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Summary

We describe a methodology for detecting differentially methy-

lated regions (DMRs) and variably methylated regions (VMRs), in

data from Infinium 450K arrays that are very widely used in

epigenetic studies. Region detection is more specific than single

CpG analysis as it increases the extent of common findings

between studies, and is more powerful as it reduces the multiple

testing problem inherent in epigenetic whole-genome associa-

tion studies (EWAS). In addition, results driven by single errone-

ous probes are removed. We have used multiple publicly

available Infinium 450K data sets to generate a consensus list

of DMRs for age, supporting the hypothesis that aging is

associated with specific epigenetic modifications. The consensus

aging DMRs are significantly enriched for muscle biogenesis

pathways. We find a massive increase in VMRs with age and in

regions of the genome associated with open chromatin and

neurotransmission. Old age VMRs are significantly enriched for

neurotransmission pathways. EWAS studies should investigate

the role of this interindividual variation in DNA methylation, in

the age-associated diseases of sarcopenia and dementia.
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sarcopenia.

Introduction

Epigenetic marks hold promise as biomarkers for stratifying patients for

intervention in diseases with environmental and developmental causality

(Gluckman et al., 2009). Unlike DNA biomarkers, epigenetic markers are

affected by both the patient’s inherited genotype (Gibbs et al., 2010)

and environmental exposures (Heijmans et al., 2008; McGowan et al.,

2011). The epigenetic change that has attracted the most attention from

translational scientists is DNA methylation (Bock, 2009; Feinberg, 2010).

DNA methylation marks have been shown to be disease relevant

(Martino & Prescott, 2011; Volkmar et al., 2012) and present before

clinical symptoms of disease (Godfrey et al., 2011). Consequently,

efforts to discover DNA methylation marks associated with a wide range

of diseases have been initiated including epigenome-wide association

studies (EWAS) (Ng et al., 2012). These studies are aided by advances in

technologies to assay genomewide DNA methylation patterns such as

the Illumina Infinium HumanMethylation450 BeadChip ArrayTM (Infinium

450K).

Infinium 450K arrays are able to measure methylation at more than

450 000 single CpGs (Bibikova et al., 2011). They are a cost-effective

solution for surveying multiple samples and hence have achieved

widespread usage. Infinium 450K profiles of 4242 samples were

deposited in public repositories by 15 April 2013. Two of the substantial

bioinformatics challenges in identifying biologically important differen-

tially methylated regions (DMRs) are the massive multiple testing

problem inherent in analysing more variables (> 450 000 CpGs) than

observations (typically 10–100s samples) (Bock, 2009) and the possibility

of aberrant values at a minority of probes due to cross-reactivity and

polymorphisms in CpG sites (Chen et al., 2013). DNA methylation at

individual CpGs has been shown to be correlated over short chromo-

somal distances using high density measures of the methylome (Eckhardt

et al., 2006). We suggest that grouping contiguous CpGs into come-

thylated regions will add power and reduce false-positive results driven

by one problematic probe. As the Infinium 450K measures CpGs in a

relatively sparse and irregular fashion, it is unknown how much cis-effect

can be discerned.

In this study, we show a strong negative association between

correlation of methylation values between CpGs and the distance

between them. We develop a region discovery method tailored to

Infinium 450K methylation data, for differentially methylated region

(DMR) and variably methylated region (VMR) discovery.

Methods combining neighbouring CpGs have been developed for

other platforms. Jaffe et al. (2012a,b) published methodologies for

detection of regions with contiguous differentially or variably methylated

CpGs on the CHARM platform; they term their approach ‘bump

hunting’. Jaffe et al.’s approach is theoretically applicable to Infinium

450K arrays, but would only be useful for 20% of the array. The reason

for this is the sparse and spatially irregular nature of the CpGs typed on

the array compared with a higher density approach such as CHARM.

Infinium 450K arrays are widely used in EWAS studies, and thus, the

region detection dealing with their sparse and irregular nature has utility.

To our knowledge, the only method specifically designed for Infinium

450K analysis is called MethyAnalysis and deposited in bioconductor

(http://www.bioconductor.org/packages/2.11/bioc/html/methyAnalysis.

html). We were, however, unable to find a manuscript describing it. The

tool uses a sliding window approach and is unable to provide a

significance value for each region, making it difficult to rank or to

compare the regions. Region detection is complementary to approaches

such as Horvath et al. (2012) and Hannum et al. (2013) who determine

CpGs with similar levels of methylation across and within samples

regardless of their genomic position. Their comethylation approach is

suitable for Infinium 27K data, while we found that region-centric

analysis was not practical on the Infinium 27K array (data not shown). It

has been reported that DNA methylation patterns change as a function

of age (Bocklandt et al., 2011; Alisch et al., 2012; Bell et al., 2012; Heyn

et al., 2012b; Hannum et al., 2013) and that the methylomes of
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identical twins ‘drift apart’ as they age (Fraga et al., 2005; Boks et al.,

2009). We conducted a meta-analysis using our more specific and

powerful region discovery methodology and a collection of seven

previously published Infinium 450K data sets to discover a consensus list

of regions whose methylation changes with age and the extent of

interindividual variability in advancing age. We show a remarkable

overlap between age-related DMRs from the same stage of the life

course in multiple data sets, attesting the specificity of our methodology.

We also show that VMRs become more common and more extreme with

advancing age. As the DMRs and VMRs show significant enrichment for

DNase hypersensitivity regions and biological pathways (such as neuro-

transmitters), we suggest that they reflect targeted environmental

exposures rather than a stochastic methylome-wide drift.

