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Abstract To counter the host RNA silencing defense

mechanism, many plant viruses encode RNA silencing

suppressor proteins. These groups of proteins share very

low sequence and structural similarities among them,

which consequently hamper their annotation using

sequence similarity-based search methods. Alternatively

the machine learning-based methods can become a suit-

able choice, but the optimal performance through machine

learning-based methods is being affected by various factors

such as class imbalance, incomplete learning, selection of

inappropriate features, etc. In this paper, we have proposed

a novel approach to deal with the class imbalance problem

by finding the optimal class distribution for enhancing the

prediction accuracy for the RNA silencing suppressors.

The optimal class distribution was obtained using different

resampling techniques with varying degrees of class dis-

tribution starting from natural distribution to ideal distri-

bution, i.e., equal distribution. The experimental results

support the fact that optimal class distribution plays an

important role to achieve near perfect learning. The best

prediction results are obtained with Sequential Minimal

Optimization (SMO) learning algorithm. We could achieve

a sensitivity of 98.5 %, specificity of 92.6 % with an

overall accuracy of 95.3 % on a tenfold cross validation

and is further validated using leave one out cross validation

test. It was also observed that the machine learning models

trained on oversampled training sets using synthetic

minority oversampling technique (SMOTE) have relatively

performed better than on both randomly undersampled and

imbalanced training data sets. Further, we have character-

ized the important discriminatory sequence features of

RNA-silencing suppressors which distinguish these groups

of proteins from other protein families.

Keywords RNA silencing � Class imbalance problem �
Optimal class distribution � Balanced training set �
SMOTE � Random undersampling � SVM � Relieff

Introduction

RNA silencing is a common host defense mechanism in

plants against many plant RNA/DNA viruses (Li et al.

2014a; Pérez-Cañamás and Hernández 2014; Valli et al.

2001). To counter the RNA silencing defense mechanism,

these plant viruses encode RNA-silencing suppressors,

which disturb the host RNA silencing pathway. The

molecular basis for the mechanism of encoding RNA-si-

lencing suppressors by these plant viruses is still largely

unknown. P1/HC–Pro of Potyviruses, P19 of tombus-

viruses and 2b proteins of cucumo-viruses are some of the

well-studied RNA silencing suppressors (Qu and Morris

2005) and recently new RNA silencing suppressors are

being identified in a mastrevirus (Wang et al. 2014) and in

a wheat dwarf virus (Liu et al. 2014). Recent studies have

also pointed to the role of suppressors in modulating the

function of microRNAs (Chapman et al. 2004; Dunoyer

et al. 2004).
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Annotation of putative members of this family is ham-

pered by the presence of high sequence diversity existing

among these plant virus-encoded RNA-silencing suppres-

sors (Qu and Morris 2005). The sequence similarity-based

search methods like BLAST (Altschul et al. 1990) and PSI-

BLAST (Altschul et al. 1997) have their inherent limita-

tions in these situations where there exists low sequence

conservation. Previously in (Jagga and Gupta 2014) the

shortcomings of sequence similarity-based search methods

like PSI-BLAST in correctly annotating the members of

this protein family are emphasized. Machine learning

methods trained on mathematically represented suit-

able input feature vectors become a viable alternative to

sequence similarity-based search methods. Previously dif-

ferent machine learning methods have been successfully

applied to solve biological classification tasks (Kumari

et al. 2015; Nath et al. 2012; Nath and Subbiah 2014). But

the true performance of machine learning methods is

affected by various factors such as class imbalance (Nath

and Subbiah 2015a), imperfect learning due to some

missing example instances and selection of inappropriate

input features.

The class imbalance problem is quite common in bio-

logical datasets, where there is a huge difference in the

number of instances belonging to the different classes and

subclasses. These types of imbalanced datasets result in

classifier bias towards the majority class and tend to pro-

duce majority class classifier (Wei and Dunbrack 2013). In

most of the cases, the class of interest is the minority class

and is the cause for lower sensitivity. Many methods had

been proposed to deal with the class imbalance problem.

