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Abstract

The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. 

It is the second leading cause of perinatal mortality worldwide, and it is associated with 

deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, 

hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock 

production is less recognized by the industry. Meat animals born with low birthweight due to 

IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These 

animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase 

production costs and decrease value. Ultimately, this reduces the amount of meat produced by 

each animal and threatens the economic sustainability of livestock industries. Intrauterine growth 

restriction is most commonly the result of fetal programming responses to placental insufficiency, 

but the exact mechanisms by which this occurs are not well-understood. In uncompromised 

pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues 

and play an important role in fetal development. However, unfavorable intrauterine conditions 

can cause cytokine activity to be excessive during critical windows of fetal development. Our 

recent evidence indicates that this impacts developmental programming of muscle growth and 

metabolism and contributes to the IUGR phenotype. In this review, we outline the role of 

inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also 

highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR 

pathologies.
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INTRODUCTION

Intrauterine growth restriction (IUGR) frequently results from stress-induced placental 

insufficiency, which reduces O2 and nutrients available to the fetus and consequently 

stunts growth of the highly metabolic fetal muscle tissues (Yates et al., 2018; Pendleton 

et al., 2021). In livestock, low birthweight due to stress-induced IUGR causes substantial 

economic losses for the industry due to greater neonatal mortality, less metabolic efficiency, 

and lower carcass quality (Reynolds et al., 2010; Liu and He, 2014; Ji et al., 2017; Yates et 

al., 2018). Estimates put low birthweight-related losses at approximately 8% of the potential 

annual product for US producers and up to 20% of the global annual product (Wu et al., 

2006; Flinn et al., 2020). Thrifty metabolic adaptations to muscle, adipose, pancreatic islets, 

and other tissues cause IUGR-born offspring to be disadvantaged at birth due to insufficient 

energy stores and poor thermoregulation, which often results in reduced nursing success 

and a failure to thrive throughout the early neonatal period (Dwyer et al., 2016; Yates et 

al., 2018). Intrauterine growth restriction-born offspring that survive exhibit reduced feed 

efficiency, making it cost more to reach proper harvest weight (Bérard et al., 2008; Yates et 

al., 2018; Gibbs et al., 2020). Thrifty programming also manifests as reduced muscle growth 

capacity and increased fat deposition beginning at the juvenile age (Greenwood et al., 2000; 

Yates et al., 2012; Gibbs et al., 2020), which lowers carcass yield and affects meat quality 

parameters such as tenderness, muscle pH, meat color, and cooking loss (Liu and He, 2014; 

Matyba et al., 2021). Intrauterine growth restriction also afflicts human pregnancies (Saleem 

et al., 2011; Nardozza et al., 2017), and global estimates indicate that upward of 53 million 

infants are born IUGR each year (Sedgh et al., 2014). These babies are at increased risk for 

perinatal morbidity and mortality (Aucott et al., 2004; Alisi et al., 2011; Alisjahbana et al., 

2019) as well as for lifelong health problems such as asthma, type 2 diabetes, cardiovascular 

disease, obesity, and neurocognitive disorders that begin in early childhood and reduce life 

expectancy and quality (Nardozza et al., 2017; Darendeliler, 2019; Xing et al., 2020; Briana 

and Malamitsi-Puchner, 2021).

By the late 1950s, the scientific community had recognized that individuals with metabolic 

diseases often exhibited physiological indicators of metabolic dysfunction by the time they 

were neonates (Neel, 1962). However, it was the work of Hales and Barker in the early 

1990s and the subsequent publication of their Thrifty Phenotype hypothesis that popularized 

the idea of a link between fetal developmental programming and lifelong metabolic health 

(Hales et al., 1991; Hales and Barker, 1992). In the almost three decades since, a number 

of studies in humans and animal models have advanced this theory with details of how 

stress before birth causes tissue-specific adaptive programming of growth and metabolism 

(Morrison, 2008; Posont et al., 2017; Yates et al., 2018; Posont and Yates, 2019; Pendleton 

et al., 2021). These nutrient-sparing fetal adaptations help to increase the chances for 

survival in utero but also create permanent metabolic changes that are detrimental to 
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long-term health of the offspring (Sharma et al., 2016a; Kesavan and Devaskar, 2019; 

Posont and Yates, 2019). Identifying the exact mechanistic facilitators of these changes has 

been challenging, but one likely potential mechanism that has recently come to light is 

inflammatory programming (Posont et al., 2018, 2021; Cadaret et al., 2019). This review 

highlights findings that provide insight for how fetal stress leads to programmed changes in 

inflammatory pathways that regulate growth and metabolism, with a primary focus on the 

implications for meat animals.

