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Purpose. To identify novel biomarkers of IgA nephropathy (IgAN) through bioinformatics analysis and elucidate the possible
molecularmechanism.Methods. TheGSE93798 andGSE73953 datasets containingmicroarray data from IgAN patients and healthy
controlswere downloaded from theGEOdatabase and analyzed by theGEO2Rweb tool to obtain different expressed genes (DEGs).
Gene Ontology (GO), Kyoto Encyclopedia of Genes andGenomes (KEGG) enrichment analysis, protein-protein interaction (PPI),
and Biological Networks Gene Oncology tool (BiNGO) were then performed to elucidate the molecular mechanism of IgAN.
Results. A total of 223 DEGs were identified, of which 21 were hub genes, and involved in inflammatory response, cellular response
to lipopolysaccharide, transcription factor activity, extracellular exosome, TNF signaling pathway, and MAPK signaling pathway.
Conclusions. TNF and MAPK pathways likely form the basis of IgAN progression, and JUN/JUNB, FOS, NR4A1/2, EGR1, and
FOSL1/2 are novel prognostic biomarkers of IgAN.

1. Introduction

Immunoglobulin A nephropathy (IgAN) is the most com-
monly occurring primary glomerulonephritis worldwide and
is characterized by increased IgA circulation and deposi-
tion in the mesangium [1, 2]. Studies have also shown a
genetic predisposition to IgAN [3], with several genes like
those encoding transforming growth factor-𝛽(TGF-𝛽)[4],
Megsin [5], Tank binding kinase 1(TBK1) [6], etc. mutated
and/or abnormally expressed during IgAN development,
and correlated with its prognosis. IgAN is one of the main
causes of end-stage renal disease and has diverse clinical
manifestations that differ widely in terms of pathological
types and prognosis. However, due to the lack of effective
diagnostic methods, most IgAN patients are usually diag-
nosed at the middle and late stages of the disease, leading
to poor prognosis. Therefore, it is important to understand
the precise molecular mechanisms underlying IgAN in order
to develop effective diagnostic and therapeutic strategies.
Over the past few decades, microarray technology and

bioinformatics analysis have enabled genomic and transcrip-
tomic screening of IgAN samples and helped identify the
differentially expressed genes (DEGs) involved in its devel-
opment and progression. However, due to high false positive
rates, it is difficult to obtain reliable results from independent
microarrays. Therefore, we analyzed two gene expression
microarray datasets from the Gene Expression Omnibus
(GEO) database to identify the DEGs between IgAN and
normal human tissues. Subsequently, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis and protein-protein interaction (PPI)
were performed to elucidate themolecularmechanisms of the
DEGs. We selected 8 out of 41 hub genes that are potential
targets for the diagnosis and treatment of IgAN.

2. Materials and Methods

2.1. Identification of DEGs. Two microarray datasets of
IgAN—GSE93798 and GSE73953—were downloaded from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/) using
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“IgAN” as the search term. GSE93798 was submitted by Liu
P, Lassén E et al., and GSE73953 by Okuzaki D, Nojima
H et al. GSE93798 was based on Affymetrix’s HGU133
Plus 2 chip and includes 42 samples (20 IgAN patients
and 22 healthy controls). GSE73953 is based on Agilent’s
014850 chip and includes 25 samples (15 IgAN patients
and 2 healthy controls). The DEGs between IgAN patients
and normal subjects were analyzed using the GEO2R web
tool (http://www.ncbi.nlm.nih.gov/geo/geo2r). The screen-
ing conditions for the DEGs were absolute value of logFC >1
and adj. P value <0.01.

2.2. KEGG and GO Enrichment Analyses of DEGs. TheDEGs
were uploaded to the DAVID (the database for annota-
tion, visualization, and integrated discovery) version 6.8
(http://david.ncifcrf.gov) [7] online data analysis tool for
KEGG and GO analyses. P < 0.05 was considered statistically
significant.

2.3. PPI Network Construction and Module Analysis. The
STRING (version 10.0) (http://string-db.org) tool was used to
construct a PPI network of the DEGs with a combined score
> 0.4 as the threshold for statistically significant interaction.
The Cytoscape (version 3.4.0) software was used to further
analyze the interactive network, with the Molecular Complex
Detection (MCODE) plugin to identify important molecules
in the PPI network. The recognition criteria were MCODE
scores > 5, degree cut-off = 2, node score cut-off = 0.2, Max
depth = 100, and k-score = 2.

