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Abstract: In mammals, the daily variation in the ecology of the intestinal microbiota is tightly coupled
to the circadian rhythm of the host. On the other hand, a close correlation between increased body
weight and light pollution at night has been reported in humans and animal models. However,
the mechanisms underlying such weight gain in response to light contamination at night remain
elusive. In the present study, we tested the hypothesis that dim light pollution at night alters the
colonic microbiota of mice, which could correlate with weight gain in the animals. By developing
an experimental protocol using a mouse model that mimics light contamination at night in urban
residences (dLAN, dim light at night), we found that mice exposed to dLAN showed a significant
weight gain compared with mice exposed to control standard light/dark (LD) photoperiod. To
identify possible changes in the microbiota, we sampled two stages from the resting period of
the circadian cycle of mice (ZT0 and ZT10) and evaluated them by high-throughput sequencing
technology. Our results indicated that microbial diversity significantly differed between ZT0 and
ZT10 in both LD and dLAN samples and that dLAN treatment impacted the taxonomic composition,
functions, and interactions of mouse colonic microbiota. Together, these results show that bacterial
taxa and microbial metabolic pathways might be involved with the mechanisms underlying weight
gain in mice subjected to light contamination at night.

Keywords: light pollution; chronodisruption; body mass; microbiota

1. Introduction

Lifestyle in the modern era is associated with profound changes in the diet, where
irregular feeding times and high consumption of processed foods are common behaviors [1].
Moreover, changes in the diet such as high caloric diet intake and sedentarism have been
associated with higher rates of overweight and obesity [2,3]. Other non-dietary related
features of the modern lifestyle are also related to overweight and/or obesity. For instance,
exposure to artificial light at night is associated with body weight gain in humans [4] and
animal models [5,6]. In this regard, it is not fully understood how exposure to light at
night induces weight gain; however, rotating shift work, bright streetlights, the use of
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light-emitting devices at night, and social jet lag have been linked to many pathologies,
including obesity, altered immune system, oxidative stress, and cancer (reviewed in [7]).

The risk factors mentioned above cause chronodisruption, a term used for disruption
of the circadian cycle [8]. At the molecular level, rhythmic expression of genes, such
as Period1/2, Clock, Bmal1, Cry1, and Rev-erbα, among others, constitute the circadian
molecular oscillator that controls the function of different organs and systems at the cellular
level. The combined effect of several zeitgebers, such as light and mealtime, results in
the synchronization of the circadian clock, which comprises the central, suprachiasmatic
nucleus (SCN), and diverse peripheral clocks [9]. Furthermore, food composition and
feeding time modulate the clock of peripheral tissues such as the intestine, liver, and
kidney [10].

Circadian regulation plays a crucial role in metabolic homeostasis [11,12]. In the case of
weight gain caused by light exposure at night, it has been shown that photoperiod-induced
chronodisruption severely impairs metabolic homeostasis by altering liver function [5].
Furthermore, other mechanisms by which chronodisruption can influence the development
of altered metabolic homeostasis occur via changes in the intestinal microbiome [1]. In
this regard, a recent large-scale study using human stool samples identified circadian
rhythms in microbiota [13], where a very accurate prediction of diabetes type II disease
could be inferred from intestinal microbiota analysis, which is characterized by arrhythmic
taxa in diabetic patients. Hence, although the effect of chronodisruption on the intestinal
microbiota functions has received less attention than the host, evidence exists of its potential
impact on weight gain. From the functional point of view, some metabolites generated
by microbial activity, such as short-chain fatty acids (SCFAs), act as a strong signal that
entrains diverse peripheral clocks in the intestinal and liver tissues, among other peripheral
organs [14]. Thus, the modulation of peripheric organs by the intestinal microbiota’s
metabolic activity might be considered a potential target for regulating body mass. Indeed,
colonic administration of propionate for six months effectively reduced weight and fat
tissue in humans displaying overweight [15]. Similar findings have been reported in mice
using acetate, propionate, butyrate, or a mixture of SCFAs to avoid weight gain and insulin
resistance induced by a high-fat diet [16].