Results

Correlation of methylation values between neighbouring

probes in Infinium 450K data

Studies using genomewide methylation profiling techniques such as

bisulphite sequencing and CHARM have found strong correlation of

methylation levels within CpGs with genomic regions of less than 1–2 kb

between them. Both thesemethods offer relatively complete and uniform

coverage of the genome. Infinium 450K by contrast covers only a fraction

of the genome in an irregular fashion. Distances between neighbouring

probes on the Infinium 450K array exhibit a long-tailed spatial distribution

with values ranging from 2 bp to 2 9 107 bp (Fig. S1).

We asked whether the correlation between methylation levels of

neighbouring probes and their pairwise distance could be discerned

from the relatively sparse and irregular Infinium 450K data. To this end,

we interrogated a publicly available Infinium 450K data set that assayed

peripheral blood from 78 healthy boys aged between 1 and 16 years

(Alisch et al., 2012) (hereafter referred to as the children data set). We

compared the methylation values of all possible pairs of CpGs located

within every 100-kb stretch across the genome for an individual (Fig.

S2). We observed a strong correlation of methylation levels for

neighbouring probes (< 250 bp) (Fig. S2 inset), indicating that proximal

probes on the array can be grouped into ‘regions’, and associations with

the outcome of interest (in this case the age of the subject) can be

studied at the region level. The correlation for probes within 1 kb is

moderate at ~0.45.

A new region-centric methodology to detect DMRs and VMRs

To detect candidate DMRs and VMRs, we first assign each CpG probe a

differential statistic measuring the strength of association with age

(regression beta value or t-statistic) or median absolute deviation (MAD)

score of the CpG methylation levels for each probe on the array across all

individuals of the same age group. A candidate DMR is defined as at

least two spatially contiguous probes within 1-kb distance of each other

and with differential statistic consistently less than the 5th (for negative

associations) percentile or more than the 95th (for positive associations)

(detailed description in methods). A candidate VMR is defined as at least

two spatially contiguous probes within 1 kb of each other and with

MAD values more than the 95th percentile. We expand candidate

regions to contain more than two probes, as long as the distance

between any two neighbouring probes within the region is not larger

than 1 kb.

For candidate DMRs, the test statistic is the area of each region

defined by the genomic distance and the differential statistic.

Phenotypes are repeatedly permuted to create a null distribution of

DMR areas. The candidate DMR areas are then compared with the null

distribution to generate a significance value that is corrected for multiple

testing using FDR.

To evaluate the significance of candidate VMRs, the VMR area

(defined by genomic distance and MAD) is compared by parametric

bootstrapping to a simulated data set with the same MAD and genomic

distance distribution as the actual data set (detailed description in

methods).

Region discovery in data sets with common age ranges finds

common DMRs

We identified three publicly available age-related Infinium 450K data

sets. The first assayed the previously mentioned peripheral blood from

78 healthy boys between 1 and 16 years of age (Alisch et al., 2012)

(referred to as the children data set). The second is a two-group

newborn and nonagenarian peripheral bloods data set, with 19 samples

in each group (Heyn et al., 2012b) (hereafter referred to as the extreme

age data set). The third is a set of 656 peripheral blood samples from

individuals aged between 19 and 101 years (Hannum et al., 2013), but

with the vast majority of individuals in the ages between 40 and 80 years

(hereafter referred to as the continuous age data set). Figure 1a displays

the age distribution for each data set.

First, we showed that the pattern of correlation of methylation values

between neighbouring probes was similar in all data sets (Fig. S3). Then,

we identified 234, 685 and 4405 significant DMRs in the children,

continuous age and extreme data sets, respectively [FDR < 5%, filtering

regions containing probes found to cross-hybridize by (Chen et al.,

2013)] (Fig. 2). The majority (64.8%) were hypomethylated with

advancing age.

Interestingly, the number of significant DMRs identified was related to

the magnitude of the age difference in the data set and not to the

sample size (Fig. S4). For instance, we found a much larger number of

DMRs in the extreme age data set. We suggest that this reflects the

larger age range studied and the corresponding larger effect size.

Interestingly, DMRs in both the children and continuous age data sets

are also mostly found within the extreme data set. These overlaps are

extremely significant with P < 10�5. However, the overlap between the

continuous and children data sets is much more modest. The pattern of

DMR overlap is reflected in the pattern of age range overlap. The

extreme age data set range encompasses both the continuous and

children ranges, while there is no overlap between the ranges of the

children and continuous data sets (Fig. 1a). Our results suggest that

although some aging DMRs are general across the life course, the

majority are specific to the age range examined; that is, different regions

vary in methylation during childhood than in middle age.

Region discovery is more specific than single CpG level

analysis

Data for four other aging data sets (Table 1) using the authors’ analysis

results were compared with the DMRs derived above. Three of the other

data sets were generated on the Infinium 27K array (Bocklandt et al.,

2011; Bell et al., 2012; Horvath et al., 2012) and studied midlife age

ranges of 20–80, 18–65 and 18–70 years, respectively, and analyses

were all performed at the single CpG level. We also included the authors’

result on the continuous age data set produced using elastic net data

reduction methodology, which is also likely to produce highly specific

results, but via a very different mechanism to our region-centric
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approach (Hannum et al., 2013). As the four new data sets overlapped

with the age range of the continuous and extreme data sets, but not of

the children data set, we compared the 444 DMRs mapping to 403

genes common to the former two and not found in the latter. 89 genes

in our DMR results list were also found in at least one of the new study

list (Tables 2 and 3). Given that the Infinium 27K array represents only

17% of the probes on the Infinium 450K array, the 22.1% overlap

observed here is remarkable.

