenolic acids:
hydroxybenzoic and hydroxycinnamic acids, exhibited an antibacterial activity dependent
on the number of hydroxyl (−OH) and methoxy (−OCH3) functional groups [98]. In addi-
tion, Bouarab-Chibane et al. [99] demonstrated that ferulic and gallic acids cause disruption
of membrane integrity and leakage of intracellular elements. Moreover, other studies
attributed the antibacterial activity of coumarins to their capacity to induce reduction in
the rate of cellular respiration and inhibition of the bacterial division protein FtsZ [99,100].

Certainly, the structural variability between the different polyphenols has an impact
on their antibacterial potential. Data collected and discussed in this review indicate that
phenolic acids are characterized by a strong antibacterial activity compared to flavonoids
having a large molecular structure. The strong interaction of phenolic acids with the active
sites of bacteria was related to their reduced molecular size [91,95,101]. Furthermore, re-
search findings showed that phenolic acids induce cell death by inhibiting bacterial growth
via acidification of the cytoplasm [87]. This is inversely proportional to the pH values [102].
This is due to the fact that pH exerts a load on ring substitutions (−OH and −OCH3), the
−COOH group, and side-chain saturation. In addition, the antibacterial effect decreases
with the decrease in double bonds in hydroxycinnamic acids [87]. To improve the antibac-
terial activity of terpenoids, flavonoids, and phenolic acids, it is necessary to study, in vitro
and in vivo, the possible synergetic antibacterial effects of formulation/combination of
these molecules between themselves and between clinically prescribed antibiotics. In ad-
dition, characterization of the underlying mechanisms of action of these molecules is an
interesting approach to improve their efficiency; for example, nano-encapsulate of certain
molecules can facilitate their penetration of the bacterial wall.

4. Secondary Metabolites of Medicinal Plants as Anti-Quorum-Sensing Agents
4.1. Quorum-Sensing Systems in Bacteria

When a bacterial community reaches a high level, signaling molecules will be syn-
thesized subsequently, and this is called QS. For the expression of these molecules to take
place, the cell density must be high. Therefore, a set of genes are then activated by these
QS molecules for the biosynthesis of proteins involved in pathogenicity and antibiotic
resistance [103,104]. The expression of QS molecules, from a biochemical point of view,
differs depending on the cells (Gram− or Gram+) [105]. Regarding Gram-positive bacteria,
the main function of the QS system is to ensure the synthesis of intracellular molecules
called self-inducing peptides (AIP), which will be transported outside the cell in the form
of oligopeptides capable of binding to external membrane receptors rich in histidine. Spe-
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cific activation of gene expression is provided by signaling pathways activated by signal
transduction; a given signal peptide specifically regulates the transcription of a gene [105].
However, with Gram-negative bacteria, self-inducing molecules are secreted from a parent
molecule called N-acyl homoserine lactones (AHL). These bacteria, at high cell density,
activate the transcription of the Lux operon encoding the transcription of enzymes of
the signal synthase (LuxI) family responsible for the synthesis of AHL. Depending on
the bacterial density, these molecules can rejoin the intracellular medium to regulate the
expression of genes, in a manner dependent on the extracellular medium [105]. In fact, in
order to selectively activate the transcription of the target genes, the AHL molecule diffuses
into the intracellular medium and interacts with the regulators of transcription.

4.2. Action of Secondary Metabolites on QS

Recent investigations showed that several natural products exhibit important effects
against QS mediators. In this review, the focus will be on the anti-QS action of secondary
metabolites secreted from medicinal plants. These compounds mainly belong to terpenoids,
phenolic acids, and flavonoids. The general mechanisms of these natural substances
include inhibition of the generation of QS mediators (Figure 3) and QS mediators’ reception
(Figure 4).
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4.2.1. Terpenoids

As described in other parts of this review, terpenoids or EOs exhibit remarkable
antibacterial effects via different mechanisms, including inhibition of QS. Indeed, as listed
in Table 2, numerous terpenoids, such as carvacrol, linalool, D-limonene, and α-pinene,
display inhibitory activities through different mediators of QS.

Table 2. Anti-quorum-sensing effects of terpenoids.