CAUSES AND PROGRESSION OF IUGR

IUGR Is the Developmental Response to Maternofetal Stress

Clinically, IUGR [alternatively, fetal growth restriction (Nardozza et al., 2017)] is 

characterized by less growth of the fetus or fetal tissues relative to expected growth 

potential (Sharma et al., 2016b; Reynolds et al., 2019). It is a pathological condition 

brought on by fetal nutrient restriction or other stress, although genetic abnormalities can 

increase the risk (Sharma et al., 2017). In the field of developmental origins of health 

and disease (DOHaD), IUGR is often used to describe the broader pathological phenotype 

resulting from chronic fetal stress, which typically (but not always) includes measurable 

reductions in placental function and birthweight (Sharma et al., 2016b). A number of 

different maternal conditions can result in placental stunting when they coincide with critical 

windows for placental growth and development (Sharma et al., 2016b; Yates et al., 2018). In 

livestock, common factors include environmental stress, illness or forage toxicity, nutritional 

imbalances, young age of the dam, uterine trauma from previous pregnancies, twin/triplet 

pregnancies, and side effects from artificial insemination or embryo transfer (Greenwood 

and Bell, 2003; Greenwood and Cafe, 2007). Such stressors redirect maternal blood flow 

from the gravid uterus, thus reducing nutritional support for placental hyperplasia and 

vasculogenesis (Burton and Jauniaux, 2018). Placental functional capacity is determined 

in large part by the successful establishment of uteroplacental circulation via the rapid 

development of villous blood vessels beginning around the end of the first trimester and 

continuing throughout most of the second trimester (Regnault et al., 2003; Burton and 

Jauniaux, 2018). Indeed, it is during this critical window that the placenta is most vulnerable 

to insults that may lead to reduction in its vasculature, surface area, and transport proteins 

needed for maternal-fetal nutrient exchange (Regnault et al., 2005; Burton and Jauniaux, 

2018). During such insults, placental tissues are typically characterized by unusually high 

levels of inflammation, oxidative stress, and apoptotic cells (Cotechini and Graham, 2015; 

Burton and Jauniaux, 2018).

The diminished maternofetal interface associated with placental insufficiency ultimately 

reduces O2 transfer to the fetus, and reductions in placental glucose and amino acid 

transporters likewise reduce fetal availability of these nutrients (Brown, 2014; Yates et al., 

2018; Beede et al., 2019). Indeed, fetal hypoxemia and hypoglycemia in heat stress-induced 

sheep models of placental insufficiency can exceed 50% reductions near term (Macko et 

al., 2016; Wai et al., 2018; Stremming et al., 2020), creating a clear need for changes 

in metabolic processes and growth trajectories (Lackman et al., 2001; Gagnon, 2003). 

The phenomenon of fetal hypoglycemia can be partially mimicked by sustained maternal 
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undernutrition, which can decrease fetal growth despite little or no impact on the size or 

vascularity of the placenta (Lemley et al., 2012; Eifert et al., 2015; Edwards et al., 2020; 

Contreras-Correa et al., 2021). Interestingly, diminished placental transfer of amino acids 

due to downsizing of system A and L transporters does not necessarily manifest in reduced 

fetal blood concentrations (Pantham et al., 2016; Wai et al., 2018), as the IUGR fetus 

compensates by slowing its protein utilization and accretion rates (Rozance et al., 2018; Wai 

et al., 2018; Stremming et al., 2020).

The hypoxemic and hypoglycemic conditions resulting from placental insufficiency cause a 

robust hormone-driven stress response by the fetus. Low blood O2 concentration detected 

by O2-sensitive K+ channels on the chromaffin cells of the adrenal medulla stimulates 

secretion of the catecholamines, norepinephrine, and epinephrine (Adams and McMillen, 

2000), inducing the hallmark hypercatecholaminemia that progressively worsens over the 

third trimester of pregnancy. Catecholamines act as strong inhibitors of insulin secretion, 

which together with hypoglycemia results in a chronic state of fetal hypoinsulinemia (Chen 

et al., 2017; Limesand and Rozance, 2017). Fetal hypoxemia also leads to an increase in 

circulating inflammatory cytokines (Krajewski et al., 2014; Visentin et al., 2014), which 

will be discussed in detail in later sections. Additional inflammatory components such as 

chemokine C-C motif ligand 16 (CCL16) and acute phase protein C-reactive protein (CRP) 

have also been found to be increased in IUGR fetuses (Makikallio et al., 2012; Visentin et 

al., 2014).