To assess the specificity of region discovery compared with a single-

probe analysis, we performed a single-probe analysis on the aging data

sets mentioned earlier and compared the gene list from this analysis with

the results from the four additional age-related data sets. We found that

only 9.8% of the significant genes obtained from a single-probe analysis

were found in the four previous studies (Table 2), which is lower than

the 22.1% overlap achieved by performing region discovery on the

original three data sets. This suggests that an increase in specificity is

achieved with region discovery (22.1% overlap to the other data sets

with compared with 9.8% overlaps to the other data sets Table 2). This

trend is more pronounced when the gene lists from region discovery or

single CpGs analysis are compared with genes found in at least two of

the new data sets (Table 3). The consensus is 9.7% for region discovery

and only 2.5% for the single CpG analysis.

Fig. 2 The number of age-associated DMRs returned from the three data sets. In

total 234, 685 and 4405 significant DMRs were identified from the children,

continuous and extreme data sets, respectively. 67 DMRs were shared by all three

data sets (black), 444 DMRS were common to the extreme and continuous data set

(purple), 140 DMRs were common by the extreme and children data set (grey), 5

DMRs were common to the continuous and children data sets (not visible), 22

DMRs were unique to the children data set (not visible), 170 DMRs were unique to

the continuous data set (blue), and 3754 DMRs were unique to the extreme data

set (red).

Table 2 Number of significant results unique to continuous and extreme returned

by either a single-probe analysis or a region analysis found in at least one of the

four gene lists in Table 1

Significant consensus genes from

continuous and extreme data,

excluding children data

No. of

overlap

No. not

overlapping % Overlap

Single-probe analysis 912 8405 9.79

Region analysis 89 314 22.1

Table 3 Number of significant results unique to continuous and extreme returned

by either a single-probe analysis or a region analysis found in at least two of the

four gene lists in Table 1

Significant consensus genes from

continuous and extreme data,

excluding children data

No. of

overlap

No. not

overlapping % Overlap

Single-probe analysis 232 9085 2.49

Region analysis 39 364 9.70

(a)

(b)

Fig. 1 Age distribution of data used in theDMR analysis (a) and theVMRanalysis (b).

The children data set is in green n = 78 (Alisch et al., 2012), and the extreme (Heyn

et al., 2012b) data set is in red in (a) n = 38. In (b), the data set is divided into

newborns in yellow n = 19 and nonagenarians in red n = 19.

The continuous (Hannum et al., 2013) data set is in blue n = 656 in (a). It is restricted

to individuals between50and70 yearsold in (b) (n = 319) andnamed ‘middle-aged’.

Table 1 Four other aging data sets and the age ranges studied and methylation

assays used

Data Technology Age group

1 Bell et al. Infinium 27K 32–80, 20–61

2 Horvath et al. Infinium 27K 18–65

3 Bocklandt et al. Infinium 27K 18–70

4 Hannum model 1 & 2 Infinium 450K 19–101
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One possibility for the concordance of the age-related DMRs from

each data set could be that region discovery is biased towards detecting

particular regions on the arrays independent of phenotype. To check for

such a bias, we applied the method to a study comparing DNA

methylation differences in the whole blood of fifteen sets of twins (30

individuals) discordant for breast cancer (Heyn et al., 2012a). As the

twins are perfectly age matched, no age-specific differences would be

expected. We found 1338 DMRs that were different between the paired

cases and controls in the breast cancer data set, and we compared this

DMR list with each of the age-related DMR lists identified earlier (i.e.

children, continuous and extreme age data sets). Only 4.9–6% of the

age-related DMRs were also found in the cancer study.

DMRs are found in genes implicated in aging by other

mechanisms

GenAge is a high-quality, human-curated database of genes whose

function is implicated in the aging process (Tacutu et al., 2013). In

March 2013, the GenAge database contained 285 human genes

corresponding to 6363 probes on the Infinium 450K array. The DMR

lists from each of the three data sets studied were significantly enriched

for the GenAge set on the array (Table 4), suggesting that differential

methylation may reflect or cause differential transcription during aging.

Interindividual variation in methylation becomes more

common and more extreme with advancing age

We discovered VMRs in the children data set, the middle-aged group

that includes only 319 individuals aged between 50 and 70 years from

the continuous age data set, and the newborns and nonagenarians

separately from the extreme age data set (Fig. 1b). We observed that the

95th percentile MAD score for the nonagenarians was 1.59 higher than

for the newborns and children and 1.39 higher than for the middle-

aged (Fig. 3a). The nonagenarian group contained the most number of

significant (< 5% FDR) VMRs, despite a smaller sample size than the

children and middle-aged data sets (Fig. 3b). Again, the number of

significant VMRs identified was independent of sample size, but

dependent on the age of the subjects (Fig. S5). Also variation between

the genders was predicted to account for at most 11% of the significant

VMRs identified (data not shown).

Methylation quantitative trait loci (meQTLs) may explain

many of the VMRs common across all age groups, but less of

those unique to each

We hypothesized that the 314 VMRs common to all the age groups may

be influenced by polymorphisms common in the population as the

pervasive effect of the genotype on methylation patterns has been

definitively demonstrated (Gibbs et al., 2010; Zhang et al., 2010; Bell

et al., 2011). We queried the VMRs and flanking regions for known SNPs

with maximum MAF > 5%. A probe is deemed SNP free if there are no

SNPs within the probe (50 bp) as well as in the 100-bp flanking region

from both ends of the probe. We defined a region as SNP free if all the

probes contained within it are SNP free. At the region level, 17% of

VMRs common across all age groups were SNP free, compared with

21% of unique newborn VMRs, 34% of unique children VMRs, 27% of

unique middle-aged VMRs and 30% of unique nonagenarian VMRs

(Table 5).

