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Abstract: The induction of plant somatic embryogenesis is often a limiting step for plant multiplica-
tion and genetic manipulation in numerous crops. It depends on multiple signaling developmental
processes involving phytohormones and the induction of specific genes. The WUSCHEL gene (WUS)
is required for the production of plant embryogenic stem cells. To explore a different approach to
induce somatic embryogenesis, we have investigated the effect of the heterologous Arabidopsis WUS
gene overexpression under the control of the jasmonate responsive vsp1 promoter on the morphogenic
responses of Medicago truncatula explants. WUS expression in leaf explants increased callogenesis and
embryogenesis in the absence of growth regulators. Similarly, WUS expression enhanced the embryo-
genic potential of hairy root fragments. The WUS gene represents thus a promising tool to develop
plant growth regulator-free regeneration systems or to improve regeneration and transformation
efficiency in recalcitrant crops.

Keywords: callogenesis; embryogenic potential; growth regulators; Medicago truncatula; somatic
embryogenesis; WUSCHEL

1. Introduction

Somatic embryogenesis is a promising approach and a powerful tool for the mass
propagation of plants. This process also provides a potential model to investigate the
early regulatory and developmental events in plant embryogenesis [1]. The somatic
embryogenesis system is characterized by a sequence of events that includes stimulation of
cell proliferation, acquisition of embryogenic competence and induction of embryogenesis.
Explant cells can be induced to an embryogenic state by a variety of procedures that
usually include exposition to exogenous stimuli like plant growth regulators, certain stress
conditions (pH shock, low or high temperature, osmotic shock, drought) or treatments
with various chemical substances [2,3]. In response to these signals, somatic cells acquire
an embryogenic competence resulting from the action of a complex signaling network and
from the reprogramming of gene expression patterns.

Plants 2021, 10, 715. https://doi.org/10.3390/plants10040715 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-8621-1495
https://doi.org/10.3390/plants10040715
https://doi.org/10.3390/plants10040715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10040715
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants10040715?type=check_update&version=2


Plants 2021, 10, 715 2 of 16

Studies of factors and genes controlling in vitro plant morphogenesis are important
for the development of improved regeneration systems and for the analysis of molecular
mechanisms underlying plant embryogenesis. Genes regulating the plant stem cell de-
velopment have been identified, like the Arabidopsis LEAFY COTYLEDON genes (LEC1,
LEC2), FUSCA3 (FUS3), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 (SERK1),
BABY BOOM (BBM) and WUSCHEL (WUS) playing key roles in controlling embryo devel-
opment [4–7]. Similarly, several transcription factors were used to induce ectopic formation
of somatic embryos in Arabidopsis. These include LEAFY COTYLEDON genes (LEC1, LEC2
and LEC1-LIKE), WUSCHEL (WUS), PLANT GROWTH ACTIVATOR 37 (PGA 37) and EM-
BRYOMAKER (EMK) gene [8–12]. Similar attempts have been reported in other species
using BABY BOOM (BBM) in tobacco [13], pepper [14] cacao [15] and rice [16], LEC1 and
LEC2 in tobacco [17], AGAMOUS-LIKE15 in soybean [18], BBM and WUS2 in maize [19].

The WUSCHEL-related homeobox (WOX) gene family is a unique transcription factor
family in plants and belongs to the homeobox (HB) superfamily. This WOX family is
characterized by the phylogenetic relatedness of its homeodomains [20]. The analysis of
WOX gene expression and function shows that WOX family members fulfill specialized
functions in key developmental processes in plants, including embryonic development,
maintenance of meristematic stem cells, development of lateral organs, seed formation and
regeneration of isolated tissues and organs [21,22].

The Arabidopsis WUS gene is essential for regulating cell division and differentiation
during plant development [7]. WUS expression is confined to a small group of cells in the
lower part of the central zone of the shoot apical meristem, but can drive signals across cell
layers and is expressed non autonomously [23]. The WUS gene is required to specify stem-
cell identity and to maintain a pool of pluripotent stem cells in the shoot apical meristem
(SAM). Thus, wus mutants fail to organize a functional SAM. During embryogenesis, WUS
plays a key role by promoting the vegetative-to-embryonic transition and maintaining the
identity of the embryonic stem cells [10,24].

Early expression of WUS is characteristic of somatic embryogenesis in Arabidopsis,
Medicago and Zea [20,25,26]. WUS overexpression has been reported to enhance somatic em-
bryogenesis in species such as N. tabacum [27], Coffea canephora [28], Capsicum chinense [29],
Picea glauca [30], Gossypium hirsutum [31] and more recently in Medicago truncatula [32].
WUS also promotes the formation of embryogenic calli in G. hirsutum [33]. However,
WUS overexpression can result in abnormal somatic embryos formation and can prevent
seedling generation [29,30,33].