IUGR Impairs Growth Capacity and Metabolic Function

In most cases, the fetus can survive unfavorable conditions created by placental insufficiency 

by altering the development of several growth and metabolic processes in a way that reduces 

nutrient demands (Gagnon, 2003). First, the combined endocrine response to low fetal blood 

O2 content causes a redirection of blood flow away from skeletal muscle and other less 

vital tissues to maintain support for the brain, liver, adrenals, and pancreas (Gagnon, 2003; 

Poudel et al., 2015). Indeed, greater vascular resistance can reduce blood flow to muscle­

dense areas such as the hindlimb by as much as 45%, which in turn reduces O2 delivery by 

up to 40% (Rozance et al., 2018). Secondly, hypoinsulinemia reduces glucose utilization by 

insulin-sensitive muscle tissues (Davis et al., 2020). Interestingly, this can lead to transient 

enhancement of insulin sensitivity in the early neonatal period as a compensatory response 

(Soto et al., 2003; Ong et al., 2004). However, this wanes relatively quickly (Mericq et al., 

2005), exposing underlying impairments in insulin action (Jensen et al., 2002).

Poor Skeletal Muscle Growth Leads to Asymmetric Body Composition—The 

reappropriation of nutrients away from skeletal muscle in the IUGR fetus causes the 

development more conservative muscle growth rates that are apparent in late gestation 

but also persist throughout the lifetime of the animal. Indeed, IUGR fetal sheep and rats 

were found to have smaller cross-sectional areas for all muscle fiber types (Yates et al., 

2016; Cadaret et al., 2019a), indicating that less muscle hypertrophy was occurring during 

gestation. Intrinsic functional deficits in muscle stem cells called myoblasts are a major 

underlying factor for impaired muscle growth capacity (Yates et al., 2014; Soto et al., 2017; 

Posont et al., 2018). In ruminants and humans, muscle hyperplasia is completed early in 
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the third trimester, and subsequent muscle growth is the result of myofiber hypertrophy 

(Maier et al., 1992; Wilson et al., 1992). Indeed, postnatal muscle growth results from the 

accumulation of new nuclei within muscle fibers via fusion of myoblasts, which increases 

capacity for fiber protein synthesis (Allen et al., 1979; Davis and Fiorotto, 2009). Some 

fetal myoblasts form quiescent populations between the sarcolemma and the basal lamina of 

muscle fibers. These latent myoblast populations are called satellite cells and can later be 

activated to facilitate further muscle growth (Davis and Fiorotto, 2009; Yin et al., 2013). 

Before fusing, myoblasts undergo several cycles of proliferation followed by terminal 

differentiation, both of which are rate-limiting functional steps for muscle growth (Allen 

et al., 1979; Allen and Boxhorn, 1989). However, myoblasts from IUGR fetal sheep and 

rats were found to exhibit reduced proliferation and differentiation capabilities (Yates et al., 

2014; Soto et al., 2017; Posont et al., 2018; Cadaret et al., 2019a), leading to reduced muscle 

mass at birth and throughout postnatal life, as illustrated in Figure 1.

Offspring born with low birthweight due to IUGR initially continue to exhibit slower 

postnatal growth. For example, lambs born IUGR due to maternal heat stress or maternofetal 

inflammation remained about 20% smaller at 30 days of age, with comparable reductions in 

average daily gain (Cadaret et al., 2019b; Yates et al., 2019; Posont et al., 2021). As IUGR­

born offspring reach the juvenile stage, many begin to exhibit postnatal catch-up growth, 

whereby their bodyweights equalize with uncompromised herdmates. Indeed, bodyweights 

and average daily gain for lambs born IUGR due to maternal heat stress were reduced by 

only about 12% by 60 days of age (Gibbs et al., 2020), and IUGR-born beef cattle were 

about 8% lighter at 30 months of age (Greenwood et al., 2005; Greenwood and Cafe, 2007). 

However, this does not equate to recovery of muscle growth, and thus body composition 

remains impaired; 60-day old IUGR lambs had smaller loin eye areas, reduced muscle 

protein, and greater fat-to-protein ratios (Gibbs et al., 2020), and 30-month old IUGR beef 

cattle had smaller carcass weight, ribeye area, and longissimus muscle weight, resulting in 

less retail yield (Greenwood and Cafe, 2007). Estimates from these cattle indicate that each 

1-kg reduction in birthweight equated to a 4.4-kg reduction in slaughter weight (Robinson et 

al., 2013; Greenwood and Bell, 2019).