Previously it has been stressed that the natural class dis-

tribution may not be optimal for training (Lee 2014; Weiss

and Provost 2003) and the requirement of a balanced

training set for proper learning has been pointed out by

Dunbrack et al. (Wei and Dunbrack 2013). In the current

work, we propose a technique to achieve better learning of

both the positive and negative classes by experimenting

with different resampling methods to balance the dataset

with varying degree of class distributions. We have also

repeated the experiments on different machine learning

algorithms on imbalanced, Synthetic Minority Oversam-

pling Technique (SMOTE) (Chawla et al. 2002) oversam-

pled and randomly undersampled datasets to find the

optimal class distribution. We used the sequence features

like amino acid composition, property group composition,

dipeptide counts and property group n-grams for creating

the input feature vectors. Broadly, two types of approaches

are used for handling the class imbalance, (1) resampling

methods which are algorithm independent and are trans-

ferable to different machine learning algorithms and (2)

internal approaches which involve altering the existing

algorithms and its various parameters for adapting to

imbalance class distribution. The SMOTE and random

undersampling fall under resampling methods, although

other sophisticated varieties of SMOTE exist (Barua et al.

2014; Han et al. 2005; Nakamura et al. 2013), but in the

present study, we have limited our focus on simple

undersampling and SMOTE oversampling as they are

found to be useful for many classifiers (Blagus and Lusa

2013) and in many biological classification problems

(Batuwita and Palade 2009; MacIsaac et al. 2006; Xiao

et al. 2011).

The current method explored the possibility of

improvement in prediction accuracy of the machine

learning algorithms using optimal class distribution and

presented in detail the behavior of the tested learning

algorithms with varying degrees of resampling. From the

current work, it is also proved that prediction accuracy for

the plant virus-encoded RNA-silencing suppressor proteins

can be improved using resampling techniques.

Materials and methods

Dataset

We have used the dataset as used in (Jagga and Gupta

2014) which consisted of 208 plant virus-encoded RNA-

silencing suppressor proteins (RSSPs) belonging to posi-

tive class and 1321 non-suppressor proteins (NSPs)

belonging to negative class, for this study. The CD-HIT (Li

and Godzik 2006) was applied separately to these classes

of sequences to reduce the redundancy at 70 % sequence

identity. Here, the positive class is the minority class as the

number of positive class sequences is relatively very small

when compared to the number of negative class sequences

and their prediction will suffer from the imbalance class

factor.

Extraction of feature vectors

The quality of the attributes of the protein sequences

selected for creating the input feature vector will have great

influence in learning the concepts of a particular protein

family. We represented each protein sequence as the

combination of following sequence features to create input

instances and they are explained below.

Amino acid composition feature

Different proteins are evolved through the avoidance and

preference of some specific amino acids and leads to some

certain unique set of percentage frequency composition,

which can be used successfully for discriminatory purposes

(Nath and Subbiah 2014). So we have taken the frequency
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percentage of distribution of the 20 amino acids along the

length of the protein sequence as one of the features for

creating the input feature vector. It is calculated using the

following formula:

AAi ¼
TCAA;i

TCres;i
� 100; ð1Þ

where AA denotes for one of the 20 amino acid residues,

AAi denotes the amino acid percentage frequency of

specific type ‘AA’ in the ith Sequence, TCAA,i denotes the

total count of amino acid of specific ‘AA’ type in the ith

sequence, TCres,i denotes the total count of all residues in

the ith sequence (i.e., sequence length).

Amino acid property group composition feature

The amino acids can be grouped according to their

physicochemical properties. The Table 1 contains the list

of amino acids belonging to the 11 different physico-

chemical groups. We have taken the percentage frequency

composition of the 11 different amino acid property groups

as used in (Nath et al. 2013) as the second feature. The

formula for calculating this feature attribute is given below.

PGi ¼
TCPG;i

TCres;i
� 100; ð2Þ

where PG denotes one of the 11 different amino acid

property groups, PGi denotes the percentage frequency of

specific ‘PG’ amino acid property group in the ith

sequence, TCPG,i denotes the total count of specific amino

acid property group ‘PG’ in the ith sequence, TCres,i

denotes the total count of all residues in the ith sequence.

Dipeptide counts

There are four hundred different possible dipeptides from

20 amino acids. To take advantage of the local sequence

order and amino acid coupling into the prediction we have

taken the dipeptide counts as the third feature.