Significant advances in microbiota analysis have shown a correlation between in-
testinal microbiota and the type of diet or presence of metabolic diseases (i.e., diabetes
type II) [17,18]. However, other conditions that lead to an accelerated weight gain, such
as light contamination during the resting period, have not been addressed from this per-
spective. In this study, we tested the hypothesis that weight gain caused by the exposure
of mice to dim light at night is associated with changes in their colonic microbiota. Our
results show that dim light at night (dLAN) exposure alters the composition and functions
associated with the mouse colonic microbiota and dramatically impairs the interaction
network of bacterial communities.

2. Results
2.1. Dim Light at Night Exposure Increases Body Mass in Mice

Exposure to light at night has been associated with a gain in body weight in humans
and animal models. To validate our homemade LED-based illumination system, we
evaluated the effect of exposing mice to dim light at night (dLAN, Figure 1). The animal
cohort used in the study and the scheme of the experimental protocol used are shown in
Figure 1A,B. As seen in Figure 1C, we found that from the third week of treatment (day 48
in the x-axis), body mass gain of mice exposed to dLAN was significantly higher than that
from control mice (LD, p < 0.05; two-way ANOVA, Sidak’s multiple comparison test).
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Figure 1. Control (LD) vs. dim light at night (dLAN) protocols. (A) Cartoon showing the experimental
design. (B) All mice were subjected to the adaptation phase for fourteen days (until postnatal day
(P34)) at LD followed by LD or dLAN protocol for thirty days (until P65). (C) Gain of body mass
displayed by mice exposed to LD (black bars, n = 6) or dLAN (open bars, n = 6). *, **, and ***
correspond to p-values less than 0.05, 0.01, and 0.001 obtained by two-way ANOVA, Sidak’s multiple
comparison test (LD vs. dLAN). Bars and error bars (red color) correspond to the means± SD, respectively.

2.2. Dim Light at Night Impacts the Taxonomic Composition of Mouse Colonic Bacterial Communities

Since we pursued the variations in colonic bacterial communities from LD- and
dLAN-treated mice, we evaluated their fecal microbiomes considering two representative
steps of the day: at the zeitgebers ZT0/24 and ZT10 (resting period) by high-throughput
sequencing (HTS) technology. It is important to note that the feces used in the analysis
were from the same animals where dLAN treatment promoted weight gain (Figure 1). A
total of 1,115,425 16S rRNA gene sequences and 314 amplicon sequence variants (ASVs,
Supplementary Table S1) were obtained from all samples. The results of beta diversity by
principal coordinates analysis (PCoA) indicated that most of the replicates of each condition
tended to be distributed together in space (Figure 2A). In contrast, microbial alpha diversity
analysis (Shannon index) showed that samples significantly differed between ZT0 and ZT10
in both LD and dLAN samples (Figure 2B). The taxonomic composition of the bacterial
communities in the fecal samples encompassed eight annotated phyla, where Firmicutes
was the most abundant in all conditions tested (Figure 2C), decreasing its abundance at
ZT10 compared to ZT0 in both LD and dLAN treatments, which is explained by a significant
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increment of Verrucomicrobia. In addition, the relative abundance (average between ZT0
and ZT10) of Firmicutes was higher in dLAN (87.76%) than in LD (76.47%), while the
relative abundance of Bacteroidetes was lower in dLAN (1.08%) than in LD (2.06%), giving
an increased Firmicutes over Bacteroidetes ratio in dLAN compared to LD (~2-fold). The
changes observed in the taxonomic diversity and composition between the light treatments
(LD and dLAN) and between the different sampling times (ZT0 and ZT10) at the same
condition highlight the dynamics and plasticity of the mouse colonic microbiome to a
non-nutritional condition within a daily cycle.