Compounds Bacteria Effects References

Carvacrol

Chromobacterium violaceum
Inhibition of biofilm formation at sublethal concentrations

Reducing of cviI expression
Decreasing violacein and chitinase activity

[106]

Pseudomonas aeruginosa Inhibition of biofilm formation
Reducing pyocyanin and violacein production [107]

Pseudomonas aeruginosa
ATCC 10154

Reducing production of AHLs
Reducing the expression of lasR expression

Reducing biofilm formation
[108]

Sesquiterpene
lactone

Pseudomonas aeruginosa ATCC
27853

Inhibition of QS phenotypes, such as biofilm formation,
elastase activity, and AHLs [109]

Chromobacterium violaceum Decreasing the affinity of CviR protein to its
receptor LuxR [110]

Chromobacterium violaceum ATCC
12472 Inhibition of QS mediators [111]

Eugenol Pseudomonas aeruginosa, Proteus
mirabilis, and Serratia marcescens Reducing AHL and violacein formation [112]

Escherichia coli
Pseudomonas aeruginosa

Decreasing violacein, elastase, pyocyanin, and
biofilm formation

Inhibition of las and pqs QS systems
[113]
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Table 2. Cont.

Compounds Bacteria Effects References

Methicillin-resistant
Staphylococcus aureus

Reducing production of elastase, protease,
chitinase, and pyocyanin [114]

Pseudomonas aeruginosa Inhibition of biofilm formation [115]

Pseudomonas aeruginosa Decreasing rhlA, lasI, and rhlI expression
Inhibition of biofilm formation [116]

Phytol Pseudomonas aeruginosa PAO1 Inhibition of biofilm formation and pyocyanin production
Reducing bacterial flagella motility [117]

Serratia marcescens Inhibition of protease and biofilm production [118]

Serratia marcescens

Inhibition of biofilm, lipase, and hemolysin
formation

Inhibition of bacterial motility
Downregulation of fimA, fimC, flhC, flhD, bsmB, pigP, and

shlA genes expression
Decreasing production of lipase and protease

[119]

Linalool Acinetobacter baumannii Inhibition of biofilm formation [40]

D-limonene Escherichia coli
Inhibition of biofilm formation
Suppression of curli production

Decreasing swimming and swarming ability
[120]

(−)-α-Pinene Campylobacter jejuni Reducing the QS communication [121]

Along this line, eugenol exhibits important effects against biofilms of Pseudomonas
aeruginosa, Proteus mirabilis, and Serratia marcescens clinical isolates [112], and against
methicillin-resistant Staphylococcus aureus isolated from food handlers [114]. Remark-
ably, other published work revealed that eugenol inhibited the production of virulence
factors, such as violacein, elastase, pyocyanin, and biofilm formation, in Pseudomonas aerug-
inosa [112–116]. It additionally inhibited QS-controlled gene expression in Pseudomonas
aeruginosa QSIS-lasI and Chromobacterium violaceum CV026 biosensors [113]. On the
other hand, eugenol caused an important reduction in biofilm formation on PAO1 (65.6%)
and a remarkable effect against QS signals (AIs) (p < 0.001) [115]. Recently, other investiga-
tions [116] showed that eugenol reduces 50% of violacein production in Chromobacterium
violaceum at sub-MIC of 0.2 mg/mL, as well as the production of N-(3-oxododecanoyl)-
L-homoserine lactone (3-oxo-C12-HSL) and C4-HSL N-acyl homoserine lactone signal
molecules, pyocyanin, and swarming motility in P. aeruginosa. Moreover, eugenol inhibited
the expression of QS synthase genes with an expression level of 65% and 61% for lasI and
rhlI, respectively, and 65% for rhlA gene, as well as the biofilm formation (36%) [116].

In a similar fashion, carvacrol (2-methyl-5-(1-methylethyl)-phenol) showed efficacy
against biofilm growth and QS. Indeed, recent studies have shown that carvacrol [107]
inhibits the formation of biofilms in Pseudomonas aeruginosa at very low concentrations
(0.9–7.9 mM) and, at the same time, reduces synthesis of pyocyanin and violacein at the
these concentrations, with a percentage of 60 and 50% at the concentration of 3.9 mM and
0.7 mM, respectively [107]. More recently, another study showed that carvacrol reduces
the virulence of Pseudomonas aeruginosa via inhibition of LasI expression and concomi-
tant reduction in lasR expression, biofilm formation, and swarm motility [108]. In this
context, the inhibitory action of biofilm formation has already been demonstrated in
Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp, Typhimurium DT104, and
Staphylococcus aureus 0074 at sublethal concentrations (<0.5 mM) by reducing the expression
of cviI, violacein, and chitinase [106].