In this work, we have investigated the effect of the ectopic overexpression of the A.
thaliana WUS (AtWus) gene expressed from the vsp1 jasmonate inducible promoter on
somatic embryogenesis from Medicago truncatula (Gaertn.) leaflets and hairy root segments,
in the presence or absence of growth regulators. The use of the jasmonate inducible
promoter vsp1 was explored to ectopically express WUS. We studied the effect of WUSHEL
expression on callogenesis and somatic embryogenesis of plants with the aim of using it as
a substitute for plant growth regulators, in the model plant for somatic embryogenesis M.
truncatula. Remarkably, transgenic tissues (over)expressing WUS present an initiation of
callogenesis and an increase of embryogenesis even in the absence of growth regulators in
the culture medium.

2. Results

The effect of WUSCHEL overexpression during regeneration via somatic embryo-
genesis was discernable when comparing WUS-expressing explants to control explants
transformed with the pCambia-bar vector. Developmental and morphological characteris-
tics were observed from the appearance of proembryogenic calli till the development of
somatic embryos. The transgenic status of the plants selected by phosphinothricin was con-
firmed by polymerase chain reaction (PCR) amplification of the BAR and WUS sequences.
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2.1. The Designed Construct Allows WUS Gene Expression but Not Induction by Jasmonate

The leaves and root segments transformed by WUS as well as those of the control were
cultured on media treated with or without jasmonate for callogenesis and embryogenesis
induction. In order to follow the expression of the transgene in the explants, we tested
WUS expression via quantitative real-time polymerase chain reaction (qRT-PCR) in 7-
and 14-day-old calli formed in the presence or absence of jasmonate. The experiment
showed that the WUS relative expression level was not significantly different between
transgenic calli produced in the presence or absence of jasmonate on leaf explants (2.7 and
2.4, respectively) and on roots (2.4 and 2.1, respectively) (p > 0.05). However, WUS calli
and embryos showed a significantly higher expression level than the calli transformed
with pCambia1301-bar (0.07) used as negative controls demonstrating expression of the
transgene. We deduced from this experiment that the vsp1-WUS gene was expressed in the
presence and in the absence of the inducible agent (jasmonate). Accordingly, no significant
differences were observed in the callogenesis and embryogenesis of WUS explants (leaves
and root segments) cultured on media with or without jasmonate (see below). The results
presented below are those obtained for WUS explants and controls cultured in the presence
of jasmonate.

2.2. WUSCHEL Enhances Callogenesis in M. truncatula Leaf Explants

In order to test the effect of the WUS gene expression on Medicago regeneration, leaf
fragments were tested for regeneration on media with SH1 medium (supplemented with
4 mg·L−1 2,4-D and 0.5 mg·L−1 BAP) or without plant growth regulators (SH0).

On the media without plant growth regulators (SH0), only WUS leaves produced
calli while the controls did not produce any callus. Strikingly, these WUS leaves began
callogenesis after 2 weeks of culture and presented a percentage of callus production
reaching 59%. Calli formed small clusters near leaf incisions. This result shows that the
expression of the WUS gene is alone able to induce cell proliferation in absence of plant
growth regulators.

As for the leaf explants cultured on SH1, calli production took place two weeks earlier
on WUS leaf explants (within 10 days of culture) than on the controls (three weeks of
culture). The percentage of explants giving rise to calli was statistically higher in WUS
transgenic leaves (p < 0.1), with 74% of WUS leaves producing calli clusters against 46%
for the controls (Figure 1). Calli were observed around the edge of the incisions and
later covered the entire leaf surface, forming large embryogenic cell clusters. These calli
were translucent-whiteand friable [34]. Thus, calli production was also enhanced on WUS
expressing leaf explants in presence of callus inducing plant growth regulators.
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Figure 1. Callus production from Medicago truncatula leaf explants. Callus production from Medicago
truncatula leaf explants transformed with pCambia1301-WUS-BAR leaves (a) and from leaf explants
transformed with pCambia-BAR (control, b), cultured on SH1 medium (4 mg·L−1 2,4-D, 0.5 mg·L−1

BAP) during 3 weeks. Scale bar represent 1.0 cm.
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2.3. WUSCHEL Enhances Embryogenesis in M. truncatula Leaf Explants

The WUS calli produced on SH0 and transferred to embryogenic medium (SH2
without growth regulators) started to produce embryos after three weeks of culture. Only
7.5% of these calli were embryogenic and produced on average 26 embryos per calli.