Figure 2. Diversity metrics and taxonomic structure of bacterial communities from LD and dLAN
samples. (A) PCA ordination diagram of beta diversity of the microbial samples (Bray Curtis index;
PERMDISP p-value > 0.05; PERMANOVA F value: 3.0966; R-squared: 0.5373; p-value < 0.001).
(B) Shannon index. Horizontal bars within boxes represent median, where the top and bottom of
each box represent the 75th and 25th quartiles of the bacterial communities. Bars with different letters
indicate statistically significant differences (two-way ANOVA p < 0.05, Tukey’s multiple comparison
test). (C) Bacterial phyla relative abundance in all samples.

Given the microbial diversity between ZT0 and ZT10 in both LD and dLAN (Figure 2B),
we normalized the abundance of each ASV at ZT0 by its abundance at ZT10 (ZT0/ZT10
ratios) to properly compare the impact of the differential light treatments (LD and dLAN)
on the gut microbiome. We standardized the abundance values by ZT10 since, at this
time, mice of both groups did not differ in their light treatment (150 lux light for LD and
dLAN treated mice) and also because the mice subjected to both light treatments were
inactive, there were no other acute effects on the colonic microbiota, such as differences in
the feeding pattern of the animals.
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The results of the hierarchical cluster analysis indicated that the bacterial communities
present in samples from the same light conditions were similarly distributed, perfectly sepa-
rating LD and dLAN (Figure 3A). Furthermore, we observed that the annotated taxonomic
genera Catenisphaera and Romboutsia were more abundant in the dLAN condition, while
Lachnospiraceae NK4A136 group, Blautia, Clostridium sensu stricto 1, Caproiciproducens,
Ruminiclostridium 9, Ruminococcus 1, Parabacteroides, Alloprevotella, Acetatifactor, Bac-
teroides, and Prevotella were less abundant in the dLAN condition (over-represented in
the LD condition) (Figure 3B). Interestingly, many different ASVs belonged to the Rumini-
clostridium 9 and Lachnospiraceae NK4A136 groups (20 and 8, respectively), suggesting
that these genera are highly sensitive to light treatments (Supplementary Table S2).

Figure 3. Taxonomic and imputed functional abundances in LD and dLAN at ZT0 and ZT10 con-
ditions. (A,C) Hierarchical cluster analysis of the bacterial taxonomic and imputed functional
compositions, respectively. (B) Fold changes (log2) of the relative abundances of each genus in dLAN
with respect to LD. Over- (red) and under- (green) represented genera in dLAN (p < 0.05, Student’s
t-test; data are shown as means ± SEM). (D) Relative percentage of over-represented parent functions
of KEGG pathways in LD (green) and dLAN (red) conditions.
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2.3. Dim Light at Night Impacts the Biological Pathways in Mouse Colonic Bacterial Communities

To uncover whether the microbial colonic taxonomic composition relates to the overall
predicted bacterial functional capacities, we analyzed the imputed biological pathway
(KEGG) profiles within the bacterial communities from the different samples by standard-
izing the functions abundance values by ZT10 (Supplementary Figure S2). Like the clusters
formed from the relative abundance ratio of each ASV, the hierarchical cluster analysis of
the biological pathways according to EC codes within the bacterial communities formed
clusters between samples from the same conditions, separating LD and dLAN (Figure 3C).
Regarding the functional responsive processes (Supplementary Table S2), we observed
that none of the KEGG parent functions were unique to the microbiomes of mice subjected
to each experimental condition. However, we identified that the relative percentage of
KEGG pathways: “metabolism of terpenoids and polyketides”, “nucleotide metabolism”,
“metabolism of cofactors and vitamins”, “metabolism of other amino acids”, and “biosyn-
thesis of other secondary metabolites” were more abundant in dLAN than in LD, while
“glycan biosynthesis and metabolism”, “energy metabolism”, “lipid metabolism”, “car-
bohydrate metabolism” and “xenobiotics biodegradation and metabolism” were more
abundant in LD than in dLAN (Figure 3D).