2.4. Hub Genes Selection and Analysis. The biological pro-
cesses of the hub genes were visualized using the Biological
Networks Gene Oncology tool (BiNGO) (version 3.0.3)
plugin of Cytoscape [8], with significance threshold 0.01 and
Homo sapiens as the selected organism. Subsequently, the
KEGG and GO analyses for the genes in this module were
performed using DAVID.

3. Results

3.1. Identification of DEGs in IgAN. After standardizing the
microarray results, we identified a total 14353 DEGs in
GSE73953 and 348 in GSE93798. A Venn diagram of both
datasets showed 223 overlapping genes (Figure 1(a)). GO
analysis showed that the biological processes (BP) terms
of the DEGs were significantly enriched in inflammatory
response, response to cAMP, response to drug, cellular
response to lipopolysaccharide, and xenobiotic metabolic
process (Figure 2(a)). The molecular function (MF) terms
were mainly enriched in transcription factor activity, RNA
polymerase II core promoter proximal region sequence-
specific binding, transcriptional activator activity, and E-box
binding (Figure 2(b)). Finally, cell component (CC) terms
were mainly enriched in extracellular exosome, extracel-
lular space, extracellular region, and blood microparticles
(Figure 2(c)). KEGG pathway analysis revealed that the
downregulated DEGs were mainly enriched in the osteoclast

Table 1: Functional roles of 21 hub genes.

No. Gene symbol MCODE Score
1 CD44 8.00
2 FOSB 8.67
3 ZFP36 7.82
4 IER2 7.82
5 FOSL2 7.82
6 MMP2 8.00
7 FOSL1 8.00
8 EGR3 8.00
9 EGR1 8.67
10 BTG2 8.67
11 NR4A1 7.27
12 FOS 8.67
13 HBEGF 7.00
14 JUNB 8.67
15 IL1B 8.00
16 JUN 8.67
17 DUSP1 8.67
18 NR4A2 7.82
19 KLF6 7.00
20 PLG 8.00
21 SERPINE1 8.00

differentiation, TNF signaling, glycine, serine and threonine
metabolism, and the MAPK signaling pathway (Figure 2(d)).

3.2. PPI Network Construction and Module Analysis. The
PPI network of the DEGs was constructed (Figure 1(b)) and
the most significant module was obtained using Cytoscape
(Figure 1(c)). GO analysis of the module showed significant
enrichment in the BP terms of inflammatory response, cellu-
lar response to calcium ion, skeletal muscle cell differentia-
tion, cellular response to extracellular stimulus, negative reg-
ulation of transcription from RNA polymerase II promoter,
and cellular response to corticotropin-releasing hormone
stimulus (Figure 4(a)), MF terms of transcription factor
activity, RNA polymerase II core promoter proximal region
sequence-specific binding, transcriptional activator activity,
and RNA polymerase II core promoter proximal region
sequence-specific DNA binding MF terms (Figure 4(b)),
and CC terms of transcription factor complex, nucleoplasm,
and nucleus (Figure 4(c)). KEGG pathway analysis revealed
that the downregulated DEGs were mainly enriched in
osteoclast differentiation, estrogen signaling, TNF signaling,
and MAPK signaling pathways (Figure 4(d)).

3.3. Hub Gene Selection and Analysis. A total of 21 genes
were identified as hub genes, and their names and MCODE
scores are shown in Table 1. A network of the hub genes
and their coexpression genes was analyzed using BiNGO tool
of Cytoscape (Figure 3(a)), and the significant coexpression
genes are shown in Figures 3(b) and 3(c).

http://www.ncbi.nlm.nih.gov/geo/geo2r
http://david.ncifcrf.gov
http://string-db.org
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Figure 1: Venn diagram, PPI network, and the most significant module of DEGs. (a) DEGs were selected with absolute value of logFC >1
and adj. P value <0.01 from the GSE93798 and GSE73953 datasets, which showed an overlap of 223 genes. (b)The PPI network of DEGs was
constructed using Cytoscape. (c) The most significant module was obtained from PPI network.

4. Discussion

IgAN accounts for ∼20% to 47% of primary glomerular dis-
eases and is mainly characterized by hematuria, proteinuria,
hypertension, and renal dysfunction [9]. The incidence of
the disease has been increasing annually, and 30% to 40%
of the patients progress to end-stage renal disease (ESRD),
which is the main cause of primary glomerulonephritis for
renal replacement therapy in China, within 10 years [3].
Although the most common clinical manifestation of IgAN
is hematuria, there is considerable heterogeneity among
different cases, which makes early diagnosis challenging.
We analyzed two IgAN microarray datasets from the GEO
database to screen for DEGs in IgAN and identify potential
biomarkers. We obtained a total of 223 DEGs, and the
upregulated genes were mainly enriched in inflammatory
response, cell fibrosis, TNF signaling pathway, and MAPK
signaling pathway. Previous studies have shown a significant
association of IgAN development and prognosis with the