Property group n-grams

To take into the conservation of similar contiguous

physicochemical amino acid property groups in the protein

sequence, we have calculated the property groups n-grams,

where n is the window length. In the current work we have

taken the window length of 2 as the fourth feature and is

calculated by the formula given below:

Physicochemical 2-grams : Small ¼
XN�1

i¼1

C i; iþ 1ð Þ; ð3Þ

where N denotes the length of the protein sequence, i

denotes the position of the amino acid residue along the

protein sequence, if the condition ðaai 2 S�and aaiþ1 2 S�Þ
is true then Cði; iþ 1Þ = 1 else Cði; iþ 1Þ = 0 where the

set of small aminoacids S* = {Ala,Cys,Asp,Gly,Asn,Pro,

Ser,Thr,Val}.

The above formula is used to calculate physicochemical

2-grams for the small amino acid group. In the similar way

the physicochemical 2-grams for the other ten physico-

chemical property groups were calculated. An example

feature vector is provided in Supplementary Table S1–S3.

Optimal balancing protocol

SMOTE

It was proposed by Chawla et al. (2002) for intelligent

oversampling of minority samples as opposed to random

oversampling, which may bias the learning towards the

overrepresented samples. It is a nearest neighbor-based

method, where it first chooses k nearest samples for a

particular minority sample. It then randomly selects the j

Table 1 Physicochemical groupings of amino acids taken for the present study

S. no. Name of amino acid property group Amino acids in the specific group

1. Tiny amino acids group Ala, Cys, Gly, Ser, Thr

2. Small amino acids group Ala, Cys, Asp, Gly, Asn, Pro, Ser, Thr and Val

3. Aliphatic amino acids group Ile, Leu and Val

4. Nonpolar amino acid groups Ala, Cys, Phe, Gly, Ile, Leu, Met, Pro, Val, Trp and Tyr

5. Aromatic amino acid group Phe, His, Trp and Tyr

6. Polar amino acid group Asp, Glu, His, Lys, Asn, Gln. Arg, Ser, and Thr

7. Charged amino acid group Asp, Glu, His, Arg, Lys

8. Basic amino acid group His, Lys and Arg

9. Acidic amino acid group Asp and Glu

10. Hydrophobic acid group Ala, Cys, Phe, Ile, Leu, Met, Val, Trp, Tyr

11. Hydrophilic acid group Asp, Glu, Lys, Asn, Gln
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minority samples to create a synthetic minority sample.

Successful use of SMOTE in classification tasks have been

shown in (Li et al. 2014b; Nath and Subbiah 2015b;

Suvarna Vani and Durga Bhavani 2013).

Classification protocol SVM

Support vector machines are supervised learning algo-

rithms and are based on statistical learning theory of

Vapnik (Vapnik 1995, 1998). Previous usage of SVM for

biological classification/prediction problems has found

them to be more accurate and also they are robust to noise

and well suited for high dimensional datasets (Kan-

daswamy et al. 2011; Mishra et al. 2014; Pugalenthi et al.

2010). We have used the sequential minimization opti-

mization (SMO) (Platt 1999) algorithm for fast training of

SVM with polynomial kernel with an exponent value of 1

and C = 1 (a complexity parameter which SMO uses to

build the hyperplane between the two classes, -C governs

softness of the class margins).

All the experiments were carried out using WEKA (Hall

et al. 2009) which is an open source java-based machine

learning platform. The schematic representation of the

current methodology is given in Fig. 1.

Characterization of plant virus-encoded RNA-

silencing suppressors

We have used Relieff (Kira and Rendell 1992) feature

ranking algorithm to rank the sequence features according

to their discriminating ability. Relieff is a nearest neighbor-

based feature relevance algorithm. It starts by randomly

selecting an instance and then searches for the nearest

neighboring instances belonging to the same and opposite

classes. It compares the attributes of the instance with its

nearest neighbors and assigns weights according to its

discriminating ability.

Performance evaluation metrics

We have used stratified tenfold cross validation for the

evaluation of the various models. The performances of the

machine learning algorithms were assessed with both

threshold-dependent and threshold-independent parame-

ters. These parameters are derived from the values of the

confusion matrix, namely TP: true positive that is the

number of correctly predicted RSSPs, TN: true negative

that is the number of correctly predicted NSPs, FP: false

positive that is the number of incorrectly predicted NSPs

and FN: false negative that is the number of incorrectly

predicted RSSPs. The formula for calculating the evalua-

tion parameters are given below:

Sensitivity Expresses the percentage of correctly pre-

dicted RSSPs.