2.4. Dim Light at Night Impacts the Interaction Network of Mouse Colonic Bacterial Communities

To further analyze the microbial communities and the ecological rules guiding commu-
nity assembly in mice associated with light treatments, we generated microbial interaction
networks for LD and dLAN colonic microbial communities (Figure 4). The nodes of the
networks represent ASVs annotated at the order level, and edges represent positive (grey)
or negative (red) correlations between nodes. The interaction network from LD contained
194 nodes, while the dLAN network was formed by 205 nodes (Figure 4), with 93 ASVs
common to both networks, 101 LD exclusive ASVs, and 112 ASVs restricted to dLAN.
Most exclusive and shared ASVs from both networks belonged to the Clostridiales order,
followed by Bacteroidales, reflecting a conserved microbial diversity between LD and
dLAN interacting members (Supplementary Table S3). Moreover, both networks displayed
one major connected component that included most nodes and edges and one or four
minor connected components (formed by only two nodes) in LD and dLAN networks,
respectively (Figure 4). Furthermore, the clustering coefficients (0.653 and 0.705 for LD
and dLAN networks, respectively) and the number of connections were similar between
networks, with 1353 links in the LD network and 1302 in dLAN. The slightly higher number
of interactions in the LD network was also reflected in an increased average number of
neighbors (14.08 for LD and 13.18 for dLAN) and network density (0.074 for LD and 0.067
for dLAN) in the network of this bacterial community. Additionally, the LD network
presented a higher ratio value of positive over negative links compared to dLAN (1.90 and
1.79, respectively), indicating that the mice subjected to the dLAN treatment contained a
colonic microbiota with a lower incidence of positive interactions than the microbiome of
LD treated mice (Supplementary Table S3).

Finally, to quantify the variation among the interaction networks, we calculated their
total interaction dissimilarity or beta diversity (βWN). Since βWN is partitioned into the dis-
similarity due to difference in species composition (βST) and dissimilarity due to rewiring
of shared species (βOS) [19], we could evaluate the contribution of each of these components
to the extent of dissimilarity of the networks. Interestingly, the LD and dLAN networks
showed βWN values of 0.97, βST of 0.75, and βOS of 0.22, indicating first that both inter-
action networks are highly dissimilar, and secondly that the dissimilarity of the network
structure has both a compositional and interactive component, with a relative impact of the
compositional difference of 77.3% (0.75/0.97) and a relative impact of the interactions of
shared species of 22.7% (0.22/0.97). These results reveal that although the networks share
similar metrics regarding nodes and edges, their interactions are highly dissimilar, indicat-
ing that the different light regimes induce rearrangements on the composition, functions,
and interactions of the colonic microbial communities of male mice.
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Figure 4. Bacterial interaction networks in mouse colons under LD and dLAN conditions.
(A) LD bacterial interaction network. (B) dLAN bacterial interaction network. Interactions were
inferred from ASV abundance patterns. Each node represents an ASV, and each edge repre-
sents a significant pairwise association between them (grey lines: positive correlations; red lines:
negative correlations). Different node colors represent a distinct order. Node size is propor-
tional to the number of connections (degree) for both networks (maximum node degree for LD
is 48 and 37 for dLAN). LD bacterial interaction network contains 1353 connections (887 positive;
466 negative; positive/negative = 1.90); dLAN bacterial interaction network contains 1302 connec-
tions (836 positive; 466 negative; positive/negative = 1.79).

3. Discussion

Exposure to artificial light at night causes chronodisruption and is associated with
alterations such as weight gain [5,6], disturbance of the daily sleep-wake cycle [20], and
altered daily rhythms in nocturnal animals [21].

The association between exposure to dim light at night and weight gain is complex, as
it has been shown in rats that no weight gain occurred in response to dim light at night
exposure [20]. Moreover, it has been reported that the effects of dim light at night on
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the daily sleep-wake cycle disturbances are age-dependent [22] and also depend on the
duration of the stimulus [23]. In the current study, we did not evaluate the effect of age or
the duration of the stimulus on the weight gain, but it is possible that similar relations as
those reported for the sleep-wake cycle might occur in our model.