As early as two weeks after the transfer of calli cultured on SH1 to embryogenic
medium (SH2 without growth regulators), early-stage embryos were produced on cultures
transformed with the WUS construct. Somatic embryos started to form one week later
on the control explants. The histological longitudinal section of a WUS embryonic calli
showed these embryos of different stage of development (Figure 2). After 4–5 weeks
of culture, the percentage of embryogenic calli was not significantly different between
WUS calli and the controls. In fact, 55% of the WUS transgenic calli were embryogenic
against 57% for the control explants (Figures 3 and 4). There were also no differences in the
production and the phenotype of the embryonic mass between empty vector transformation
and non-transformed tissue. However, the average number of embryos produced from
each responsive WUS calli (120 embryos) was almost 2.3-fold higher than that of control
(51 embryos) (Figure 5). Together, these results showed that WUS expression allowed
embryogenesis from leaf explants cultured in absence of plant growth regulators in the
culture medium and increased embryogenesis for leaf explants cultured in the presence of
growth regulators.
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Figure 2. Histological longitudinal section of WUS embryogenic calli (EM) after 3 weeks of culture
on SH1 medium showing the produced embryos at various stages of development: (A) globular
stage somatic embryo; (B) cotyledonary-stage somatic embryo with two distinct cotyledons (ct) and
apical meristem (am). The bar scale represents 200 µm

2.4. WUSCHEL Enhances Callogenesis in M. truncatula Hairy Root (HR) Explants

In order to test the effect of the WUS gene expression on regeneration of Medicago hairy
root (HR) fragments regeneration, root segments of M. truncatula were first cultured under
two different regeneration conditions, either directly on M1 medium under photoperiod
or first on a callogenesis C medium in the dark for two weeks. The explants from the C
medium were then transferred to M0 (without growth regulators) or M1 media. WUS and
control root explants showed callus production from the first week of culture. Calli were
produced along the entire length of the root segments on the two media but the callus
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sizes of the root segments grown in the dark (C medium) were bigger than those under the
photoperiod (Figure 6).
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Figure 3. Embryo production from Medicago truncatula leaf explants. Embryos production on embryogenic calli formed
from Medicago truncatula leaf explants transformed with pCambia1301-WUS-BAR (a) and from leaf explants transformed
with pCambia-BAR (control) (b) after four weeks of culture on SH2 medium (without plant growth regulators). Plantlet
developed from a WUS embryo of Medicago on SH2 medium (c). Bar 1.0 cm.
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Figure 4. Embryogenic calli production from leaf explants of Medicago truncatula. Percentage of embryonic calli formed on
leaf explants of M. truncatula transformed using pCambia-BAR (Control) and pCambia1301-WUS-BAR l (WUS) cultured on
SH2 (without growth regulators). These calli were produced on SH0 (without growth regulators) or on SH1 (4 mg·L−1

2,4-D, 0.5 mg·L−1 BAP). For each condition, 60 root explants were cultured per replicate. Three replicates were performed
for each condition. Bars with different letters were significantly different at p < 0.05.

2.5. WUSCHEL Enhances Embryogenesis in M. truncatula HR Explants

Calli produced on HR segments grown directly on M1 medium under photoperiodic
conditions started to produce proembryos during the second week of culture. After 5 weeks
of culture, WUS calli showed a significantly higher embryogenic percentage (92%) than
controls (57%). In addition, WUS calli produced a higher mean number of embryos (9.8
embryos per explant) as compared to the controls (3.8 embryos/explant; Figures 7–9). Thus,
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the expression of the WUS gene strongly enhances embryogenesis in these HR fragments
in the absence of the callogenesis step.
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Figure 5. Embryo production from leaf explants of Medicago truncatula. Mean number of embryos produced on calli formed
leaf explants of M. truncatula transformed using pCambia-BAR (Control) and pCambia1301-WUS-BAR l (WUS) cultured on
SH2 (without growth regulators). These calli were produced on SH0 (without growth regulators) or on SH1 (4 mg·L−1