Therefore, we suggest that a proportion of VMRs occurring in only

one age group are likely to be in response to individual environment

rather than a genotype-driven effect. The age-group-stable VMRs were

associated with 192 genes, and these were enriched in various antigen

(a)

(b)

Fig. 3 (a) Interindividual variability increases with age across the 4 age group

populations. Box plot and distribution of CpG MAD scores across newborns,

children, middle-aged people and nonagenarians. (b) The number of VMRs

returned from the 4 data sets. 892, 1157, 2523, 3075 significant VMRs were

returned from the newborn, children, middle-aged and nonagenarian data sets,

respectively. 314 VMRs were shared by all four data sets (bottom grey), 129 were

unique to newborns (orange), 215 were unique to children (green), 681 were

unique to middle-aged (blue), and 1498 were unique to nonagenarians (red).

Table 4 Overlap of genes in individual DMR lists with the GenAge gene list

Data set No. of genes/DMRs No. of corresponding probes on array No. of GenAge overlap genes No. of overlap probes on array P-value

GenAge data set 285 6363 – – –

Children DMR list 234 913 6 26 0.005

Continuous DMR list 685 3842 14 97 9.55 9 10�5

Extreme DMR list 4405 28690 64 531 0.028
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processing and presentation pathways involving the major histocom-

patibility complex (MHC) (Table S2). This is consistent with their

putatively more genotype-driven influence, as the genes involved in

these processes are typically in more polymorphic regions of the

genome.

Biological pathways are significantly enriched in aging DMRs

and age-specific VMRs

The gene networks significantly enriched for DMRs (controlling for array

content, see methods) that occur in all aging data sets are concerned

with skeletal muscle (Fig. 4a). DMR-containing genes in these processes

are ACTA2, TNNT3, ELN, HDAC4, LMNA, CALR, MYLK and CD44 (Fig. 5

for examples). Mutations in the nuclear structural protein LMNA cause

the premature aging syndrome Hutchinson–Gilford progeria, and

aberrant splicing of LMNA is implicated in normal aging (Scaffidi &

Misteli, 2006). All three age groups returned a significant DMR in the

first intron of the shorter splice variant of LMNA. The extreme data set

also had a significant DMR in the first exon of the shorter variant

(Fig. 5a).

An enriched pathway in both the continuous and extreme DMRs is

the Notch signalling pathway. Both the NOTCH1 and NOTCH4 receptors

contain DMRs in the continuous and extreme data sets (Fig. 5e,f).

Neuropeptide signalling pathways predominate in the DMRs and VMRs

of the older age groups (Fig. 4a, Table S2). When the number of CpGs

mapping to neurotransmitter genes on the Infinium 450K array is

controlled for (see methods), neurotransmitter genes contain DMRs and

VMRsmuchmore frequently than expected by chance in the DMRs unique

to extreme (P < 10�16), unique to continuous (P = 0.004) and unique to

continuous and extreme (P < 10�16), and similarly in the VMRs unique to

nonagenarians (P = 5 9 10�10), unique to middle-aged (P = 0.009) and

unique to middle-aged and nonagenarian (P = 4 9 10�10). However,

they are not significantly enriched in the shared DMRs or VMRs, or in the

unique to children DMRs, or unique to newborns or children VMRs (Table

S3). Notable among the specific neurotransmitter pathways enriched for

DMRs and VMRs among the older subjects are GABAnergic, AMPA,

vasopressin, oxytocin, kainite, NMDA, serotonin and melanocortin

signalling (Fig. 4b). Examples of the genes driving these pathways in the

VMRs can be seen in Figure 6a–e. For all six examples, the area of the VMR

increases with age.

Age-associated DMRs and age-specific VMRs occur

preferentially in regions of open chromatin and CpG island

borders

We used the ENCODE data (Bernstein et al., 2012; Dunham et al., 2012)

to investigate whether age-associated DMRs and VMRs are also found in

open chromatin regions, as detected by DNase I hypersensitivity. All DMR

and VMR lists are significantly colocated in DNase 1 hypersensitivity hot

spots from blood cell line data deposited by the ENCODE consortium

specific for CD20 and CD34+ mobilized cell types, but not in TH1,

GM06990 and GM12865 cell lines (Table 6 and Table S4).

There was significant enrichment for the various DMR and VMR

classes in CpG island location categories; however, no overriding pattern

was obvious (Fig. S6). CpG islands themselves were actually enriched for

continuous DMRs, and enrichment in open seas was seen in the children

DMRs and VMRs.

Discussion

Region detection increases power and specificity in EWAS

studies

Wedescribe amethodology for detectingdifferentiallymethylated regions

in data from Infinium 450K arrays that are very widely used in epigenetic

studies. We show that correlation of pairwise CpG methylation with

distance can be detected on the sparse and irregular Infinium 450K arrays

(Fig. S2). Region detection is more specific than single CpG analysis

because it returns much fewer DMRs and increases the extent of common

findings between studies by more than twice that seen in CpG level

analyses (Tables 2 and 3). As region detection reduces the number of

variables to be tested against phenotype, the method is more powerful

and reduces the multiple testing problem. Table S6 (Supporting informa-

tion) uses an example of a two-group test for differential methylation by

age in the extreme data set. Assuming an effect size of two, CpG level

analysis would have 39% power to detect differentially methylated CpGs

with a Bonferroni-corrected P-value < 0.05, while region detection would

have 61% power. Finally, as multiple differentially methylated CpGs are

required to evidence a region, we predict that the effect of erroneous

probes such as those detected by (Chen et al., 2013) will be minimized.