In the present study, weight gain by dLAN was observed in mice (Figure 1C), in
agreement with previous studies reporting a similar effect mediated by dLAN in mice,
where increased body mass, epididymal fat pad mass, and reduced glucose tolerance
were observed in mice subjected to dLAN [5,6]. Moreover, the study by Fonken et al.
performed in Swiss Webster mice showed that food consumption does not differ between
LD and dLAN treatment when the mice had full access to food (ad libitum), but that an
altered feeding pattern was observed in dLAN mice compared to LD mice, where food
consumption at the resting phase was higher in dLAN mice [6]. Since the regulation of
the composition and function of the gut microbiota is governed mainly by host feeding
rhythms [24], we hypothesized that the weight gain observed in mice exposed to dLAN
was related to an altered colonic microbiota.

It has been widely described that the intestinal microbiota regulates the host food
digestion and absorption, contributes to the maintenance of the epithelial integrity, and
produces a broad number of metabolites that impact host physiology [1]. Additionally,
alteration of the gut microbiota is also associated with pathological changes in the host,
such as weight gain, obesity, and metabolic syndrome [25].

The gut microbiota activity also displays an oscillatory behavior, causing the host
intestinal cells to be confronted with the daily variations of microbial species and their
metabolites [26,27]. Daily differences in gut microbial composition between ZT0 (8:00 a.m.)
and ZT10 (6:00 p.m.) in mice exposed to both LD and dLAN were compared, showing
significant differences in the microbial diversity between zeitgeber times (Figure 2B). Inter-
estingly, changes in microbial diversity displayed an inversed pattern between zeitgeber
times for LD and dLAN, indicating that light regimes are relevant to daily differences in
the colonic microbiota.

Taxonomic analysis indicated that at the phylum level, Firmicutes and Proteobacteria
abundances were higher in dLAN than in LD, while Bacteroidetes abundance was lower,
showing an increased ratio of Firmicutes to Bacteroidetes in dLAN (Figure 2C). Thus, our
results of weight gain in mice subjected to dLAN agree with a plethora of literature showing
that obesity and metabolic syndrome are associated with an increase in the Firmicutes to
Bacteroidetes ratio and an increase in the relative abundance of Proteobacteria [1,28]. In
addition, at the genera level, our results indicated that Romboutsia and Catenisphaera were
more abundant in the dLAN condition. Notably, Romboutsia spp. have been previously
associated with obesity in rats, mice, and humans [29–31] and seem to be prevalent patho-
bionts in obese mammalians. Moreover, Romboutsia species, included as an additive in the
diet of mice, showed impaired glucose tolerance and fasting insulin compared with mice
fed with standard diet [31], both parameters associated with increments in body weight [5].
Conversely, we found genera under-represented in dLAN, such as Lachnospiraceae NK4A136
group, Blautia, Clostridium sensu stricto 1, Caproiciproducens, Ruminiclostridium 9, Ruminococ-
cus 1, Parabacteroides, Alloprevotella, Acetatifactor, Bacteroides, and Prevotella (Figure 3B). The
Lachnospiraceae NK4A136 group and Blautia genera are recognized SCFA-producing mi-
crobes. Recent evidence shows that SCFAs directly or indirectly regulate processes related
to obesity, influencing energy, glucose, and lipid homeostasis control via their metabo-
lites [32]. A recent study in obese mice reported that the abundance of Lachnospiraceae
NK4A136 group and Blautia genera increased concomitantly with the concentration of
acetate, propionate, and butyrate in response to an oral dose of Bacteroides species and a
prebiotic [33], curbing weight gain and adiposity in the mice. Remarkably, the Bacteroides
genus was also under-represented in dLAN, and since Romboutsia has been negatively
correlated with the levels of acetate and butyrate [34], we suggest that the production and
beneficial effects of microbial SCFAs could be impaired in mice subjected to the dLAN
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treatment. Other less abundant genera in mice subjected to dLAN, such as Parabacteroides
and Alloprevotella, have also been negatively correlated with obesity in mice [35,36].