2,4-D, 0.5 mg·L−1 BAP). Data represent the mean ± standard errors of three replicates. Bars with different letters were
significantly different at p < 0.05.
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Figure 6. Callus production from Medicago truncatula hairy root (HR) explants. Callus production from Medicago truncatula
leaf explants, transformed with pCambia1301-WUS-BAR, two weeks after their transfer to M0 medium (without growth
regulator). These calli were produced on a callogenesis medium C (5 mg·L−1 2,4 -D and 0.5 mg·L−1 BAP) in the dark for
two weeks (a) or under photoperiod on M1 medium (50 mg·L−1 NAA and 1.5 mg·L−1 BAP). Scale bar 1.0 cm (b).
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Figure 7. Embryo production from Medicago truncatula HR explants. (a) WUS embryogenic calli produced on root segments
of M. truncatula after 3 weeks of culture and (b) WUS somatic embryos at different developmental stages (c: cotyledonary
stage and g: globular stage) produced on embryogenic calli after 4 weeks of culture on M0 medium (without plant growth
regulators). Bar 1.0 cm (a) Bar 0.5 cm (b).
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Figure 8. Embryogenic calli production from HR fragments of Medicago truncatula. Percentage of embryonic calli formed on
hairy root segments of M. truncatula transformed by pCambia-BAR (Control) and pCambia1301-WUS-BAR l (WUS) cultured
in 3 different conditions: directly on M1 medium containing 50 mg·L−1 NAA and 1.5 mg·L−1 BAP (M1); first, a callogenesis
stage on C medium (5 mg·L−1 2,4 -D and 0.5 mg·L−1 BAP) and then transferred to M1 medium (C+M1); first a callogenesis
stage on C medium and then transferred to M0 medium without growth regulator (C+M0). For each condition, 60 root
explants were cultured per replicate. Three replicates were performed for each condition. Bars with different letters were
significantly different at p < 0.05.
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Figure 9. Embryo production from HR fragments. Mean number of embryos produced on calli formed on hairy root
segments of M. truncatula transformed by pCambia-BAR (Control) and pCambia1301-WUS-BAR l (WUS) cultured in 3
different conditions: directly on M1 medium containing 50 mg·L−1 NAA and 1.5 mg·L−1 BAP (M1); first, a callogenesis
stage on C medium (5 mg·L−1 2,4 -D and 0.5 mg·L−1 BAP) and then transferred to M1 medium (C+M1); first a callogenesis
stage on C medium and then transferred to M0 medium without growth regulator (C+M0). Data represent the mean ±
standard errors of three replicates. Bars with different letters were significantly different at p < 0.05.

For the explants first cultured two weeks in the dark on the callogenesis C medium,
embryogenesis did not start until a week after the calli were transferred to M0 or M1
media under the photoperiod. Both controls and WUS calli developed a high percentage of
embryogenesis. Under these two culture conditions (M0, M1), the percentage of embryonic
calli was not significantly different between WUS calli and the controls (respectively 100%
and 95.5% on M1; 85.5% and 91.7% on M0) (Figure 8). Similarly, WUS and control calli
produced a high number of embryos (12.4 and 10.5 embryos respectively) following their
transfer on M1. In contrast, on the hormone-free M0 medium the number of embryos
produced per WUS callus (13.2 embryos) was higher than that of the control (7.5 embryos)
(Figure 9). It should be noted that under these three culture conditions, WUS-expressing
HR explants maintained a high number of embryos per explants, whereas the controls
showed a significant decrease of the embryos’ mean number when they were cultured
directly on M1 or M0 media after a callogenesis step. Again, the expression of the WUS
gene favored embryogenesis in the presence or absence of plant growth regulators.

2.6. Embryo Development and Plantlet Production

The WUS and control embryogenic calli followed the typical stages of embryogenesis
observed in Medicago truncatula [34,35]. They presented a proliferation of embryonic clumps
and differentiation of somatic embryo simultaneously (Figure 7). Less than 25% of the
produced somatic embryos, from both WUS and BAR transgenic embryos, were abnormal
and later degenerated. Both WUS and control somatic embryos produced normal plantlets
after being transferred to maturation medium (1/2 MS medium). These plantlets did not
show any morphological abnormalities even though they expressed the transgenic WUS
gene in their leaves (not shown).
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3. Discussion

Stem cell induction and somatic embryo development involve complex mechanisms
including the central role of growth regulators and transcriptional regulators. Mendez-
Hernandez et al. [2] emphasized the interactions between the different plant growth
regulators during the induction of somatic embryogenesis. Rose [36] suggested the presence
of connections between specific plant growth regulators and up-regulated genes during
early phases of somatic embryogenesis in M. truncatula. The WUS gene is essential for
somatic embryogenesis and it is designated as being a primary candidate for a gene
promoting regeneration in a wide range of species [10,37]. Overexpression of WUS has
indeed been found to improve the embryonic potential in transgenic plants [10,24,32]. In
this work, we used a different approach to induce somatic embryogenesis in order to
overcome the hormone dependence of this process. For this, we studied the effect of WUS
ectopic expression on the somatic embryogenesis capacity of M. truncatula (Gaertn.) leaf
and hairy root explants under different tissue culture conditions, including plant growth
regulators free tissue culture conditions.