Sensitivity ¼ TP= TPþ FNð Þ � 100: ð4Þ

Specificity Expresses the percentage of correctly

predicted NSPs.

Specificity ¼ TN= TNþ FPð Þ � 100: ð5Þ

Accuracy Expresses the percentage of both correctly

predicted RSSPs and NSPs.

Accuracy ¼ TPþ TNð Þ= TPþ FPþ TNþ FNð Þ � 100:

ð6Þ

AUC Area under the receiver operating characteristic

(ROC) curve that summarizes the ROC by a single

numerical value. It is a threshold-independent metric and

can take values from 0 to 1 (Bradley 1997). The value of 0

indicates the worst case, 0.5 for random ranking and 1

indicates the best prediction.

Youden’s Index This performance metric evaluates the

algorithm’s ability to avoid failure. Lower failure rates are

expressed by higher index values (Youden 1950). It is

calculated as:

Y ¼ Sensitivityð Þ � 1� Specificityð Þ: ð7Þ

Dominance It expresses the relationship between the

TP_rate (true-positive rate) and TN_rate (true-negative

Selection of the Optimal Distribution Ratio and the Best Model
based on the Performance Evaluation Metrics

Machine 
Learning 

Algorithm

Calculation of Amino Acid Composition, Property Group 
Composition, Dipeptide Counts & Property Group 2-Grams

Creation of Training 
Sets with varying 

degree of 
Undersampling

Creation of 
Training Sets with 
varying degree of 

SMOTE

Creation of Training 
Set from the 

Imbalanced (original)
Dataset

DATASET

Fig. 1 Schematic representation of the current pipeline
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rate) and is proposed by (Garcı́a et al. 2009). It is calculated

as:

Dominance ¼ TP rateð Þ � TN rateð Þ: ð8Þ

Its value ranges from -1 to ?1. A dominance value of

?1 means a perfect accuracy on the positive class and a

value -1 means a perfect accuracy on the negative class. A

value closer to zero means a balance between TP_rate and

TN_rate.

g-mean: it was proposed by Kubat et al. (1997), this

evaluation parameter shows the balance between sensitiv-

ity and specificity. It is the geometric mean of sensitivity

and specificity. It is calculated as:

g-means ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity� Specificity

p
: ð9Þ

Results and discussion

We have experimented with four different machine learn-

ing algorithms, namely—(1) naive Bayes (NB), (2) Fischer

linear discriminant function (implemented as FLDA in

WEKA), (3) support vector machines with sequential

minimization optimization (SMO) and (4) K nearest

neighbor (implemented as IBK in WEKA) on the imbal-

anced dataset (original), randomly undersampled dataset

(with varying class distribution) and SMOTE oversampled

dataset (with varying class distribution) to find the optimal

class distribution for each of these classifiers.

Learning performance on imbalanced dataset

Observing the values of the performance evaluation

parameters obtained from the different machine learning

algorithms when trained with the imbalanced dataset

(Table 2), the overall accuracy of SMO and IBK crossed

above 90 %, although with a large difference in their

individual accuracies for the positive (sensitivity) and

negative classes (specificity), respectively. The training on

the imbalanced dataset resulted in high specificity values

for all the learning algorithms except the naive Bayes. The

negative dominance values of all the learning algorithms

(except the naive Bayes) are also biased towards the

TN_rate. This indicates that optimal learning with higher

accuracies (sensitivity and specificities) for the positive and

negative classes is difficult in cases where there is an

imbalance between the positive and negative class

instances.

Learning performance on randomly undersampled

datasets

Nearest neighbor-based IBK method performed better than

all the other machine learning algorithms and closely fol-

lowed by SMO, when the original imbalance dataset was

subjected to undersampling at different distribution rates

for dealing with the data imbalance problem. The values of

different performance evaluation parameters obtained by

different degrees of class distribution are recorded in the

Table 3. When the dataset is fully balanced by undersam-

pling (undersampled 1:1), we obtained higher accuracy for

the positive class samples than all other undersampled

datasets. Highest overall accuracy of 91.8 % is obtained by

IBK when the undersampling rate is 1:5 closely followed

by SMO with 89.4 % accuracy. In the case of the under-

sampling datasets, IBK performed better than all other

machine learning algorithms.