In addition to the grouping of the profiles obtained from the taxonomic analysis
(Figure 3A), the results of the hierarchical cluster analysis indicated that the microbial
pathways grouped between samples from the same conditions, perfectly separating LD
and dLAN (Figure 3C), which emphasizes the relevance of increased light at night on the
structure and functions of the mice colonic microbial communities in mice. Among these
metabolic pathways, the relative abundance of “energy metabolism”, “lipid metabolism”,
and “carbohydrate metabolism” were higher in LD than in dLAN (Figure 3D). Since these
processes appear to be negatively affected by the nocturnal light treatment, the idea that
the mechanisms explaining weight gain in mice subjected to dLAN are dependent on these
microbial pathways is reinforced (Supplementary Table S3).

Finally, to get a comprehensive view of this comparative analysis between LD and
dLAN conditions, we also compared using the Student’s t-test (p < 0.05) the absolute
abundance values of all sampling points of the taxa and functions between both light
conditions (i.e., a non-standardized ZT0/ZT10 analysis). As expected, given the microbial
community variation during the day in LD and dLAN, we obtained a rather uninformative
analysis, where only Parabacteroides and Ruminiclostridium 9 were under-represented in
dLAN. In the same context, only the metabolism of xenobiotics by cytochrome P450
(ko00980) KEGG function remained significantly different between the light treatments.
This function was under-represented in dLAN compared to LD, as was also observed in
the standardized ZT0/ZT10 analysis. Hence, an unbiased and more informative analysis
of our data was achieved using a standardized method, given the noted variation in the
bacterial colonic community of mice between daytime points (ZT0 and ZT10).

Regarding the microbial networks, even though they were highly alike in their overall
network parameters (number of nodes, edges, clustering coefficient, and average number
of neighbors), their βWN values showed a strong interaction dissimilarity between LD and
dLAN colonic bacterial communities. This dissimilarity was explained mainly by species
turnover (βST; 77.3%) and, to a lesser extent, to shared ASVs that interacted differentially in
each network (βOS; 22.3%). Thus, the interactions of the exclusive ASVs from each network
had the highest impact on the dissimilarity of interactions observed between both networks.
Nevertheless, since exclusive network ASVs mainly belong to the same taxonomic levels
(mainly Clostridiales and Bacteroidales orders), a possible functional redundancy of the
main component that triggers the overall variance of LD and dLAN network structures
is implied.

On the other hand, the dLAN network presented a lower ratio value of positive links
over negative links compared to LD, suggesting a decreased incidence of mutualistic inter-
actions in response to light-induced chronodisruption [37,38]. Thus, this could be explained
by an increased production of antimicrobials (macrolides), by a mechanism dependent on
the “metabolism of terpenoids and polyketides” pathway, which was higher in dLAN than
in LD (Supplementary Table S2). Interestingly, increased cooperative metabolism has been
described to provide health benefits for the host mainly due to competition or negative
interactions between ASVs, which are associated with antimicrobial warfare, resource over-
lap, predation, among others [39–42], and have the potential to diminish the abundance of
cooperative metabolism that may benefit the host [43–46]. Thus, nocturnal light pollution
induced by dLAN resulted in a less efficient community and a less advantageous bacterial
community for the host.

It is tempting to speculate about the translational consequences of our findings. How-
ever, there are many important variables that were not assessed in the current study, such
as the effects of extension time of light exposure or the age of the animals on the weight
gain. Finally, the mouse model used here is a nocturnal animal where the bulk of its energy
intake occurs during the dark phase of the photoperiod [47]. Therefore, future studies
are needed to determine if the mouse can be used as an animal model for studying the
association between artificial light exposure at night and overweight in humans.
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Finally, a correlation between weight gain and altered colonic microbiota in response
to dim light under night treatment was found in the mouse model. This change in the
microbiota was not only restricted to the structure, but also to the function and interactions
between the microorganisms.

4. Materials and Methods
4.1. Animals

Animal handling and care followed the Guide for the Care and Use of Laboratory
Animals of the Institute for Laboratory Animal Research of the National Research Council.
The protocols were approved by the Bioethics Commission of the Universidad Austral de
Chile (Protocol 328/218). Eighteen mice between 21 and 65 days old (P21–P65) were used
in this study.