Previous studies have shown that the continuous overexpression of WUS resulted
in malformations and growth alteration [10,33]. Moreover, the level of WUS transgene
expression was related to the frequency of somatic embryos with aberrant phenotype in
white spruce [30]. Similarly, calli produced on WUS expressing tobacco explants maintained
in induced condition, darkened and the frequency of regeneration was reduced [37]. An
inducible system based on the estrogen 17- β -estradiol was used to trigger the expression
of WUS in different plants [10]. However, somatic embryos formed in the absence of the
estrogen in coffee and white spruce [28,30]. In our study, we planned to use a jasmonate-
inducible WUS gene expressed from the vsp1 promoter. The aim was to transitory express
WUS in order to trigger a developmental switch to embryonic callogenesis. Jasmonate was
supposed to induce ectopic expression of WUS without affecting the in vitro development
and growth of transgenic M. truncatula explants and embryos. However, in our experiment,
WUS gene expression was also observed in the absence of jasmonate. According to Arroyo-
Herrera et al. [28] using a 17-β-estradiol inducible system, the transcription could be
attributed to the position effect of the T-DNA insertion or to a cross reactivity of the inducer
receptor (estrogen) interacting with an estrogen-like endogenous molecule. Similar position
effect or production of jasmonate in tissue culture can explain our results. The constitutive
expression of WUS could be due to the influence of the 35S promoter enhancer located next
to the vsp1 promoter in the plasmid construct. WUS expression could be also induced by
endogenous jasmonate produced as a response to the stress subjected to explants cultured
in vitro.

Plant growth regulators are required for the induction of somatic embryogenesis from
cultured explants in the majority of plants [38]. In many in vitro culture systems and
especially for Medicago leaf culture, auxin is required as a pulse to induce callus production.
High levels of auxin in the culture medium promote cell proliferation and embryogenic
callus formation. The produced calli are then transferred to auxin-free medium for the
formation of somatic embryos [34,39]. In our study, the expression of WUS induced
spontaneous embryogenic calli from Medicago leaves grown on plant growth regulators
-free basal medium. Only WUS-expressing leaves produced embryogenic calli in the
absence of growth regulators while leaves transformed with the empty vector did not
produce any callus cluster. This is consistent with Chen et al. [25] who suggested that
WUS is associated with the production of totipotent cells, similar to the way it is involved
in stem cell formation and maintenance. Similarly, leaves-derived calli expressing WUS
produced a higher percentage of embryogenic calli and showed a 2.3-fold improvement
(120 embryos versus 51) in somatic embryo production as compared to control, on media
without growth regulators. These experiments showed that WUS transgenic embryos
could be obtained from Medicago leaves explants without the use of growth regulators. Zuo
et al. [10] suggested that WUS can reprogram cell identity, bypassing the auxin requirement
or simply taking advantage of the endogenous auxin flux. However, Gallois et al. [24]
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reported that ectopic expression of WUS in roots generated embryo-like structures only
in the presence of auxin. In Arabidopsis thaliana, WUS transient overexpression caused
highly embryogenic callus formation in the presence of auxin [10]. The expression of
AtWUS induced calli formation as well as a 400% increase in somatic embryo production
in coffee plants and a threefold increase in cotton explants in the presence of plant growth
regulators [28,31]. Recently, Tvorogova et al. [32] also reported that the overexpression
of MtWOX9-1, a WUSCHEL-related homeobox transcription factor, led to an increase in
embryogenic capacity of calli produced from leaf explants in Medicago. However, these
calli were produced on a callogenesis-inducing medium in the presence of plant growth
regulators before being transferred to a plant growth regulator-free medium.

Hairy root (HR) cultures show interesting features such as high growth rate on
hormone-free media and genetic stability. HR cultures have also shown promising biosyn-
thetic ability as producers of various biologically active substances and provided insights
into root metabolism [40,41]. Moreover, A. rhizogenes-mediated hairy root transforma-
tion systems are suitable for species recalcitrant to transformation by A. tumefaciens, as
higher transformation efficiencies are obtained in comparison to A. tumefaciens-mediated
transformation systems [42]. They may also help faster production of mutants using the
CRISPR/CAS9 technology [43]. With the aim of enhancing HR callogenesis and embryoge-
nesis, we studied the effect of WUS expression on HR. HR regeneration however requires
specific protocols [35]. Using the HR explants with standard in vitro culture protocol,
WUS and control Medicago explants showed similar embryogenesis potential. However,
under culture conditions that normally do not support embryogenesis (without the pas-
sage through a callogenesis phase or in absence of growth regulators in the embryonic
media), WUS calli produced a high number of embryos per explant, while the number of
embryos produced by control calli was very low. This result showed that somatic embryos
can be produced on explants expressing WUS, bypassing the need for callus initiation
and maintenance.