Learning performance on SMOTE oversampled

datasets

SMO performed better than all the other machine learning

algorithms closely followed by FLDA on SMOTE over-

sampled datasets. The values of different performance

parameters are recorded in the Table 4. One of the best

noticeable effects of oversampling is the immediate

increase in sensitivity values for all the four machine

learning algorithms. There is a regular increasing trend for

the Youden’s Index (which shows the model’s ability to

avoid faults) with increasing rate of SMOTE oversampling.

The best trade-off for the different evaluation parameters

was obtained for the SMOTE 500 % dataset with SMO as

the machine learning algorithm. This particular training

dataset gave the best performance evaluation metrics with

SMO as the learning algorithm. With this training dataset

we could achieve 98.5 % sensitivity, 92.6 % specificity,

95.3 % overall accuracy, and 0.955 of AUC. A high value

Table 2 Performance evaluation metrics of the different learning algorithms trained on the imbalanced datasets

Learning algorithms Sensitivity Specificity Accuracy AUC Youden’s Index Dominance g-means

Imbalanced data set

NB 90.8 29.2 36.9 0.678 0.200 0.616 51.49

FLDA 64.7 84.9 82.3 0.819 0.492 -0.202 74.1

SMO 52.1 97.1 91.4 0.746 0.496 -0.450 71.1

IBK 68.9 97.0 93.4 0.841 0.659 -0.281 81.7
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of sensitivity indicates that the model is very accurate for

the positive minority class samples. A positive dominance

index of 0.059 also confirms the fact that the model is good

in predicting minority samples. A high value of the You-

den’s Index (0.911) indicates the model’s superiority in

fault avoidance ability. A g-means value of 95.5 also

indicates an optimal balance between sensitivity and

specificity. ROC plots for the four different machine

learning algorithms trained on the best performing training

set (SMOTE oversampled 500 % dataset) are shown in

Fig. 2.

To further validate the learned models trained on a

SMOTE oversampled dataset (500 %), we have used leave

on out cross validation test (Chou and Zhang 1995). It is

deemed as the most objective and robust test and has been

used by many researchers for the assessment of classifier

models (Chou and Cai 2004; Gao et al. 2005; Xie et al.

2013), the results are given in Table 5.

Further, a corrected resampled paired t test was per-

formed using WEKA with SMO as the baseline classi-

fier. The t test was performed at the 5 % significance

level. Each tenfold cross validation was repeated ten

times (10 9 10 runs for each algorithm). Percentage

correctly predicted instances, AUC, TP rate and TN rate

was used for comparison with t test. The results of the

t test are provided in the supplementary material

(Table S4a–d).

Comparing the results with previous study

We have compared the evaluation metric of the current

study with the previous study and the performance

Table 3 Performance evaluation metrics of the different machine learning algorithms trained on the different randomly undersampled training

sets

Learning algorithms Sensitivity Specificity Accuracy AUC Youden’s Index Dominance g-means