C57BL/6J mice (Centro de Estudios Científicos, originally obtained from the Jackson
Laboratory) were housed in our animal facility at the Universidad Austral de Chile. All
animals used in this study had unrestricted access to water and food (ad libitum). Animals
were fed with a standard diet (Prolab RMH 3000, Labdiet). The light sources used in
this study were white LED and were calibrated using a lux meter (HI 95500, Hanna)
to 150 lux for LD and 5 lux for dLAN, respectively (spectra at 150 and 5 lux shown in
Supplementary Figure S3).

4.2. Body Mass Measurements

Weaned male mice (P21–P65, n = 6 mice for LD and n = 6 mice for dLAN) were
housed in groups of 3 mice per cage and maintained for two weeks under light/dark
(LD) photoperiod (12 h each, lights were turned on at 8:00 a.m.AM and turned off at
8:00 p.m.PM). Two weeks later, mice were allocated to the following two photoperiods:
light/dark (LD) (control or standard photoperiod, as described above) or dim light at night
(dLAN, consisting of 12 h light (150 lux)/12 h dim light (5 lux) at night) photoperiod and
maintained under these conditions for ~30 days (see Figure 1 for details). Mice body mass
was measured weekly at the same time.

To determine the effect of dLAN and the treatment extension time on the body mass,
we performed a two-way ANOVA followed by SIDAK multiple comparison test analysis
using the GraphPad Prism 9 software.

4.3. DNA Extraction and Sequencing

Mice from cohort 1 (P65; n = 6 for LD and n = 6 for dLAN conditions; protocol shown
in Figure 1) were anesthetized with isoflurane and euthanized by cervical dislocation.
Feces from the proximal colon were extracted and immediately stored at −80 ◦C in 1.5 mL
autoclaved plastic tubes. Mice were euthanized at two time points, ZT0 (8:00 a.m.) and
ZT10 (6:00 p.m.). Bacterial DNA was extracted from 200 mg of mouse feces using a
QIAamp DNA Stool Mini Kit (Qiagen) according to the manufacturer’s instructions. The
DNA integrity was evaluated by electrophoresis in Agilent 2200 TapeStation, and DNA
concentration was measured by fluorescence in the Qubit equipment. Then, DNA was
stored at 4 ◦C until use. Microbial DNA was amplified using a bacteria-specific primer
set, 28 F (5′-GA GTT TGA TCM TGG CTC AG-3′) and 519 R (5′-GWA TTA CCG CGG
CKG CTG-3′), flanking variable regions V1-V3 of the 16 S rRNA gene with barcode on the
forward primer [48]. Amplification was performed using the Qiagen Kit HotStarTaq Plus
Master Mix under the following conditions: initial denaturation at 94 ◦C for 3 min followed
by 28 cycles, each set at 94 ◦C for 30 seconds, 53 ◦C for 40 seconds, and 72 ◦C for 1 min,
with a final elongation step at 72 ◦C for 5 min. After amplification, PCR products were
checked in a 2% agarose gel to determine the amplification’s success and the bands’ relative
intensity. PCR products were used to prepare DNA libraries following Illumina TruSeq
DNA library preparation protocol. Sequencing was performed at the Molecular Research
DNA laboratory (Shallowater, TX, USA) on an Illumina MiSeq platform in an overlapping
2 × 300 bp configuration with a minimum throughput of 20,000 reads per sample.
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4.4. Sequence Analysis and Taxonomic Identification Using SILVA Database

Microbiome bioinformatics was performed with QIIME 2 2019.10 [49]. Raw sequence
data were demultiplexed and quality filtered with the minimal quality median set to
30 using the q2-demux plugin followed by denoising with DADA2 [50] (via q2-dada2).
Taxonomy was assigned to amplicon sequence variants (ASVs) using the q2-feature-
classifier [51] classify-sklearn naïve Bayes taxonomy classifier against the SILVA_132 97%
reference sequences. By doing this, we obtained 1270 ASVs comprising 1,115,425 reads
across all samples. For analyses, we selected reads that mapped with ASVs that were
identified in at least two out of three replicates to analyze data using representative ASVs
from each sample. Using this criterion, 314 ASVs were included in the analyses. The
complete set of raw data was deposited in the SRA experiment database PRJNA674401.