However, due to the spacing of Infinium 450K probes across the genome,

only 76% probes on the array can be included in a region (Table 1);

therefore, we suggest that region discovery is run alongside classical

single-probe analysis to maximize the discovery of candidate biologically

important DMCpGs or DMRs. Single CpGs with significant associations

between methylation level and phenotype should be treated with more

caution than that due to significant DMRs because our results show that

single CpG analyses are less specific.

A distinct set of regions are differentially methylated with

age

When applied to public data sets (Fig. 1), region detection found DMRs

that were consistent in the same age ranges across studies (Fig. 2). This

finding that the same DMRs change in multiple studies is in concordance

with the finding of Horvath et al. (2012) who also demonstrated that

their aging module found in an adult population can also be found in

children. This suggests that a distinct set of regions are influx across the

life course rather than a genomewide stochastic change (supported by

Bell et al. (2012) who replicated 38% of their age-related DMRs from

middle age in an independent sample set of young adults and by Alisch

et al. (2012) who showed 85% of their paediatric age-associated loci

had changed in a similar direction with age in adulthood albeit with a

smaller rate of change).

Table 5 Comparison of percentage of SNP-free regions between VMRs shared by all and individual unique age group VMRs

VMRs shared by all Unique newborn VMRs Unique children VMRs Unique middle-aged VMRs Unique nonagenarian VMRs

No. of SNP-free regions 54 27 74 186 454

Total no. of regions 314 129 215 681 1498

% SNP-free regions 17.2 20.9 34.4 27.3 30.3
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(a)

(b)

Fig. 4 (a) Heat map of pathway enrichment results. Gene lists are indicated on the x-axis and pathways on the y-axis. Cells are coloured for P-value of enrichment.

(b) Heat map of neurotransmitter category enrichment results. Neurotransmitter categories are indicated on the y-axis and region lists on the x-axis. Cells are coloured for

P-value of enrichment.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Schematic diagrams of example age-associated DMRs. The x-axis denotes chromosomal position, the y-axis denotes regression beta against age. The circles

represent individual CpG probes on the Infinium 450K array. The shaded regions represent the area of significant DMRs. Also shown are the regions with respect to gene

regions, CpG islands and DNase 1 hypersensitivity hot spots of CD34+ mobilized cell line. The three data sets are represented by three panels, the children data set is the top

panel and represented in green, the continuous data set is the middle panel and represented in blue, and the extreme data set is the bottom panel and represented in red.

DMRs within genes involved in muscle development: LMNA (a), TNNT3 (b), ELN (c), HDAC4 (d); and in Notch signalling NOTCH1 (e) and NOTCH4 (f) are shown.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Schematic diagrams of example VMRs. The x-axis denotes chromosomal position, the y-axis denotes MAD. The circles represent individual CpG probes on the

Infinium 450K array. The shaded regions represent the area of putative VMRs. Significant VMRs are illustrated together with gene regions, CpG islands and DNase 1

hypersensitivity hot spots of CD34+mobilized cells. The four data sets are represented by four panels, the newborn data set is the top panel and is represented in orange, the

children data set is the second panel and represented in green, the middle-aged data set is the third middle panel and represented in blue, and the nonagenarian data set is

the bottom panel and represented in red. VMRs within genes involved in neurotransmission OXT (a), OXTR (b), HTR2A (c), POMC (d), DRD2 (e) and HOXA2 (f) are shown.
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Pathways differentially methylated with age are involved in

muscle biogenesis and neuronal signalling

The DMRs that were consistent across the data sets were very

significantly enriched for pathways involved in muscle development

and functioning (Figs 4a and 5). Decline in human muscle mass and

strength (sarcopenia) is a hallmark of the aging process; whether

methylation changes in genes such as LMNA, TNNT3, ELN and HDAC4

are a cause or consequence of this process merits investigation. The

DMRs were also enriched for Notch signalling (Fig. 4a and 5). The Notch

pathway is a highly conserved arbiter of cell fate decisions and is

intimately involved in neural development, neurogenesis, neuritic

growth, neural stem cell maintenance, synaptic plasticity and long-term

memory in both the developing and adult brain. There is age-related

decline in Notch signalling (Seib et al., 2013) and expression (Kondo

et al., 2011). Notch signalling may underlie the enrichment in systems

development, especially nervous system development processes for

age-methylated loci shown by (Alisch et al., 2012).

Interindividual variation in methylation increases with age,

especially in neuronal signalling pathways

Interestingly, and in concordance with other findings (Fraga et al., 2005;

Martin, 2005; Bjornsson et al., 2008; Boks et al., 2009), but in

disagreement with some (Gordon et al., 2012), we find that interindi-

vidual variation increases substantially in old age (Fig. 3a–b). Older-age

VMRs showed remarkable enrichment for genes involved in neurotrans-

mission (Figs 4a, b and 6). Some of these genes have been shown to be

methylated in response to environment. For instance, POMCmethylation

can be altered by alcohol intake in mice (Govorko et al., 2012) and

humans (Zhang et al., 2012) and with phenotypes such as obesity

(Kuehnen et al., 2012). Methylation in OXTR has also been shown to

change in response to acute psychosocial stress in humans (Unternaehrer

et al., 2012). OXTR methylation has also been associated with autism

(Gregory et al., 2009), but variation within normal human aged

population has not, to our knowledge, previously been shown.