Chen et al. [25] found that during callogenesis, the clusters of cells expressing WUS
were the source of cells that formed embryos. Moreover, the ectopic expression of WUS re-
sulted in up regulation of other embryogenic regulators such as LEC1, LEC2, and FUS3 [44].
Identifying these regulators and elucidating their exact roles in embryogenesis will advance
the molecular understanding of plant embryogenesis.

4. Materials and Methods
4.1. Construction of Binary Plasmids

Two binary vectors were generated, pCambia1301-bar and pCambia1301-WUS-bar.
These plasmids contain the reporter gene (GUS) and the plant selectable marker gene con-
ferring resistance to phosphynothricin (BAR), both expressed from the CaMV35S promoter.
In addition, pCambia1301-WUS-bar contains the WUSCHEL gene under control of the vsp1
jasmonate inducible promoter (Figure 10).
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The vector pCambia1301-bar was generated by using pCambia 1301/Pubi-bar-Tnos
(provided by AFOCEL, Nangis, France) containing the BAR gene under the control of
the Pubi promoter [45]. To place the BAR gene under control of the CaMV35S promoter,
the BAR::Tnos was recovered from pCambia 1301/Pubi-bar-Tnos and inserted into the
pBLTI221 vector [46] under the control of CaMV35S promoter using BamHI and EcoRI.
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Restriction sites BstXI and XhoI were present on either sides of the cassette CaMV35S-
bar-Tnos. The hpt gene was removed from pCAMBIA1301 (Center for the Application of
Molecular Biology to the International Agriculture of Canberra, Australia) by digesting
the plasmid with BstXI/XhoI and the CaMV35S: bar gene, was ligated into the digested
pCambia1301 plasmid, between the BstXI and XhoI sites.

As a first step to construct pCambia1301-WUS-bar, the WUS coding sequence was
amplified from cDNAs synthesized from RNA extracted from Arabidopsis thaliana Columbia
stem tips carrying flower buds, flowers and young siliques, using the 5’-GAGCTGCAGAAC
AATGGAGCCGCCACAGC-3’ and 5’-GAGGAATTCTAGTTCAGACGTAGCTC-3’ primers.
The PCR product was inserted into pGEM®-T Easy (Promega) and the WUS sequence was
verified by nucleotide sequencing. To place the WUS coding sequence under the control of
the vsp1 promoter, an expression cassette was constructed as follows. The vsp1 promoter,
recovered from pAM35 [47] as an Sst I-Pst I fragment, was inserted into pJIT117 [48] in
place of the 35S promoter, generating pAM44. The WUS coding sequence was inserted
into pAM44 using Pst I and EcoRI, generating p44wus. In this construct, the WUS coding
sequence is placed between the vsp1 promoter and the CaMV polyadenylation signal. The
Bgl II fragment of p44wus carrying the vsp1-WUS-CaMV polyA fusion was inserted into
the BamHI site of pUC19, generating pUC44wus. The gene fusion was then moved into the
binary vector pCambia 1301 bar using Sst I and HindIII, generating pCambia1301-WUS-bar.
Molecular cloning was performed according to standard methods [49].

4.2. Bacterial Strains and Growth Conditions

The pCambia1301-bar and pCambia1301-WUS-bar vectors were separately transferred
into Agrobacterium tumefaciens strains AGL0 for M. truncatula leaf transformation and
into Agrobacterium rhizogenes strain A4Tc24 for M. truncatula hairy root transformation,
using a CaCl2 method [50]. For each condition, cultures of A. tumefaciens were initiated
from a single colony or from glycerol stocks and grown overnight at 28 ◦C with shaking
(150 rpm) in liquid YEB medium [51] containing 50 mg·L−1 kanamycin, to mid log phase
(OD600 = 0.9–1.2). For leaf coculture, the A. tumefaciens cells strain AGL0 were collected by
centrifugation and resuspended in SH based liquid inoculation medium [52]. For radicle
coculture, a single resistant colony of A4Tc24 was streaked on solid YEB medium containing
100 mg·L-1 kanamycin and incubated at 28 ◦C for two days.

4.3. Agrobacterium tumefaciens-Mediated Leaf Transformation of M. truncatula

Agrobacterium tumefaciens-mediated transformation and regeneration via somatic em-
bryogenesis of M. truncatula was done as described by Trinh et al. (1998) and Cosson
et al. (2015) [34,39]. Plantlets of M. truncatula (Gaertn.) line R108-1 (c3) [39,53] were grown
in Magenta boxes containing half strength of SH based media [52]. The plantlets were
cultured under a 16 h light (200 µE/m2/s)/8h dark photoperiod at 24 ± 2 ◦C. Leaves from
2- to 3-week-old in vitro plantlets were cut off and each foliole was wounded with 3 to
4 scalpel cuts.