4.5. Microbial Diversity Analysis

Alpha diversity (Shannon index) was estimated using q2-diversity after samples were
rarefied (subsampled without replacement) to 889 sequences per sample. Rarefaction
curves for each of these metrics were obtained by serial subsampling in increments of
8000 sequences and ten iterations per increment. Alpha diversity measurements were
compared between samples using the ten subsamples of each of the three replicates per
sample in an analysis of variance (ANOVA) and Tukey’s post-hoc test. Beta diversity
(Bray Curtis dissimilarity) between groups was evaluated by a permutational analysis of
multivariate dispersions (PERMDISP) and a permutation-based multivariate analysis of
variance (PERMANOVA). Differences between the groups were considered significant if
p was < 0.05.

4.6. Prediction of the Microbial Functional Profiles

MicrobiomeAnalyst server [52] was used to predict the functional microbial profiles
of the different colonic microbiomes. The ASV reads abundance table and the ZT0/ZT10
ratio table of the microbiomes were used for the Marker Data Profiling (MDP) stage.
Here, three filter steps were applied to eliminate ASVs with reads in only one condition
and those ASVs with less than 4 reads in 20% of the samples with low variance. Then,
the reads for the remaining ASVs were normalized using the Total Sum Scaling (TSS)
procedure. The normalized profiles of reads were used to predict functional profiles using
Tax4Fun [53] based in the KEGG Orthology database using the Shotgun Data Profiling
(SDP) stage. These normalized profiles were scaled and centered (z-score) and used as
input to perform a hierarchical cluster analysis based on Euclidean distance and average
linkage between clusters.

4.7. Identification of dLAN Markers

To identify the ASVs and the imputed functions (KEGG pathways) associated with
the light conditions, the relative abundance of the ZT0/ZT10 ratio of each ASV or function
was compared between LD and dLAN conditions. Student’s t-test calculated p-values, and
values <0.01 were acknowledged as significantly different. The data were expressed as the
logarithm base 2 of the fold change (log2FC) between dLAN over LD; positive values were
named over-represented in dLAN, while negative values were named under-represented
in dLAN.

4.8. Microbial Interaction Networks

To generate the microbial interaction networks, ASV abundances of the complete set
of LD or dLAN samples were used. Briefly, significant positive or negative abundance
correlations across the samples were identified by the CoNet method [54], which were
inferred according to the abundance patterns of pairs of ASVs over the samples using a
measure that quantifies the similarity of their distributions. When two ASVs showed a
similar abundance pattern over the samples, a positive correlation (co-occurrence) was
acknowledged; meanwhile, when they presented an anticorrelation in their abundance
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pattern, a negative correlation (mutual exclusion) was accepted. After assessing all possible
combinations of ASVs in the abundance dataset, all significant pairwise relationships were
combined to construct the network [55] using a multiple ensemble correlation. Three simi-
larity measures were calculated: Bray Curtis non-parametric dissimilarity index; Pearson
and Spearman rank correlations. For each measure and edge, 1000 renormalized permu-
tation and bootstrap scores were generated according to the work of Faust and Raes [56].
The interaction network model was displayed by Cytoscape [57].

All measures of network beta diversity were calculated using the framework proposed
by Poisot et al. [19] using the function betalinkr from the R package bipartite (initially
implemented in the betalink package). Following Poisot, total interaction beta diversity
or dissimilarity of a pair of networks (βWN) was partitioned into the dissimilarity due
to difference in species composition (βST) and dissimilarity due to rewiring or of shared
species (βOS). We used the recommended method for additive partitioning known as
commondenom [58].
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