Differential methylation of HTR2A has been shown in chronic fatigue

syndrome (CFS) subjects compared with controls as a result of

interaction between genotype factors and stress response mediated

through cortisol (Falkenberg et al., 2011).

It is possible that reduced function of maintenance and proofreading

enzymes allow more stochastic change to occur during aging. However,

the remarkable colocation of DMRs and VMRs in DNase 1 hypersensi-

tivity regions from blood (Table 6) and in genes involved in distinct

biological pathways (Fig. 4a and 4b) suggests a nonrandom process.

Rakyan et al. (2010) also found that age-associated DMRs co-associated

with bivalent chromatin domain promoters. However, we were unable

to repeat results showing that CpG island shores were enriched for age-

demethylated CpGs, while CpG islands were depleted (Alisch et al.,

2012).

Limitations of the study

The interpretation of our results is limited by the fact that we are

studying different individuals at the different age groups. In addition, we

do not know the genotype of the individuals involved. Many regions

variably methylated across individuals may be driven by genotype.

Bjornsson et al. (2008) saw that methylation changes in older age

tended to be similar within families, suggesting an effect of genotype

even in dynamic methylation patterns. However, VMRs unique to one

age group are less likely to be genotype-driven. In agreement with this,

VMRs shared between the age groups are more likely to be near

frequent SNPs than VMRs unique to a particular age group (Table 5). A

caveat is that this is an extrapolation from minor allele frequencies

present in dbSNP and not in the individuals under study. Therefore,

although we cannot exclude the possibility that the nonagenarians that

were studied happen to be more genetically heterogeneous, we suggest

that the increased interindividual variability in old age is due to the effect

of environment.

Another limitation is that the tissues studied in the children were

peripheral blood mononuclear cells; in the newborns, cord blood

leucocytes; in the continuous age data set, whole blood; and in the

nonagenarians, peripheral blood leucocytes. Blood cell counts were not

available; however, variability in the relative amounts of white blood cell

types within individuals and across age groups may drive some of the

DMRs and VMRs (Lam et al., 2012). If our thesis that some of the VMRs

especially at later ages are driven by environment is correct, we have to

assume that these environmental effects would have their impact in the

blood. As examples, oxytocin is released into the blood in response to

stressful and social stimuli (Matsuzaki et al., 2012), and POMC meth-

ylation has been observed in the blood associated with weight loss

caused by anorexia nervosa (Ehrlich et al., 2010).

Extensions of the methodology

The region detection method we present here is specifically designed for

Infinium 450K data. However, it could be used for other types of

methylation data especially when sparsity and irregular coverage is an

issue. As CpGs are inherently nonuniformly distributed in the genome,

irregularity will always be a feature of methylation data. Even though the

method is optimized for Infinium 450K data, we expect that it can be

applied to reduced representation bisulphite sequencing (RRBS) data or

Table 6 Overlap of DMRs and VMRs with DNase I hypersensitivity hot spots of CD20 and CD34+ mobilized blood cell types

No. of CD34+ mobilized

DNase I hypersensitivity hot spots

No. of CD20 DNase I

hypersensitivity hot spots

Total no. of

regions in list

P-value for

CD34+ overlap P-value for CD20 overlap

Extreme DMR 3827 3227 4405 < 10�16 < 10�16

Children DMR 188 153 234 < 10�16 1.26 9 10�7

Continuous DMR 615 427 685 < 10�16 4.41 9 10�13

Nonagenarian VMR 2037 1579 3075 < 10�16 0.00242

Middle-aged VMR 1663 1335 2523 < 10�16 1.65 9 10�5

Newborn VMR 604 509 892 < 10�16 3.57 9 10�7

Children VMR 903 743 1157 < 10�16 < 10�16

Infinium 450K array 27736 26895 55003 – –
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other sequencing-based approaches by fine-tuning the parameters for

clustering CpGs. Conventional sliding window methods for sequencing

data coerce the data into fixed window sizes. This method eliminates

having to impose an arbitrary constant size for each region. Further, by

using the area of the region as the test statistic, it provides a more robust

assessment of the significance of DMRs.

Conclusions

We propose a new method for detecting differentially and variably

methylated regions on Infinium 450K arrays. Grouping individual

CpGs typed on an Infinium 450K array into comethylated regions

reduces the number of variables that are tested against a clinical

observation in EWAS, and thus increases available statistical power

(Table S6) and decreases false positives. We have used multiple

publicly available Infinium 450K data sets to generate a consensus list

of regions that are differentially methylated with age, supporting the

hypothesis that aging is associated with specific epigenetic modifica-

tions. We are able to show a massive increase in interindividual

variability of methylation levels by age and in targeted regions of the

genome, suggesting the effect of environment causes divergence in

the methylome profiles over the life course. Based on the results

presented, the role of DNA methylation in sarcopenia and dementia

should be investigated via EWAS.

Experimental procedures

Study populations

We used publicly available Infinium 450K data sets from three age-

related studies GSE30870, GSE36064 and GSE40279 with 38, 78 and

656 samples, respectively, and a breast cancer-related study GSE37965

that contains 30 methylation profiles from 15 sets of twins discordant for

breast cancer (Heyn et al., 2012a). In addition, we directly used the

results from four other age-related methylation studies (Table 1). All

analyses were performed directly on the preprocessed data available

online. In addition, we removed regions containing more than 20%

cross-hybridizing probes.