Undersampling (1:1) (fully balanced) training set

NB 91.6 23.5 57.6 0.631 0.151 0.681 46.3

FLDA 73.9 68.5 71.4 0.768 0.424 0.054 71.1

SMO 77.3 74.8 76.1 0.761 0.521 0.025 76.0

IBK 80.7 81.5 81.1 0.818 0.622 -0.008 81.5

Undersampling (1:2) training set

NB 89.1 30.3 49.9 0.666 0.194 0.588 51.9

FLDA 63.0 63.0 63.0 0.661 0.26 0 63

SMO 72.3 88.7 83.2 0.805 0.61 -0.164 80.08

IBK 72.3 90.8 84.6 0.809 0.631 -0.185 81.0

Undersampling (1:3) training set

NB 90.8 28.9 44.3 0.664 0.197 0.619 51.2

FLDA 58.8 55.7 56.5 0.613 0.507 0.031 57.2

SMO 67.2 91.9 85.7 0.796 0.591 -0.247 78.5

IBK 72.3 93.0 87.8 0.082 0.653 -0.207 81.9

Undersampling (1:4) training set

NB 88.2 31.1 42.5 0.694 0.193 0.571 52.37

FLDA 64.7 73.5 71.8 0.731 0.382 -0.088 68.9

SMO 63.0 92.4 86.6 0.777 0.554 -0.294 76.2

IBK 68.9 94.7 89.6 0.823 0.636 -0.258 80.7

Undersampling (1:5) training set

NB 89.1 31.1 40.8 0.692 0.202 0.58 52.6

FLDA 66.4 79.0 76.9 0.791 0.454 -0.126 72.42

SMO 57.1 94.6 88.4 0.759 0.61 -0.375 73.4

IBK 70.6 93.9 90.1 0.841 0.645 -0.233 81.4

Undersampling (1:6) training set

NB 89.1 29.6 38.1 0.688 0.187 0.595 51.3

FLDA 68.1 80.4 78.6 0.805 0.485 -0.123 73.9

SMO 56.3 95.0 89.4 0.756 0.513 -0.387 73.13

IBK 71.4 95.2 91.8 0.824 0.666 -0.238 82.4
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evaluation metric values for the current best training set

and the previously reported values are presented in

Table 6.

On comparison with the previous method, the current

SMOTE (500 %) model achieved far better performance

evaluation metrics.

It is also observed that both the SMOTE oversampling

and random undersampling have least effect on the per-

formance of the naive Bayes algorithm, a similar obser-

vation has also been made by (Daskalaki et al. 2006).

Characterization of RNA-silencing suppressors

using sequence-based features

In Fig. 3, we have plotted the heat map representation of the

sequence attributes except the dipeptides. Figure 4 presents

the heat map representation of the dipeptides. The color bar

in both the figures (on the right side of both the figures) shows

the color intensity proportional to the feature ranking scores

which are calculated according to their discriminating abil-

ity. Observing the Fig. 3, arginine, polar and nonpolar

property groups are the most useful discriminatory features.

From Fig. 4, it can also be observed that DF, SF, NN, DT,

CW, CG are the most discriminatory dipeptides.

Arginines are relatively important in binding sites

(Barnes 2007), also it is imperative to mention the

importance of the role of arginine in suppressor activity of

PRS suppressor (2b) of a cucumber mosaic virus strain

(CM95R) (Goto et al. 2007) where it facilitates in binding

to RNA and in potato virus M where mutational studies

have shown the importance of arginines in suppression

activity (Senshu et al. 2011). The importance of nonpolar

Table 4 Performance evaluation metrics of the different machine learning algorithms trained on the different SMOTE oversampled training sets

Learning Algorithms Sensitivity Specificity Accuracy AUC Youden’s Index Dominance g-means

SMOTE 100 % training set

NB 91.2 33.1 46.1 0.738 0.243 0.581 54.9

FLDA 81.5 84.5 83.8 0.896 0.660 -0.030 82.9

SMO 81.1 94.7 91.6 0.879 0.758 -0.136 87.6

IBK 97.9 85.1 88.0 0.912 0.830 0.128 91.2

SMOTE 200 % training set

NB 91.6 35.0 52.1 0.749 0.266 0.566 56.6

FLDA 91.3 85.4 87.2 0.934 0.767 0.005 88.3

SMO 92.4 93.9 93.5 0.932 0.863 -0.015 93.1

IBK 98.9 79.7 85.5 0.894 0.786 0.192 88.7

SMOTE 300 % training set

NB 91.2 36.0 56.1 0.751 0.272 0.552 57.2

FLDA 95.2 84.4 88.3 0.946 0.796 0.108 89.6

SMO 96.2 92.3 93.7 0.942 0.885 0.003 94.2

IBK 99.4 79.1 86.5 0.890 0.785 0.203 88.6

SMOTE 400 % training set

NB 90.9 36.9 56.1 0.751 0.278 0.54 57.9

FLDA 95.8 84.9 89.4 0.952 0.807 0.109 90.1

SMO 96.5 91.8 93.7 0.941 0.883 0.047 94.1

IBK 99.3 74.6 84.9 0.870 0.733 0.247 86.0

SMOTE 500 % training set

NB 92.0 36.8 62.4 0.745 0.288 0.552 58.1

FLDA 97.3 83.7 90.0 0.962 0.810 0.136 90.2

SMO 98.5 92.6 95.3 0.955 0.911 0.059 95.5

IBK 99.6 73.8 85.8 0.867 0.734 0.258 85.7

SMOTE 594 % (fully balanced) training set

NB 92.4 36.4 64.4 0.742 0.288 0.56 57.9

FLDA 97.7 85.1 91.4 0.964 0.828 0.12 91.1

SMO 97.9 90.8 94.4 0.944 0.887 0.071 94.2

IBK 99.6 73.5 86.6 0.862 0.731 0.261 85.5
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amino acids, specifically isoleucine in suppression activity

is also emphasized in (Carr and Pathology 2007).