Diterpenes, such as phytol, showed the ability to inhibit biofilm growth and QS
in Pseudomonas aeruginosa PAO1 and Serratia marcescens [86–88]. At a concentration of
10 µg/mL, phytol inhibited production of prodigiosin (92%), QS-mediated protease (68%),
and biofilm formation (64%) of Serratia marcescens [118]. Using the same bacterial strain and
concentration, results revealed that phytol lowers the level of biofilm formation, lipase, and
hemolysin production, and inhibits the swarming motility and EPS productions. This com-
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pound also downregulated the fimA, fimC, flhC, flhD, bsmB, pigP, and shlA gene expressions,
and reduced the level of virulence enzymes (lipase and protease productions) [119]. In
another study, results showed that phytol reduces the formation of Pseudomonas aeruginosa
biofilm in the range of 74.00–84.33%. It also effectively reduced P. aeruginosa twitching and
flagella motility, and inhibited the pyocyanin production (51.94%) [117].

Phytol is a diterpene, which has demonstrated anti-QS activity. In this regard, this com-
pound inhibited the growth of the biofilm and the detection of quorum in Pseudomonas aeruginosa
PAO1 and Serratia marcescens [117–119]. At a concentration of 10 µg/mL, phytol inhibited
the production of prodigiosin (92%) and QS-mediated protease (68%), and biofilm forma-
tion (64%) in Serratia marcescens [118]. In the same bacterial strain, phytol decreased the
level of biofilm formation, lipase and hemolysin production, and also inhibited swarm
motility. These effects are associated with the regulation of the expression of certain genes
(such as the fimA, fimC, flhC, flhD, bsmB, pigP, and shlA genes) and reduction in the activity
of virulence enzymes (lipase and protease) [119]. Moreover, using Pseudomonas aeruginosa
as a study model, researchers showed that phytol reduces biofilm formation, diminishes
flagella motility, and inhibits pyocyanin production [117].

Sesquiterpene lactone is another terpene, which has also shown anti-QS activity. In fact,
this molecule exerted an inhibitory activity against QS mediators in Pseudomonas aeruginosa
ATCC 27,853 and Chromobacterium violaceum [109–111]. In this respect, sesquiterpene
lactone [111] inhibited QS (QSI ≥ 80%) at 1.31 mg/mL in Pseudomonas aeruginosa. Research
findings showed that the action of six sesquiterpene lactones belonging to the chemical
families of goyazensolide and isogoyazensolide inhibit the production of AHL at the
concentration of 100 µg/mL. These results indicated that sesquiterpene lactones are good
candidates for the development of new antimicrobial agents. Similarly, oleanolic aldehyde
coumarate exhibited inhibitory activities against P. aeruginosa biofilms via inhibition of las,
rhl, and AHL expression, as well as by reduction in lasI/R, rhlI/R expression, and gacA [122].
Other terpenoids, such as linalool, inhibited the biofilm formation of A. baumannii and
modified the adhesion of this strain to surfaces. This phenotype is linked to the interference
of linalool with the QS system [40,120]. In the meantime, using E. coli as a study model,
D-limonene nanoemulsion inhibited biofilm formation by suppressing the production of
extracellular polymeric substances (EPS) and decreasing the capacity swarming. On the
other hand, (−)-α-pinene (at a concentration of 250 mg/L) has recently shown a significant
reduction in QS Campylobacter jejuni signaling of >80% [121].

4.2.2. Flavonoids

Flavonoids constitute the second group of medicinal plant secondary metabolites.
Some investigations that have been carried out recently showed that this chemical group
exhibits an antibacterial effect via several actions, including inhibition of QS and its major
phenotypes, such as the formation of biofilm. Listed in Table 3 are investigations showing
the effects of flavonoids (Figure 5) against QS and biofilm formation.

Table 3. Anti-quorum-sensing effects of flavonoids.

Compounds Organisms Tested Key Findings References

Epigallocatechin Burkholderia cepacia and
Staphylococcus aureus

Inhibited biofilm formation by interference with
AHL production [123]

Eikenella corrodens Inhibited QS mediated by auto-inducer 2 (AI-2)
Inhibited biofilm formation [124]

Listeria monocytogenes Inhibited biofilm formation [125]

Campylobacter jejuni
Disturbed QS functionin

Reduced motility and biofilm formation
Decreased AI-2 activity

[126]
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Table 3. Cont.