Correlation of methylation values with distance in Infinium

450K data

To determine the relationship between the correlation of methylation

values with pairwise CpG distance, we first found CpG pairs across every

100-kb stretch for each chromosome. For each CpG pair, we recorded

the distance between them and their methylation values (using an

individual’s methylation data from the children data set). Then, we

sorted the distances in ascending order, and we binned the distance with

approximately equal numbers of pairs in each bin and computed the

median distance of each bin. Then, we calculated the correlation of

methylation values of the pairs in each bin using Pearson’s correlation.

Finally, we plotted the median distances against the correlation values

for all bins.

Identifying DMRs in Infinium 450K data

To determine an optimal distance threshold (named L) to define

methylated regions, it is necessary to balance the requirement for the

region to be small enough to show at least modest correlation of

methylation values against the requirement for the region to be large

enough to maximize the total number of probes that can either form

new regions or be included into existing regions. Within 1-kb distance

between neighbouring probes, the correlation is at ~0.45 or smaller (Fig.

S2 inset). Therefore, we varied L between 250 bp and 1 kb and

compared the coverage. As we increased L, the number of clusters

decreased, while the number of clustered probes increased (Table S5),

suggesting that increasing L mainly expands existing regions rather than

creates new clusters. With L at 1 kb, 76% of all probes on the array can

be grouped into 55 003 regions based on distance.

We use the following regression model to formalize the relationship

between genomic-position-dependent methylation, covariates and age

(Equation 1):

Yij ¼ cj þ bjXi þ
Xm

k¼1

ak;j Wi;k þ errori;j ð1Þ

Here, Yi,j refers to the methylation measurement at genomic position j

for individual i. Xi represents age. bj measures the strength of association

between methylation levels at position j and age Xi. Wi,k and ak,j refer,
respectively, to the covariates (e.g. technical batch effects or gender) and

their corresponding regression coefficients. However, we did not include

covariates, so W was omitted. cj is the expected mean value of Yi,j when

all Xi is 0 (controls). (The Beta statistic is not to be confused with a beta

value that denotes percentage methylation as measured on Infinium

arrays. To avoid confusion, we have referred to Infinium values as

percentage methylation.) Let q1 and q2 be the 95th and 5th percentile

for all probes with positive and negative beta values, respectively. We

thus define DMRs as sets of two or more spatially contiguous probes

(each pair within a maximum distance of 1 kb) all with bj > q1 or all with

bj < q2.

Assigning significance to DMRs

To assign statistical significance to candidate DMRs, we use as our test

statistic the area of each region, defined by the genomic distance and

the beta. We permute the outcomes Xi of the original data set and rerun

the region identification procedure to identify regions and areas that

would be found by chance. We repeat this for K simulations to create

the null area distribution. Therefore, we can calculate the significance for

each observed region r, by comparison with the null area distribution.

The empirical P-value for each region is computed according to

Equation 2:

pr ¼
PK

k¼1

PNk

j¼1 #ðAr\A0;k
j Þ

PK
k¼1 NK

ð2Þ

where Ar is the observed area, A0;k
j represents the jth null area A0 in the

kth simulation, and Nk represents the total number of null areas found in

the kth simulation. To account for multiple testing, we use the P-value

distribution to estimate the false discovery rate (FDR) and to compute

q-values (defined as the minimum FDR at which the test may be called

significant) for each region.

Assigning significance to VMRs

We calculate the MAD score of the CpG methylation levels for each

probe on the array across all individuals of the same age group, that is,

children. A candidate VMR is defined as at least two spatially contiguous

probes within 1 kb of each other and with median absolute deviation

values more than the 95th percentile. To evaluate the significance of the

VMRs, we used a parametric bootstrapping approach. We assume that

the MAD values are generated from a first-order autoregressive (AR1)
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process. Using Burg’s method [62], we fit this model to all regions

containing at least 50 probes to obtain estimates of the coefficient q and

standard deviation:

ki ¼ qki�1 þ ei ; i ¼ 1 : m

where ki is the log-transformed MAD value at position i, and ei is

generated from N(0,Σ). We averaged the parameter estimates and used

it to generate synthetic MAD distributions. For each simulated MAD

distribution, we randomly selected x number of regions (x = actual

observed VMR size) and computed the null areas. The empirical P-value is

obtained by comparing the actual observed VMR areas with the null

areas from all simulations according to Equation 2.

Statistical and permutation analysis

Areas are approximated using trapezoidal numerical integration. For the

analysis of multiple data sets, we applied the lowest 95th percentile

value as the cut-off for both DMR and VMR detection. All permutations

and simulations were performed 1009 unless otherwise stated. To

account for multiple testing, we used the P-value distribution to

determine the q-values. All statistical analyses and simulations were

carried out in Matlab (MathWorks) and R.

Significance of overlaps

For a two-group enrichment test, we used the hypergeometric test

(one-tailed) to determine the P-value for the overlap. For intersects of

more than two groups, we performed simulations to determine the

empirical P-value. For each list, we randomly selected x number of null

regions from the background set (x = observed size), and we

determined the overlap size expected by chance from 105 repetitions.

The empirical P-value is calculated as the number of times the actual

observed overlap is smaller than the null overlap divided by the total

number of simulations.