Nutrient-Sparing Adaptations Reduce Muscle Glucose Metabolism—In concert 

with more conservative muscle growth, the IUGR fetus undergoes a glucose-sparing shift 

in muscle metabolism characterized by reduced oxidation and greater glycolytic lactate 

production. When IUGR fetal sheep were made hyperglycemic or hyperinsulinemic near 

term, whole-body glucose oxidation was decreased even though whole-body glucose 

utilization remained unchanged (Limesand et al., 2007; Brown et al., 2015). Subsequent 

sheep studies confirmed that the reduction in glucose oxidation rates were muscle-specific 

and persisted after birth (Cadaret et al., 2019b; Yates et al., 2019; Gibbs et al., 2021; 

Posont et al., 2021). Four-fold greater circulating lactate concentrations together with greater 

hepatic expression of gluconeogenic genes in IUGR fetal sheep (Brown et al., 2015) indicate 

that lactate produced in greater amounts by IUGR skeletal muscle supports hepatic glucose 

production. This process, called the Cori cycle, benefits the nutrient-restricted IUGR fetus 

by engaging an otherwise inactive source for glucose (Thorn et al., 2009; Davis et al., 

2021). However, it is important to note that the reduction in glucose oxidation arises from 
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a programmed change in mitochondrial functional capacity that does not appear to be 

reversible. Although pyruvate dehydrogenase functional activity was increased in IUGR 

fetal sheep muscle (Pendleton et al., 2019), mitochondrial O2 consumption and electron 

transport chain Complex I activity were impaired (Pendleton et al., 2020). Gene expression 

for isocitrate dehydrogenase, mitochondrial pyruvate carrier, and other integral components 

of mitochondrial oxidative metabolism were also reduced in IUGR muscle, whereas gene 

expression for lactate dehydrogenase B (converts pyruvate to lactate) was increased 2.5-fold 

(Pendleton et al., 2020). It is worth noting that reduced glucose oxidation rates do not 

appear to be offset by compensatory amino acid oxidation (Pendleton et al., 2021). In fact, 

oxidation rates for the representative amino acid, leucine, were slightly reduced in IUGR 

fetal sheep (Brown et al., 2012; Wai et al., 2018). Moreover, impaired glucose oxidation 

coincided with reduced proportions of oxidative myofibers in hindlimb muscles of IUGR 

fetal sheep (Yates et al., 2016).

Insulin Signaling Is Impaired in IUGR Skeletal Muscle—Growth and metabolic 

deficits in IUGR skeletal muscle are at least partially a product of disruptions in insulin 

signaling through Akt-mediated pathways. Insulin is a primary promotor of muscle growth, 

as it enhances protein synthesis (Davis and Fiorotto, 2009) and is a well-established 

stimulator of proliferation and differentiation in adult myoblasts (Allen et al., 1985; 

Sumitani et al., 2002). More recent studies found that hyperinsulinemia also increases 

myoblast function in fetal sheep (Brown et al., 2016b; Soto et al., 2017). Additionally, 

skeletal muscle is the primary tissue for insulin-mediated glucose uptake from the blood 

(Baron et al., 1988; Brown, 2014). This is facilitated when circulating insulin binds to 

receptors on the muscle fiber surface and initiates rapid mobilization of sequestered glucose 

transporter 4 (Glut4) to the cell membrane, where it facilitates glucose diffusion into the 

cell (Kubota et al., 2011). In addition to its effects on glucose uptake, insulin stimulation 

increased skeletal muscle glucose oxidation rates 1.5- to 4-fold in fetal sheep (Brown et al., 

2015; Cadaret et al., 2019) and 2- to 8-fold in growing lambs (Barnes et al., 2019; Cadaret 

et al., 2019b; Swanson et al., 2020; Posont et al., 2021). However, several studies have 

indicated that insulin/Akt signaling is impaired in IUGR muscle. Insulin activates Akt by 

serine463 phosphorylation, but the proportion of phosphorylated Akt was reduced in flexor 
digitorum superficialis muscle from IUGR fetal and neonatal sheep (Cadaret et al., 2019; 

Posont et al., 2021). This deficit was observed at both low and high insulin concentrations 

and did not coincide with any reduction in insulin receptor content (Thorn et al., 2009; Yates 

et al., 2019). Intrauterine growth restriction skeletal muscle also exhibited reduced content 

of the insulin-sensitive glucose transporter, Glut4, before and after birth (Limesand et al., 

2007; Yates et al., 2019), likely due to epigenetic mechanisms such as DNA methylation 

at the Glut4 promoter region or histone modifications (Raychaudhuri et al., 2008; Wang 

et al., 2016). Like insulin, the influence of IGF-1 is also diminished in the IUGR fetus, 

as circulating IGF-1 concentrations and skeletal muscle signaling components are reduced 

(Thorn et al., 2009; Rozance et al., 2018).