Compounds Organisms Tested Key Findings References

Streptococcus mutans (Sm) and
probiotic Lactobacillus casei in

Yakult (LcY)

Decreased biomass and acid production
Inhibited biofilm formation

Acid production
[127]

Salmonella typhimurium Reduced sdiA and luxS genes expression [128]

Naringin Chromobacterium violaceum

Inhibited biofilm formation
Reduced swimming and swarming motility

Inducted some gene transcription, such as yenR, flhDC,
and fliA

[129]

Yersinia enterocolitica Inhibited biofilm formation
Decreased the synthesis of AHL [129]

Streptococcus mutans Suppressed biofilm maturation [130]

Quercetin Escherichia coli O157:H7 and
Vibrio harveyi

Inhibited biofilm formation
Blocked cell–cell signaling [83]

Chromobacteriumviolaceum CV026
Reduced violacein production, biofilm

formation, EPS production, motility, and
alginate production

[131]

Pseudomonas aeruginosa PAO1 Inhibited biofilm formation
Inhibited the twitching motility [79]

Pseudomonas aeruginosa
strain PAO1

Inhibited biofilm formation
Reduced virulence factors, including

pyocyanin, protease, and elastase
Reduced levels of lasI, lasR, rhlI, and rhlR genes expression

[132]

Quercetin 4’-O-β-D-
glucopyranoside

Chromobacteriumviolaceum
CV12472 and

Pseudomonas aeruginosa PAO1

Inhibited violacein, elastase, pyocyanin, and
biofilm formation [133]

Pseudomonas aeruginosa Inhibited LasR expression [134]

Chromobacterium violaceum ATCC
12,472 and

Chromobacterium violaceum CV026

Inhibited production of violacein pigment
Inhibited the communication molecule, C6-AHL [135]

Pseudomonas aeruginosa

Decreased adhesion, biofilm formation, swarming motility,
and expression of biofilm-associated genes

Reduced pyocyanin production
Inhibited the activity of protease

Reducing QS via the vfr-mediated lasIR system

[136]

Taxifolin Pseudomonas aeruginosa PAO1 Reduced production of pyocyanin and elastase
Inhibited the QS-controlled genes expression [137]

Kaempferol Staphylococcus aureus Inhibited biofilm formation
Inhibition of adhesion-related gene expression [138]

Morin Staphylococcus aureus Inhibited biofilm formation
Reduced motility and spreading [139]

Naringenin Pseudomonas aeruginosa Inhibited the QS-regulated gene expression [140]

Epigallocatechin showed antibiofilm activity against Salmonella typhimurium, with
downregulation of the di A and luxS genes [127,128]. Research findings showed that epigal-
locatechin decreases the production of Streptococcus mutans biofilms at a concentration of
250 µg/mL. Furthermore, epigallocatechin disrupted the QS activity, reduced motility and
biofilm formation, and decreased AI-2 activity [126]. In addition, epigallocatechin has also
shown inhibitory activities of QS and biofilm formation against Burkholderia cepacia and
Staphylococcus aureus [123], Listeria monocytogenes [125], and Eikenella corrodens [124]. On
the other hand, at concentrations of 100 and 200 µg/mL, naringenin inhibited the growth
and biofilm formation of S. mutans, increased the surface hydrophobicity of S. mutans,
reduced bacterial aggregation, and regulated downward mRNA expression of gtfB, gtfC,
comD, comE, and luxS [130]. Furthermore, results indicated that this compound inhibits
swimming and swarming motility in Chromobacterium violaceum and is associated with
inducing transcription levels of yenR, flhDC, and fliA [129].
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Quercetin has been investigated by several researchers for its anti-QS
activities [79,83,131–136]. Results revealed that the actions of quercetin against QS are
diverse and multiple, and depend on the bacterial strain tested and the experimental
method used. Within this context, quercetin exerts antagonistic effects on bacterial signal-
ing. Moreover, it suppresses biofilm formation, as has been demonstrated in Escherichia coli
O157: H7 and Vibrio harveyi [83]. In addition, quercetin inhibited the QS-controlled vir-
ulence factors, such as violacein, elastase, and pyocyanin in Chromobacterium violaceum
CV12472 and Pseudomonas aeruginosa PAO1 [133]. Using biofilm formation assay, Ouyang
and colleagues [136] reported that quercetin decreases adhesion and biofilm formation in
Pseudomonas aeruginosa, as well as swarming motility and expression of biofilm-associated
genes. Quercetin also showed significant reduction in QS-dependent phenotypes, includ-
ing violacein production, biofilm formation, and exopolysaccharide (EPS) production
in Chromobacterium violaceum CV026, as well as motility and alginate production in a
concentration-dependent manner [131]. Ouyang et al. [132] reported that quercetin exhibits
antibiofilm activities against Pseudomonas aeruginosa strain PAO1, as well as inhibition of
production of virulence factors, including pyocyanin, protease, and elastase at low con-
centrations. Furthermore, the expression levels of lasI, lasR, rhlI, and rhlR were reduced by
quercetin at a concentration of 16 µg/mL. This compound also inhibited the QS circuitry
by interacting with transcriptional regulator LasR in Pseudomonas aeruginosa [134].