Leaf explants were transferred into two flasks, one containing a suspension of AGL0
cells carrying pCambia1301-bar and the other containing AGL0 with pCambia1301-WUS-
bar. A vacuum (760 mm Hg) was generated in the flasks for 20 min using a tap water pump.

4.4. Coculture and Culture Media of M. truncatula Leaves

The infected explants were placed adaxial side facing up on the SH0 and SH1 coculture
media. These media are based on SH media (N6 macroelements, SH microelements, SH
vitamins, 100 mg·L−1 myo-inositol, 30 g·L−1 sucrose, and 3 g·L−1 phytagel (Sigma-Aldrich,
Saint-Louis, Missouri, USA), pH 5.8) and differ respectively by the absence of plant growth
regulators (SH0) or the presence of 2,4-D at 4 mg·L−1 and of BAP at 0.5 mg·L−1 (callogenic
medium SH1). For each condition, 60 explants were incubated in the dark at 20 ◦C for
2 days and then cultured in the dark on selection SH0 and SH1 media supplemented with
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augmentin at 800 mg·L−1 to suppress Agrobacterium growth and with phosphinothricin at
3 mg·L−1 to select transformed plant cells.

After 5 weeks of culture, explants and their developing calli were transferred onto
SH2 embryonic medium (SH0 medium with 20 mg·L−1 of sucrose and without plant
growth regulators), supplemented with augmentin at 800 mg·L−1 and phosphinothricin
at 3 mg·L−1. The explants (10 explants per Petri dish) were cultivated at 24◦C under a
photoperiod of 12 h (75–110 µE m−2 s−1).

4.5. Agrobacterium rhizogenes-Mediated Hairy Root Production in M. truncatula

Agrobacterium rhizogenes-mediated transformation was done as described by Boisson-
Dernier et al. (2001) [54]. Scarified and surface sterilized seeds of M. truncatula (Gaertn.)
line R108-1 (c3) [53] were germinated on inverted agar plates at 14◦C in the dark. After
2 days of germination, the radicle was sectioned approximately 3 mm from the root tip
with a sterile scalpel. Sectioned radicles were inoculated by coating the freshly cut surface
with A. rhizogenes A4Tc24 carrying pCambia1301-bar or pCambia1301-WUS-bar grown on
YEB solid medium [51]. The inoculated sectioned seedlings were then placed on Fahraeus
medium [55] in square Petri dishes (12× 12 cm). The Petri dishes containing the inoculated
seedlings (10 seedlings per Petri dish) were placed at an angle of approximately 45◦ in
a growth chamber at 20 ◦C for one week (16 h light/8 h dark photoperiod and a light
intensity of 75 µE m−2 s−1). After 7 days of co-culture, seedlings were transferred onto 1/2

MS medium [56] supplemented with Augmentin at 400 mg·L−1 for HR development.

4.6. Culture Media of M. truncatula Hairy Roots

For HR regeneration, hairy root fragments of approximately 1 to 2 cm in length
were excised and sub-cultured every 2 weeks in horizontal Petri dishes under different
culture conditions:

(a) Directly on MS medium [56] containing 50 mg·L−1 NAA and 1.5 mg·L−1 BAP (M1
medium) under a 16 h light/8 h dark photoperiod.

(b) On a callogenesis inducing MS medium [56] containing 5 mg·L−1 2,4-D and
0.5 mg·L−1 BAP (C medium) for two weeks in the dark. Then, the produced calli were
transferred to two media: MS medium without plant growth regulators (medium M0) or
MS medium containing 50 mg·L−1 NAA and 1.5 mg·L−1 BAP (medium M1) and placed
under a 16 h light/8 h dark photoperiod.

4.7. Induction of WUS Transgene Expression

For enhancing WUS expression, sterile capsules containing 10 mM of methyl jasmonate
(100 µL) were placed in each Petri dish. Explants were treated with jasmonate from the first
day of culture till the production of the first proembryos, i.e., for at least two to three weeks.

4.8. Molecular Analysis, Polymerase Chain Reaction (PCR) Analysis

Total genomic DNA was isolated from leaves and roots of transformed plants and
control plants using the DNeasy plant Mini Kit (Qiagen, Les Ulis, France) according
to the manufacturer recommendations. Polymerase chain reaction (PCR) amplification
was performed in a 20 µL reaction volume consisting of 10X buffer (Promega, Madison,
WI, USA), 50 mM KCl, 1.5 mM MgCl2, 100 mM dNTPs, 0.5 U Taq DNA polymerase
(Promega, Madison, WI, USA), 250 nM primers, and 20 ng template DNA. The primers 5′-
GCCATTTGAAGCCGATGTCACGCC-3′ and 5′-GTATCGGTGTGAGCGTCGCAGAAC-3′