Pancreatic Islet Dysfunction Contributes to Metabolic Deficits—Stress conditions 

resulting from placental insufficiency induce programming in other tissues that further 

compounds muscle-centric dysfunction. Chief among these affected tissues are pancreatic 

Hicks and Yates Page 6

Front Anim Sci. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



islets, which are diminished in both development and functionality (Boehmer et al., 2017). 

Near term, IUGR fetal sheep islets are reduced in size by 40% (Rozance et al., 2015; 

Brown et al., 2016a), and β cell mass is reduced by 60% due to a 40–60% reduction in 

mitosis (Limesand et al., 2005; Brown et al., 2016a). In addition to being smaller, these 

β cell populations are less productive, as IUGR fetal islets contain only about 20% the 

amount of insulin found in normal fetal islets (Limesand et al., 2006). Deficits in islet 

microanatomy are preceded by insufficient islet vascular formation, which is observable 

shortly after the start of the third trimester (Rozance et al., 2015). Islet under-development 

may be due in part to less profound HGF paracrine activity originating from islet endothelial 

cells (Rozance et al., 2015; Brown et al., 2016a), which appears necessary for β cell 

development and performance (Dai et al., 2005; Johansson et al., 2009). Like muscle, IUGR 

fetal islets are also less capable of glucose oxidation, which is the impetus for glucose­

stimulated insulin secretion (Limesand et al., 2006). These programmed deficits persist in 

offspring, as islets from IUGR-born lambs maintained substantially reduced insulin content 

and glucose stimulus-secretion coupling (Yates et al., 2019), leading to impairments in 

glucose-stimulated insulin secretion that are comparable to the fetus (Cadaret et al., 2019b; 

Yates et al., 2019). Interestingly, α cell mass is reduced in IUGR fetal islets, but not to 

the same magnitude observed for β cells. Moreover, their capacity to appropriately secrete 

glucagon appears to be unaffected (Limesand et al., 2005).

THE ROLE OF INFLAMMATORY CYTOKINES IN IUGR OUTCOMES

Cytokines Regulate Muscle Growth and Metabolism

Cytokines are a broad class of peptide chemical messengers produced by a wide array of 

cell and tissue types, often in response to the presence of pathogens, toxins, free radicals, 

and stress (Tracey and Cerami, 1993; Reid and Li, 2001). Among their other immune 

functions, inflammatory cytokines modify metabolic activity in muscle and other tissues in 

order to reappropriate O2, glucose, and protein (Li and Reid, 2001; Cadaret et al., 2017). 

They are also potent regulators of muscle growth via their complex impact on myoblast 

function and insulin sensitivity (Otis et al., 2014; Posont et al., 2018). This makes the broad 

cytokine milieu integral to metabolic homeostasis and, in turn, general metabolic health, as 

summarized in Table 1.

Tumor necrosis factor α (TNFα) is perhaps the most comprehensively studied inflammatory 

cytokine. It is produced in greatest quantities by circulating monocytes and their intra-tissue 

counterparts, macrophages, but is also produced by glycolytic skeletal muscle fibers and fat 

cells (Tracey and Cerami, 1993; Li and Reid, 2001; Plomgaard et al., 2005; Dyck et al., 

2006). Basal circulating TNFα concentrations are typically low but increase rapidly and 

profoundly when stimulated (Tracey and Cerami, 1993; Li and Reid, 2001). Pathological 

metabolic states such as excessive fat deposition, insulin resistance, and hyperglycemia 

are associated with substantially greater production and secretion of TNFα (Saghizadeh et 

al., 1996; Lo et al., 2007), as is pathological muscle atrophy (Li and Reid, 2001). Most 

cell types express one or both of two surface TNFα receptor isoforms (TNFR1, TNFR2), 

and TNFR1 is predominant for muscle (Popa et al., 2007). Once activated by TNFα, the 

intracellular domain of TNFR1 binds and activates the downstream TNFR1-associated death 
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domain (TRADD) proteins (Popa et al., 2007), which in turn activate Fas-associated protein 

with death domain (FADD) pathways and TRAF2/NFκB pathways (Popa et al., 2007). In 