Other flavonoids have also shown important anti-QS activities. In this respect, Her-
nando et al. [140] indicated that naringenin inhibits the expression of QS-regulated genes,
as well as the production of the QS-regulated virulence factors, pyocyanin and elastase, in
Pseudomonas aeruginosa strains. In a similar fashion, morin exhibited significant biofilm in-
hibition, reduced motility and spreading, and EPS production of Staphylococcus aureus [139].
Meanwhile, kaempferol inhibited biofilm formation by 80% at a concentration of 64 µg/mL
and reduced the activity of Staphylococcus aureus sortase A (SrtA) and the expression of
adhesion-related genes [138]. On the other hand, taxifolin exerted a significant decrease in
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the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth.
This compound also reduced the expression of several QS-controlled genes (i.e., lasI, lasR,
rhlI, rhlR, lasA, lasB, phzA1, and rhlA) in P. aeruginosa PAO1 [137].

4.2.3. Phenolic Acids

Phenolic acids are also secondary metabolites secreted by several natural resources,
including medicinal plants. Several investigations showed that these phenolic compounds
(Figure 6) exhibit remarkable anti-QS effects. Shown in Table 4 are the anti-QS effects of
phenolic acids.
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Table 4. Anti-QS effects of phenolic acids.

Compounds Organisms Tested Key Findings References

Rosmarinic acid

Pseudomonas aeruginosa PAO1 Inhibited biofilm formation [141]

Pseudomonas aeruginosa PAO1

Inhibited QS regulator RhlR and N-butanoyl-
homoserine lactone (C4-HSL)

Induced a great increase in RhlR-mediated
transcription than that of C4-HSL

Induced QS-dependent gene expression
Inhibited biofilm formation and virulence factor

production (pyocyanin and elastase)

[142]

Aeromonas hydrophila

Biofilm inhibitory concentration was 750 µg/mL
Reduced production of QS-mediated hemolysin,

lipase, and elastase
Downregulated the virulence genes, such as ahh1,

aerA, lip, and ahyB

[143]

Pseudomonas aeruginosa PAO1

Induced the expression of 128 genes, including
numerous virulence factor genes

Induced seven sRNAs that were all encoded in
regions close to QS-induced genes

[144]

Chlorogenic acid
Pseudomonas aeruginosa

Inhibited biofilm formation, swarming, and
virulence factors

Downregulation of QS-related gene expression
Inhibition of QS receptors

[145]

Chromobacterium violaceum Inhibited biofilm formation, swarming motility,
chitinolytic activity, and violacein production [145]

Salicylic acid

Agrobacterium tumefaciens Decreased biofilm and AHL production via the
modulation of 103 genes’ expression [146]

Pseudomonas aeruginosa Decreased swimming, twitching,
and swarming motility [147]

Pectobacterium carotovorum and
Pseudomonas syringae pv

syringae

Inhibited biofilm formation, motility,
and AHL production [148]

Pectobacterium aroidearum and
Pectobacterium carotovorum ssp.

brasiliense

Affected the QS machinery of the two species,
consequently altering the expression of bacterial

virulence factors
Inhibited QS genes’ expression, such as expI, expR,

PC1_1442 (luxR transcriptional regulator), and luxS
(a component of the AI-2 system)

Reduced AHL levels

[149]

Cinnamic acid

Pseudomonas aeruginosa PAO1 Inhibited QS-dependent virulence factors and
biofilm formation [150]

Pectobacterium aroidearum and
Pectobacterium carotovorum ssp.

brasiliense

Altered gene expression of virulence factors
Inhibited genes expression of QS (expI, expR,

PC1_1442 (luxR transcriptional regulator), and luxS)
Decreasing the expression of AHL signal

[149]

Two cinnamic acid
derivatives: 4-dimethyl-
aminocinnamic acid and
4-methoxycinnamic acid

Chromobacterium violaceum
ATCC12472

Inhibited the synthesis of
N-decanoyl-homoserine lactone

Reduced production of virulence factors (violacein,
hemolysin, and chitinase)

Downregulated some QS-related metabolites
(ethanolamine and L-methionine)

Decreased QS-related genes expression
(cviI and cviR)

Inhibited biofilm formation

[151]
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Table 4. Cont.