inflammatory reaction [10, 11] and glomerular and tubular
fibrosis [12, 13]. Tumor necrosis factor (TNF) is a critical
cytokine involved in apoptosis, cell survival, inflammation,
and immunity. The MAPK pathway is also associated with
tubule-interstitial fibrosis in IgAN [14]. Signaling through the
TNF receptor (TNFR1) activates a number of genes via two
distinct pathways: NF-kB and the MAPK cascade.Thus, both
pathways obtained by enrichment analysis are correlated and
involved in the pathogenesis of IgAN.

Using STRING and MCODE, we selected 21 DEGs as
the hub genes and found the maximal correlation between
JUN/JUNB, FOS, NR4A1/2, EGR1, and FOSL1/2. The expres-
sion levels of JUN, an early responding transcription factor,
are very low in under normal conditions. Upon receiving
an external stimulus, it is rapidly activated and dimerizes
with either another JUN protein or with AP-1 to form the
FOS protein. The JUNB gene is structurally and function-
ally very similar to JUN and along with JUN and FOS
forms the upstream element of the TNF/TNFR1 pathway.
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Figure 2: GO and KEGG pathway enrichment analysis of DEGs. The color depth of nodes refers to the P-value. The size of nodes refers to
the numbers of genes. (a) GO BP terms. (b) GO CC terms. (c) GOMF terms. (d) KEGG Pathway of DEGs.

The interaction between the JNK/MAPK and TNF/TNFR1
pathways forms the molecular basis of glomerular and renal
interstitial atrophy and apoptosis, which leads to progressive
renal damage and renal fibrosis [15]. These pathways are
also involved in RAAS activation, complement activation,
coagulation cascades [16], and inflammation [17].

FOSL1 and FOSL2 are also members of the FOS gene
family [18] and overexpressed in various renal diseases like
IgAN, lupus nephropathy, and focal glomerular sclerosis,
with pivotal roles in glomerular sclerosis and mesangial pro-
liferation. Rastaldi et al. [19] reported abnormal expression of

FOSL1/2 in IgAN patients, and Park et al. found that the FOS
proteins are also involved in the disappearance of podocyte
foot processes [20]. Podocytes maintain the structure and
function of the glomerular filtration membrane and prevent
proteinuria.

Early growth response factor 1 (Egr1) is a zinc-finger
transcription factor expressed across different eukaryotic
cells [21]. In humans, it is expressed in various renal cells,
including glomerular MCs, endothelial cells, renal tubular
fibroblasts, and epithelial cells [22]. Upregulation of Egr1 is
associated with renal fibrosis and inflammation, especially in
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Figure 3: Interaction network and biological process analysis of the hub genes. The color depth of nodes refers to the P-value. The size of
nodes refers to the numbers of genes. (a) Hub genes and their coexpression genes were analyzed using BiNGO. (b), (c) The most significant
coexpression was obtained from BiNGO network.
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Figure 4: GO and KEGG pathway enrichment analysis of hub genes. The color depth of nodes refers to the P-value. The size of nodes refers
to the numbers of genes. (a) GO BP terms. (b) GO CC terms. (c) GOMF terms. (d) KEGG Pathway of hub genes.

the development of diabetic nephropathy [23–25]. Its role in
the development of IgAN is not completely clear.

NR4A1 and NR4A2 are also two early responding genes
associated with cancer [26] and chronic inflammatory dis-
eases [27], including that affecting the kidneys. Westbrook
et al. showed increased kidney injury and reduced renal
function in the NR4A1 knockout mouse model. NR4A1 plays
a significant role in kidney injury via immune activation, and
enhancing NR4A1 expression or function is a potential ther-
apeutic strategy against kidney disease [28]. Xin et al. showed
the possible involvement of NR4A2 in the development of
congenital obstructive nephropathy [29]. However, neither
protein has been associated with IgAN.

To summarize, we identified several hub genes involved in
the pathological changes of IgAN. The FOS family genes are
associated with renal inflammation, fibrosis, and podocyte
function during the development and progression of IgAN,

but the involvement of JUN, JUNB, NR4A1/2, and EGR1 in
this disease has not been widely reported. They are directly
related to each other and likely mediate the pathological
changes in the kidneys of IgAN patients.

5. Conclusion

Twenty-one hub genes were identified that are potential
prognostic/diagnostic biomarkers of IgAN. Their biological
functions and mechanisms of action in IgAN need to be
studied further.
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