skeletal muscle, these pathways are most associated with protein catabolism, lipolysis, and 

metabolic suppression (Cheema et al., 2000; Li and Reid, 2001; Popa et al., 2007). They also 

decrease synthesis of the myofibril components myosin and actin as well as sarcoplasmic 

proteins (Cheema et al., 2000; Li and Reid, 2001; Lang et al., 2002). In differentiating 

myoblasts, TNFα inhibits MyoD expression, which impedes their progression, and in 

mature fibers it increases protein catabolism, which reduces the content of myosin and 

other integral proteins for muscle function (Li and Reid, 2001). Both of these outcomes 

appear to be mediated by canonical NFκB pathways (Li and Reid, 2001; Remels et al., 

2015). In mature skeletal muscle, TNFα-activated NFκB pathways increase the proportion 

of glucose undergoing glycolytic lactate production by increasing activity of HIF-1α, which 

is concurrent with reduced glycogen synthesis (Boscá and Corredor, 1984; Rhoades et al., 

2005; Remels et al., 2015). The effects of TNFα on glucose oxidation rates are more 

complex, as the cytokine appears to be stimulatory during acute exposure but inhibitory 

when exposure is sustained (Gao et al., 2012; Cadaret et al., 2017, 2019). In addition to 

direct effects on muscle growth and metabolism, TNFα also impairs insulin sensitivity. In 

rats, TNFα diminished the effects of insulin on skeletal muscle glucose uptake by 50% 

(Youd et al., 2000; Li and Reid, 2001), perhaps by increasing the content of diacylglyceride, 

a potent activator of the insulin antagonist protein kinase C (Bruce and Dyck, 2004; Dyck et 

al., 2006). In pancreatic islet cells, TNFα exposure was shown to reduce glucose metabolism 

in β cells and, in turn, glucose-stimulated insulin secretion (Oleson et al., 2015).

The interleukin IL-6 is produced by leukocytes and muscle cells, often in response to 

rising TNFα concentrations (Tracey and Cerami, 1993; Haddad et al., 2005). Consequently, 

circulating IL-6 concentrations follow similar patterns as TNFα during sub-acute and 

chronic inflammatory conditions (Wolsk et al., 2010). When bound, the soluble IL-6 

receptor (IL6R) forms a heterodimer with the downstream messenger gp130 (Wang et al., 

2013), which primarily activates the JAK/STAT3 pathway but can also activate PI3K/Akt/

mTOR and Ras/Raf/MEK/ERK pathways (Wang et al., 2013; Johnson et al., 2018). Elevated 

IL-6 activity limits hypertrophic muscle growth by interfering with growth hormone and 

IGF-I activity and also increases muscle protein catabolism, thus contributing to muscle 

atrophy (Haddad et al., 2005; Bodell et al., 2009). Although it may increase myoblast 

proliferation at some concentrations, IL-6 also reduces the progression of differentiation in 

primary fetal sheep myoblasts (Haddad et al., 2005; Posont et al., 2018). The predominant 

aspects of metabolic regulation by IL-6 are similar to those of TNFα. First, the nature of 

its effects on skeletal muscle appear dependent on the magnitude and duration of exposure, 

as sustained exposure is substantially more detrimental. Additionally, IL-6 is associated 

with pathological metabolic states, presumably due to its propensity to decrease skeletal 

muscle carbohydrate metabolism in favor of fatty acid oxidation and to disrupt insulin 

signaling (Bruce and Dyck, 2004; Wolsk et al., 2010; Knudsen et al., 2017). Finally, IL-6 

is detrimental to pancreatic islet function, as overexpression of IL-6 in β cells resulted in 

alterations to islet structure, increased fibrosis, and decreased insulin production (Campbell 

et al., 1994).
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Additional inflammatory cytokines appear to have roles in muscle regulation but have 

been less extensively studied. For example, IL-1β is involved in collagen degradation, 

muscle protein catabolism, and branched-chain amino acid metabolism (Nawabi et al., 1990; 

Dinarello, 2000; Li et al., 2009). Consequently, it is associated with reduced myofiber width, 

myofibril construction, and actin content (Li et al., 2009). In islets, IL-1β promotes β cell 

apoptosis, which impairs glucose-stimulated insulin secretion (Harms et al., 2015; Oleson 

et al., 2015). IL-18, IL-8, and TWEAK appear to have similar roles in regulating muscle 

growth and metabolism.