Compounds Organisms Tested Key Findings References

p-Coumaric acid

Agrobacterium tumefaciens
NTL4,

Chromobacterium violaceum
5999, and

Pseudomonas chlororaphis

Inhibited QS responses [152]

Chromobacterium violaceum
(CECT 494) Inhibited the production of violacein [153]

Caffeic acid Staphylococcus aureus Reduced bacterial adhesion
Decreased the production of α-hemolysin [154]

Ellagic acid Burkholderiacepacia Inhibited biofilm formation [123]

Phenylacetic acid Pseudomonas aeruginosa
Exhibited competitive action with AHLs signaling
Decreased the production of pyocyanin, protease,

and elastase
[155]

Salicylic acid was reported to interfere with the QS system of two Pectobacterium
species, P. aroidearum and P. carotovorum ssp. Brasiliense, and affected QS machinery, con-
sequently altering the expression of bacterial virulence factors [149]. It also inhibited the
expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator),
and luxS (a component of the AI-2 system), and reduced the level of the AHL signal. Using
motility and AHL production tests, treatment with salicylic acid significantly reduced the
biofilm formation by decreasing twitching and swarming motility and AHL production in
Pseudomonas aeruginosa [147]. This activity was also confirmed by other researchers [148].
In another study, salicylic acid reduced the AHL production and biofilm formation in
Agrobacterium tumefaciens by modulation of 103 gene families involved in virulence [146].

Similarly, rosmarinic acid (RA) at 750 µg/mL inhibited biofilm formation and reduced
the QS-mediated hemolysin, lipase, and elastase production in A. hydrophila strains. It
additionally downregulated the virulence genes, such as ahh1, aerA, lip, and ahyB [143].
Using molecular docking, researchers Corral-Lugo et al. [142] showed that RA bound to
the QS regulator RhlR of the Pseudomonas aeruginosa PAO1 and competes with the bacterial
ligand N-butanoyl-homoserine lactone (C4-HSL), and stimulated a greater increase in
RhlR-mediated transcription than that of C4-HSL. In P. aeruginosa, RA induced the QS-
dependent gene expression and increased biofilm formation and the production of the
virulence factors pyocyanin and elastase. In another study, results revealed that RA induces
the expression of 128 genes, including numerous virulence factor genes, and triggered a
broad QS response in Pseudomonas aeruginosa PAO1. It also induced seven sRNAs that were
all encoded in regions close to QS-induced genes [144]. Using the same model organism,
researchers confirmed this activity [141].

Cinnamic acid is another type of phenolic acid that has documented biofilm and QS
inhibitory activities. At sublethal concentration, cinnamic acid effectively inhibited both
the production of the QS-dependent virulence factors and biofilm formation in P. aeruginosa
without affecting the viability of the bacterium [150]. In addition, findings showed that
cinnamic acid affects the QS machinery of the two species (Pectobacterium aroidearum and
Pectobacterium carotovorum ssp. brasiliense), consequently altering the expression of bacterial
virulence factors [149]. Furthermore, cinnamic acid inhibited the expression of QS genes,
including expI, expR, PC1_1442 (luxR transcriptional regulator), and luxS (a component
of the AI-2 system), and reduced the level of the AHL signal. In a similar fashion, two
cinnamic acid derivatives, 4-dimethylaminocinnamic acid (DCA) and 4-methoxycinnamic
acid (MCA), exhibited anti-QS and antibiofilm activities against Chromobacterium violaceum
ATCC12472 [151]. Additionally, both DCA (100 µg/mL) and MCA (200 µg/mL) inhibited
the levels of N-decanoyl-homoserine lactone (C10-HSL) and reduced the production of
certain virulence factors in C. violaceum, including violacein, hemolysin, and chitinase.



Molecules 2022, 27, 1484 20 of 29

Moreover, DCA and MCA downregulated the QS-related metabolites, such as ethanolamine
and L-methionine, suppressed the expression of two QS-related genes (cviI and cviR), and
inhibited the biofilm formation.