were used to amplify a 1050 bp GUS fragment. The primers 5′-CTACATCGAGACAAGCAC
GGTCAA-3′ and 5′-GCTGAAGTCCAGCTGCCAGAAA-3′ were used to amplify a 427 bp
BAR fragment. The primers 5′-CCGCCACAGCATCAGCATCAT-3′ and 5′-CACCACATTCA
GTACCTGAGCT-3′ were used to amplify a 529 bp the WUS fragment. Cycling parameters
for BAR and WUS amplification began with an initial denaturation at 94 ◦C for 2 min,
followed by 30 cycles of denaturation (94 ◦C for 2 min), annealing (55 ◦C for 30 s) and
extension (60 ◦C for 30 s), then a final extension at 72 ◦C for 5 min. The cycling parameters
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for GUS amplification were similar except that the annealing temperature was 60 ◦C. PCR
amplification products were analyzed by electrophoresis in 1% agarose gels.

4.9. Real-Time PCR (qRT-PCR) Analysis

WUS expression was detected by RT-PCR. Total RNA was extracted from calli and
embryos of M. truncatula plants transgenic for WUS at different time points using the
RNeasy Mini Kit (Qiagen, Les Ulis, France) according to the manufacturer instructions.
cDNA synthesis was performed using the QuantiTect® Reverse Transcription (Qiagen, Les
Ulis, France) with integrated removal of genomic DNA contamination. Real-time PCR was
performed using the QuantiTect® SYBR® Green PCR (Qiagen, Les Ulis, France). Primers
5′-ATCCAGAAGATCACTGCAAG-3′ and 5′-TGGTGTAAATTGGTTCTCTTAGTAAT-3′

were designed to quantify the WUS expression. Normalization was done using the
GLYCERALDEHYDE-3-P DEHYDROGENASE (GADPH) gene using the primers 5′-ACAAA
CATGGGAGCATCCTTACTAG-3′ and 5′-GTTTTTACCGACAAGGACAAAGCT-3′. Re-
verse transcription was performed at 50 ◦C for 30 min, followed by PCR activation at 90 ◦C
for 15 min and then 25 cycles of PCR amplification (94 ◦C for 1 min, 52 ◦C for 1 min and
72 ◦C for 1 min). Transcript abundance was estimated using the comparative threshold
cycle (Ct) method and was calculated as 2−∆∆Ct, where ∆∆Ct = (Cttarget − CtGAPDH)Time x
− (Cttarget − CtGAPDH)Calibrator.

4.10. Histology and Microscopy

For embryo observation, samples of embryogenic calli were fixed in a mixture of
3.5% (w/v) of glutaraldehyde, 0.2 M of cacodylic acid and 2.6% (w/v) of sucrose, and then
dehydrated in an ethanol series (15%, 30%, 50% for 5 min each and 70%, 90%, 100% for
2 h each). The fixed tissues samples were embedded in Technovit 7100 (Heraeus Kulzer).
Histological slices (3 µm) were obtained by using a microtome Jung RM 2045 Leica. Sections
were treated with 0.5% (w/v) periodic acid and stained with Schiff reagent (20 min; colors
polysaccharides in purple) and Naphthol Blue Black (1 min, colors soluble proteins in blue).

4.11. Statistical Analysis

All the experiments were performed by using a completely randomized design (CRD)
with three replicates per treatment. In each treatment, 60 explants of leaves and radicles
were used. Percentage of callogenesis [(number of explants producing callus per total
number of explants], percentage of embryogenic calli [(number of embryogenic calli per
number of calli] and mean number of somatic embryos produced per callus (total number
of somatic embryos per number of embryogenic calli) were determined. Mean numbers
were calculated with their respective standard errors. Data of these observations were
analyzed by using standard analysis of variance (ANOVA). The significant difference
among treatments was determined using Duncan’s multiple range test at p ≤ 0.05.

5. Conclusions

The efficiency of in vitro embryogenesis in plants is modulated by many central
regulators of regeneration and enhanced by exogenously supplied plant growth regulators.
Several key regulators are induced during somatic embryogenesis and control downstream
physiological responses to promote callogenesis and embryo production. Our work showed
that the expression of the WUS gene in Medicago explants induced callogenesis and the
production of highly embryogenic calli. WUS-expressing leaf explants produced embryos
and generated plantlets in the absence of growth regulators in the media. This confirmed
that the overexpression of the WUS gene can be useful for improving tissue culture-
based regeneration systems and transformation frequencies of recalcitrant species. Further
elucidation of the exact roles of the WUS stem cell signaling pathway and of related
regulator networks is crucial to understand the diverse strategies of somatic embryogenesis.
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