Inflammatory Tone Is Increased in the IUGR Fetus

Studies in a multitude of mammalian species show that IUGR fetuses exhibit greater 

circulating leukocyte and cytokine concentrations, which correlate closely with hypoxemia 

(Romero et al., 2007; Guo et al., 2010; Cadaret et al., 2019; Oh et al., 2019). Increased 

TNFα, IL-6, and IL-18 were observed in cord blood of IUGR infants at delivery and 

in blood serum at 24 h after delivery (Krajewski et al., 2014; Visentin et al., 2014). In 

fact, high concentrations of inflammatory cytokines in cord blood are considered reliable 

clinical markers for diagnosing fetal inflammatory response syndrome (FIRS) (Kemp, 

2014). In IUGR fetal sheep, greater circulating TNFα in the mid-third trimester coincided 

with increased monocytes, granulocytes, and total white blood cells (Cadaret et al., 2019). 

Similarly, IUGR fetal rodents exhibited elevated blood concentrations of TNFα, IL-6, and 

IFNγ, as well as greater leukocyte activity (Hudalla et al., 2018; Cadaret et al., 2019a). 

In addition to circulating concentrations, cytokine expression is elevated in IUGR tissues 

including lungs, brain, skeletal muscle, and white blood cells (Kemp, 2014; Cadaret et al., 

2019a), but not necessarily in pancreatic islets (Kelly et al., 2017).

IUGR Tissues Develop Enhanced Inflammatory Sensitivity

Some rodent models of IUGR indicate that greater circulating cytokine concentrations are 

maintained into adulthood. Indeed, IUGR-born rat and mice offspring exhibited greater 

circulating TNFα, IL-6, and IL-1β from birth to adulthood (Desai et al., 2009; Riddle et 

al., 2014; Chisaka et al., 2016; Oliveira et al., 2017). However, recent findings indicate 

that enhanced cytokine signaling pathways in muscle and other tissues maintain increased 

inflammatory tone even when elevated circulating cytokines subside after birth (Cadaret 

et al., 2019a; Posont et al., 2021). We have postulated that this enhanced responsiveness 

to cytokines contributes to the persistent dysregulation of muscle growth and metabolic 

function observed in IUGR-born offspring (Yates et al., 2018; Posont and Yates, 2019). At 

term, skeletal muscle from IUGR rat pups exhibited greater gene expression for TNFR1, 

IL6R, and Fn14 (TWEAK receptor) (Cadaret et al., 2019a). Moreover, muscle from IUGR­

born mice and rats exhibited greater TNFα and IL-6 gene expression at 2 and 12 months 

after birth (Sutton et al., 2010; Tarry-Adkins et al., 2016). In sheep, proliferation and 

differentiation rates of primary IUGR fetal myoblast were reduced when exposed to basal 

or high TNFα or IL-6 concentrations (Posont et al., 2018). Additional data from these 

samples indicate increased gene expression for TNFR1 and IL6R in IUGR myoblasts and 

semitendinosus muscle, as well as reduced muscle IκBα protein content and increased 

c-Fos protein content (Posont, 2019). As neonates, IUGR-born lambs exhibited increased 

TNFR1 protein content in semitendinosus muscle and greater circulating concentrations 
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of monocytes, granulocytes, and platelets (Posont et al., 2021). Transcriptomics were 

subsequently performed in muscle samples from these lambs, which indicate that gene 

expression for numerous components of TNFα, IL-6, IL-1β, and IL-12 pathways were 

upregulated (Yates et al., 2018; Cadaret, 2019), as summarized in Figure 2. This paralleled 

similar transcriptomics findings in skeletal muscle from IUGR fetal sheep (Cadaret et 

al., 2019; Posont and Yates, 2019). Interestingly, IUGR-born lambs also exhibited greater 

muscle IκBα protein content and a 50% reduction in circulating TNFα, perhaps as a 

compensatory mechanism for enhanced cytokine sensitivity (Posont et al., 2021). Although 

additional studies are needed to fully understand the magnitude and nature of inflammatory 

programming in IUGR skeletal muscle, it is clear that such enhanced activity would help to 

explain the deficits in myoblast function, muscle growth, body composition, insulin action, 

and metabolic efficiency described in earlier sections.

Targeting Inflammatory Adaptations May Improve IUGR Outcomes

Inflammatory programming is likely one of several underlying mechanisms for IUGR­

associated pathologies, but its ability to be targeted makes it of particular interest. In 

fact, several studies have provided fundamental evidence that treating IUGR fetuses and 

IUGR-born offspring with anti-inflammatory nutrients or pharmaceuticals can help to 

mitigate or improve growth and metabolic deficits. In mice, maternal supplementation of 

the anti-inflammatory nutraceutical folic acid reduced the frequency and severity of IUGR 

resulting from maternal inflammation (Zhao et al., 2013). The mice receiving folic acid 

also exhibited a less severe increase in amniotic concentrations of IL-6 and other cytokines. 