For chlorogenic acid, researchers found that CA inhibits the formation of biofilm in
Pseudomonas aeruginosa, the ability of swarming, and virulence factors, including protease
and elastase activities, and rhamnolipid and pyocyanin production [145]. Chlorogenic
acid also exhibited similar inhibitory effects in Chromobacterium violaceum on its biofilm
formation, swarming motility, chitinolytic activity, and violacein production. Similarly,
p-coumaric acid inhibited QS responses of Agrobacterium tumefaciens NTL4,
Chromobacterium violaceum 5999, and Pseudomonas chlororaphis with no effect on cell via-
bility [152]. Using a qualitative QS inhibition assay, researchers showed that, at 0.2 mg/mL,
chlorogenic acid suppresses the QS in Chromobacterium violaceum (CECT 494) by inhibit-
ing the violacein [153]. Caffeic acid was reported to have anti-QS and antibiofilm effects
in Staphylococcus aureus by inhibiting the production of α-hemolysin by this microorgan-
ism [154]. In terms of biofilm formation, ellagic acid and phenylacetic acid were shown to
be effective against Burkholderia cepacia [123] and Pseudomonas aeruginosa [155].

5. Clinical Investigations of Natural Compounds Isolated from Medicinal Plants
5.1. Clinical Investigations of Terpenoids

In order to validate the tolerance, efficacy, and safety of a treatment, clinical trials are
carried out in human medical therapy after preclinical studies (Table 5). Numerous clinical
studies have been performed with the aim of discovering new natural constituents with
antibacterial properties. However, these properties are little explored with terpenoids at
the clinical level [156,157]. In 2011, the impact of a vaginal douching based on two monoter-
penes (thymol + eugenol) against bacterial vaginosis (BV) was studied in a randomized,
multicenter parallel group trial in 221 women [158]. At the rate of showering/day for
a whole week, positive results have been observed, namely, a decrease in inflammatory
signs, vaginal pH, and intensity of itching. Certain types of vaginal inflammation, such
as BV, may be caused by the natural overgrowth of vaginal bacteria, while combination
therapy between the two monoterpenes of this study may be advised for the management
of minor vaginal infections. Indeed, the combination of treatments often led to remarkable
results [158].

Table 5. Clinical trials of terpenoids as antibacterial drugs.

Molecules Treatment Experimental
Approaches Bacterial Strains Key Results References

Thymol +
eugenol

One douche/day for
one week

A multicenter, parallel
group, randomized study

221 bacterial
vaginosis cases

Vaginal strain

Reduced the severity of
dyspareunia, vaginal

dryness, erythema,
and itching

Reduced vaginal pH

[158]

Thymol +
chlorhexidine

T0, before general
anesthesia; T1, one

month after treatment;
T2, six months after

treatment; T3, twelve
months after treatment

90 patients randomly
assigned into 3 groups

Caries risk test
Bacterial counts for each
individual patient at four
stages (T0, T1, T2, and T3)

Salivary mutans
streptococci and

lactobacilli

Decreased bacterial values
compared to the

control group
No significant differences at

T0 and T3

[159]

β-caryophyllene 126 mg/day for
eight weeks

Randomized double-blind,
placebo-controlled trial

33 patients received
β-caryophyllene

33 patients received a
placebo preparation

Helicobacter
pylori

No significant change in the
urea breath test
Improvement of

epigastralgia and nausea
Decreased serum

IL-1β levels

[157]



Molecules 2022, 27, 1484 21 of 29

To highlight the combined effect of thymol with chlorhexidine, a broad-spectrum
antiseptic, against two bacteria of the oral cavity (S. mutans and lactobacilli), a study was
carried out including 90 disabled children, randomly divided into three groups [159]. After
one month and six months of treatment, a reduction in bacterial growth compared to
the control group was noted, suggesting that this combination may be recommended for
improving oral hygiene and preventing dental caries in children with disabilities. In a
randomized, double-blind, and placebo-controlled trial, 33 patients with Helicobacter pylori
infection were treated with β-caryophyllene (126 mg/day) for 8 weeks to determine eradi-
cation rates and inflammation levels [157]. Results showed relief of epigastralgia, reduced
severity of nausea, and decreased levels of proinflammatory cytokines (IL-1β), suggesting
that this chemical class can be used in medicinal preparations for the treatment of different
bacterial infections in several sectors, such as cosmetics and food industries.