Conclusions

Machine learning-based approaches are apposite tech-

niques when compared to sequence alignment-based

methods for the prediction of plant virus-encoded RNA-

silencing suppressors and can become the superior

alternative if the imbalance dataset problem is properly

resolved. The protein family classification problem intrin-

sically presents a class imbalance situation, where the class

of interest is a particular protein family which constitutes

the positive class and the rest of the protein families

belonging to the negative classes. Naturally, there is a large

difference between the number of instances belonging to

positive and negative classes. Depending on the mathe-

matical representation of the protein sequences, machine

learning-based approaches can capture the hidden

Fig. 2 ROC curves of the four

classifiers using the training set

with optimal class distribution

[SMOTE (500 %)]

Table 5 Leave on out cross validation performance evaluation metrics on the best training set

Learning algorithms Sensitivity Specificity Accuracy AUC Youden’s Index Dominance g-means

LOOCV on SMOTE (500 %)

NB 92.3 36.4 62.3 0.745 0.287 0.559 57.96

FLDA 97.2 85.1 90.7 0.966 0.823 0.121 90.90

SMO 98.9 92.3 95.3 0.956 0.912 0.066 95.50

IBK 99.4 75.8 86.8 0.876 0.752 0.236 86.80

Table 6 Comparison of the performance evaluation metrics of the current work with the previous methods

Methods Sensitivity Specificity Accuracy AUC Youden’s Index Dominance g-means

Jagga and Gupta (2014) 80.90 80.57 80.61 0.910 0.614 0.003 80.70

SMO [SMOTE (500 %)] 98.50 92.60 95.30 0.955 0.911 0.059 95.50
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relationship among the calculated protein attributes, which

is most of the times better than alignment-based methods

for protein classification. The plant virus-encoded RNA-

silencing suppressor protein classification presents a data

imbalance problem; we compared the learning of different

machine learning algorithms on imbalanced, SMOTE

oversampled and randomly undersampled datasets. The

results reported in this study showed that learning is non-

optimal for imbalanced positive and negative class data

sets. The behavior of the machine learning algorithms is

different in SMOTE oversampling and random undersam-

pling. IBK performed better on randomly undersampled

datasets, while the performance of SMO is superior to all

other machine learning algorithms on SMOTE

Fig. 3 Heat map representation

of ranking the sequence features

(excluding dipeptides)

according to their discriminative

ability

Fig. 4 Heat map representation

of ranking the dipeptides

according to their discriminative

ability
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oversampled datasets. Better performance evaluation met-

rics were obtained on SMOTE oversampled datasets than

on the randomly undersampled datasets. The best model is

achieved with SMOTE oversampling when SMO is used as

the learning algorithm. This also points to the fact that the

full (ideal) balancing between the positive and negative

classes may not fully eliminate the classifier bias. The

current study supports and provides evidence to the fact

that the learning of different machine learning algorithms

can be improved using an optimal class distribution and

also the fully balanced class distribution need not be

optimal for the training of the learning algorithms. Indi-

vidual accuracies and learning on the positive and negative

classes can be increased by changing the class distribution.

Overall the performance of the various machine learning

algorithms on SMOTE oversampled datasets is better than

the random undersampled datasets. Further, we have

ranked the calculated sequence features according to their

discriminating ability in classifying plant virus-encoded

RNA-silencing suppressors from non-suppressors. The

current pipeline can be successfully applied to other protein

family classification problem with different degrees of

imbalance. The current method explored the possibility of

improvement in prediction accuracy of the four machine

learning algorithms using an optimal class distribution that

provides the best trade-off between imbalance dataset and

the diversity of the dataset. A comprehensive study was

carried out and presented in detail the behavior of the

tested learning algorithms with varying degrees of resam-

pling. It is also proved that prediction accuracy for the

plant virus suppressor proteins can be improved using the

optimal class distribution ratio.

Future research can be carried out by incorporating

additional diversifying techniques to deal with the related

problem of incomplete learning. More sophisticated tech-

niques can be evolved to deal with the trade-off between

the balancing factor and input instance diversity. Further

research in this direction can lead to the formulation of

some kind of standard in creating benchmark data sets to

every specific biological problem.
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