Although not assessed in muscle, the enhancement of cytokine signaling pathways observed 

in IUGR placental tissues was mitigated by folic acid (Zhao et al., 2013). In sheep, direct 

daily infusion of the anti-inflammatory nutraceutical eicosapentaenoic acid (EPA) into the 

bloodstream of IUGR fetuses during the mid-third trimester of gestation for 5 days resulted 

in less severe fetal hypoxemia, hypoglycemia, and hyperlactatemia (Beer et al., 2021). In 

addition, the greater lactate production observed for IUGR fetuses during hyperglycemia 

was improved substantially, perhaps indicating a less severe metabolic shift to glycolytic 

lactate production by muscle (Lacey et al., 2021). This coincided with an improvement 

in fetal growth and body symmetry. EPA infusion also improved whole hindlimb mass as 

well as loin and flexor digitorum superficialis muscle mass in the IUGR fetuses, which is 

indicative of improved muscle growth during late gestation (Lacey et al., 2021). It is worth 

noting that growth was not recovered for all muscles, which may have been due to the 

natural differences in insulin sensitivity and metabolic phenotypes among muscle groups 

(Kirchofer et al., 2002). After IUGR fetuses had been infused with EPA for 5 days, they 

exhibited improved basal and glucose-stimulated insulin secretion, indicating partial rescue 

of pancreatic islet function (Lacey et al., 2021). These fetuses also exhibited improvements 

in blood pH, HCO3, Na+, and Ca++ concentrations, which indicate improved fetal health 

and well-being (Lacey et al., 2021). In addition to nutrient compounds, maternal delivery 

of anti-inflammatory pharmaceuticals may also represent an effective intervention strategy. 

A recent clinical study showed that high doses of the non-steroidal anti-inflammatory drug 

(NSAID) aspirin taken by pregnant women during critical windows of fetal development 

reduced the frequency of IUGR (Roberge et al., 2017). Of course, the benefits of such 

drugs must be considered in combination with potential side effects for fetal development. 
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Inflammatory programming can also be targeted in offspring, which is of particular interest 

in livestock. Dietary supplementation of the anti-inflammatory nutraceutical curcumin to 

IUGR-born neonatal pigs and mice mitigated the elevated concentrations of blood TNFα, 

IL-6, and IL-1β, which improved insulin sensitivity, lipid homeostasis, and neonatal growth 

(Niu et al., 2019a,b,c).
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IMPLICATIONS

The link between maternofetal stress, IUGR-induced low birthweight, and postnatal 

deficits in metabolic efficiency and growth potential are well-established in livestock, but 

scientific advancements regarding the molecular mechanisms underlying this link have 

been lacking. However, recent studies provide evidence that systemic fetal inflammation 

and developmental programming that enhances tissue sensitivity to inflammatory 

cytokines are contributing factors to growth and metabolic deficits, particularly those 

that are muscle centric. Although inflammatory programming is likely one of many 

underlying mechanisms, it is of particular interest to the livestock industry because it 

is both identifiable and treatable. Indeed, there are a number of currently marketed 

nutritional supplements and pharmaceuticals with anti-inflammatory properties, which 

could provide producers a number of options for mitigation and treatment strategies. 

Food animals born with low birthweight due to stress-induced IUGR are persistently one 

of the greatest barriers to US and global livestock production. Moreover, the emergence 

of climate change will likely increase the incidence of environmental stress on pregnant 

animals, creating a greater challenge for sustainable livestock production. As the global 

population continues to increase, recovering growth, efficiency, and meat production 

in low birthweight animals through practical management strategies represents one of 

the most realistic options for increasing meat production without greater land and 

water resource inputs. Although more work is warranted, early evidence indicates that 

treatment of enhanced inflammatory tone in IUGR-born animals may be an effective 

approach.
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FIGURE 1 |. 
Functional steps of myoblasts (muscle stem cells) and their facilitation of hypertrophic 

growth in normal and IUGR skeletal muscle.
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FIGURE 2 |. 
Postulated programming of enhanced sensitivity to inflammatory cytokines based on 

transcriptomics analyses of IUGR semitendinosus muscle from IUGR fetal sheep during 

late gestation and IUGR-born neonatal lambs at 1 month of age.
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