Comparison with four other age-related data set results

For the single-probe analysis, we performed linear regression and

computed the probewise t-statistics and P-values for the regression

coefficients, and we applied the same 95th percentile and FDR < 5%

cut-offs used in the region analysis, in the single-probe analysis. In

separate comparisons, we calculate the overlap between:

1 the gene lists obtained from the DMR analyses with the results from

the four other aging data sets and

2 the gene lists obtained from the single CpG analysis with the results

from the four other aging data sets;

by scoring one for each gene if it appeared in both the original three

data set's results and the other four studies' results.

GenAge overlap significance analysis

The 55 003 regions can be identified on the array form the

background list from which DMRs were generated. To compute the

overlap significance of DMRs with the GenAge data set, we first

determined the total number of probes represented by the 285

GenAge genes in the background list, and we determined the number

of GenAge genes appearing in each of our DMR list and the total

number of probes represented by these genes. We computed the

overlap significance for each list using a hypergeometric test (one-

tailed).

SNP analysis

For each probe on the array, we queried dbSNP database for SNPs with

MAF > 5% located within the probe and within 100-bp flanking regions

from the ends of the probe.

Gene ontology and pathway analyses

Gene ontology and pathway analyses were performed in GeneGo

(Metacore 5.0) (http://thomsonreuters.com/products_services/science/

systems-biology/). Here, we used as our background list, the represen-

tation of all genes on the Infinium 450K array, to test for enrichment in

our significant DMR/VMR lists. And results with significant association

were determined from an exact hypergeometric distribution test

(one-tailed) and were corrected for multiple testing using Benjamini–

Hochberg FDR.

Neurotransmitter enrichment analysis

To avoid the problem of overrepresentation of neurotransmitter path-

ways in the databases, we created our own collections of neurotrans-

mitter genes limited to only genes encoding the peptides themselves and

the receptors. We segregated these collections to specific ligands. A list

of 146 neurotransmitter ligand and receptors was identified from

literature. To compute the overlap significance of the DMR and VMR lists

with the neurotransmitter list, we first determined the total number of

probes represented by the neurotransmitter genes in the background list

of 55 003 regions, and we determined the number of neurotransmitter

genes appearing in each of the DMR/VMR lists and the total number of

probes represented by these genes in the list. The P-value for general

neurotransmitter gene enrichment for each region list is computed using

a hypergeometric test (one-tailed). The list of 146 neurotransmitter

genes can be grouped into 17 functional categories (Fig. 4b). We

determined the enrichment of each DMR/VMR list for each neurotrans-

mitter subcategory using the same analysis.

CpG island enrichment analysis

For individual DMR/VMR lists, we determined the total number of probes

belonging to each of the six genomic categories (Fig. S6), and we

repeated it for the background list of 55 003 regions. The P-value for

enrichment of the region lists with each genomic category is computed

by a hypergeometric test (one-tailed).

DNase I hypersensitivity hot spots enrichment analysis

We obtained the DNase I hypersensitivity hot spot data for peripheral

blood CD20 and CD34+ mobilized cell types from the ENCODE project

(University of Washington). We determined the overlap of each hot spot

list with the background list of 55 003 regions. Similarly, we determined

the overlap size for each DMR/VMR list. We used a hypergeometric test

to compare the overlap found in the background and DMR/VMR list to

determine the significance of DNase I hypersensitivity enrichment.

Power calculations

For a single-probe analysis, ~450 000 tests can be performed. For a

region analysis, there are a total of 55 003 regions and thus 55 003

tests. We use the Bonferroni correction to correct for multiple testing.

Assuming the same effect size and sample size for the two analyses, we
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use G*Power3 (Faul et al., 2007) to compute the achieved power in a

Wilcoxon–Mann–Whitney two-group test.

Software

TheMATLABcode isavailable from:https://github.com/SICS-holbrookLab/

Infinium_450_DMR
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Fig. S1 CpGs typed on Infinium 450K array are irregularly spaced in the

genome: Frequency distribution of distance (bp) between neighbouring CpGs

on the Infinium 450K array. The inset shows a zoomed-in region of distances

less than 5000 bp, where the majority of CpGs reside.

Fig. S2 Correlation of CpG methylation levels of probes within close

distances is discernible of the Infinium 450K array: Pearson correlation of

pairwise Infinium 450K measured methylation levels (y-axis) with distance

(bp) (x-axis). The inset shows a zoomed-in region of distances < 2500 bp,

where the correlation ranges from approximately 0.9 to 0.1.

Fig. S3 Correlation of CpG methylation levels with distance for different age

groups: a) Pearson correlation of pairwise Infinium 450K measured methyl-

ation levels (y-axis) with distance (bp) (x-axis). b) The figure shows a zoomed-

in region of distance < 250 bp.

Fig. S4 Relationship between number of significant DMRs identified and a)

sample size or b) age difference in sample set.

Fig. S5 Relationship between number of significant VMRs identified and a)

sample size or b) median subject age in sample set.

Fig. S6 Heat map of CpG island enrichment results. Genomic regions of

varying proximity to CpG islands are indicated on the x-axis and region lists

on the y-axis. Cells are coloured for P-value of enrichment.

Table S1 Lists of significant DMRs and VMRs.
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Table S2 Gene ontology categories for DMR and VMR lists with P < 10�4

and FDR < 5%.

Table S3 Overall enrichment of DMR and VMR lists for neurotransmitter

genes.

Table S4 Overlap of DMRs and VMRs with DNase I hypersensitivity hot spots

of three other blood cell types.

Table S5 Coverage (no of probes on the array that can be grouped into

regions by distance) as a function of the distance threshold.

Table S6 Comparison of power achieved using single probe and region

analysis on the extreme data set.
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