5.2. Clinical Investigations of Flavonoids

Urinary tract infection is a disease that affects the kidneys and/or bladder and
is often bacterial in origin, particularly related to E. coli. Consumption of cranberries
(Vaccinium macrocarpon Ait.) in traditional medicine represents an alternative in the preven-
tion of this type of infection. This use is justified by the high contents of proanthocyanidins
(PACs), having the capacity to inhibit adhesion of E. coli to the epithelial cells of the bladder.
In some clinical trials, these molecules were among the first flavonoids investigated against
bacterial infections [160,161].

In the first trial, 32 adult volunteers of different nationalities (Spanish, French, Japanese,
and Hungarian) received a diet rich in PACs (72 mg/day) in order to evaluate (ex-vivo) their
urinary bacterial antiadhesion effect in a randomized, double-blind, placebo-controlled
study, as well as to test the impact of this regimen on E. coli virulence using an in vivo model
of Caenorhabditis elegans [160]. Results showed a dose-dependent inhibition of bacterial
adhesion, with a weakening of the activity of E. coli to kill C. elegans being obtained after
treatment with the cranberry powder diet. This confirms the benefits of PACs in preventing
E. coli virulence and its adhesive capacity in the urinary tract. To confirm this preventive
potential on urinary tract infections in children, a second study was carried out two years
later over a period of one year. In this study, 40 children (39 girls and 1 boy) received
cranberry juice daily, with and without PACs [161]. Children who participated in this study
were those with at least two urinary tract infections, while those with anatomical diseases
were excluded. One year of treatment with PACs at high concentrations led, as a major
result, to a reduction in the risk of urinary tract infections (65%) [161].

On the other hand, with the aim of improving the durability of dentin bonds, Yi et al. [162]
investigated the antibacterial effect of baicalein in association with ethanol-wet bonding. To
this end, this flavone was dissolved in increasing concentrations of ethanol (0, 0.01%, 0.05%,
and 0.1%) to treat 63 healthy human molars. The activity of these solutions was studied
against S. mutans, since this bacterium is the main cariogenic agent [163]. Results revealed
a dose-dependent antibiofilm effect, as well as a decrease in the total biomass area of the
strain tested. Similarly, the effect of EGCG on two microorganisms responsible for dental
caries in children has recently been studied [164]. In this study, 47 children susceptible to
developing dental caries were selected to rinse their teeth with EGCG for one minute. From
the enumeration of colony-forming units, a significant decrease in the concentrations of
Lactobacilli and mutant Streptococci was observed in children [164].

6. Techno-Economic Challenges and Future Perspectives

Research related to the anti-QS drugs derived from natural sources may lead to the
development of novel antibiotics with QS effects. However, although such advancement
will lead to remarkable economic and health benefits, it will also face great technological
challenges because the emergence of resistant bacteria is spreading globally, thus endan-
gering the efficacy of antibiotics. In this context, different future perspectives should be
attempted through further biological and pharmacological properties, clinical applications,
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and toxicological validations of new naturally derived drugs. Such development requires
a mechanistic understanding of how the QS system functions and understanding of its
molecular pathways. In this respect, although the QS system has been widely investigated,
its implications in different bacterial phenotypes, particularly in the development of resis-
tance against antibiotics, is not completely clear, because involved mechanisms are still not
well developed.

7. Conclusions

Secondary metabolites from medicinal plants exhibit important antibacterial effects
against several bacterial strains. Data collected through this review show that terpenoids,
flavonoids, and phenolic acids exhibit numerous mechanisms, such as alteration of cell mor-
phology, disturbance of cell membrane, decreasing membrane permeability, and inhibition
of QS. These molecules could be considered as alternative drug candidates to conventional
antibiotics. Indeed, these drugs exhibit quorum-quenching effects with several mecha-
nisms, including inhibition of the production, the action, and the transport of QS mediators.
On the other hand, these compounds showed potential results in clinical trials suggesting
their possible use in therapeutic treatment of infectious diseases against resistant strains.
However, clinical investigations require further studies to validate their use in humans.
Antibiotic resistance has rapidly evolved in the last few decades to become one of the
greatest public health threats of the 21st century. Indeed, infections that are untreatable
due to multidrug resistance of the infected organism have become more common in clinical
settings. A complete understanding of the mechanisms by which bacteria become resistant
to antibiotics is of paramount importance to design novel strategies to counter the resistance
threat. Therefore, efforts to develop antibiotics and study mechanisms of resistance should
be continuous, resilient, and steady.
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