
Research Article
MEA-CNDP: A Membrane Evolutionary Algorithm for Solving
Biobjective Critical Node Detection Problem

Yaochang Xu1 and Ping Guo 1,2

1College of Computer Science, Chongqing University, Chongqing 400044, China
2Chongqing Key Laboratory of Software "eory and Technology, Chongqing 400044, China

Correspondence should be addressed to Ping Guo; guoping@cqu.edu.cn

Received 5 July 2021; Revised 12 October 2021; Accepted 2 November 2021; Published 28 November 2021

Academic Editor: Radu-Emil Precup

Copyright © 2021 Yaochang Xu and Ping Guo.*is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*e critical node detection problem (CNDP) refers to the identification of one or more nodes that have a significant impact on the
entire complex network according to the importance of each node in a complex network. Most methods consider the CNDP as a
single-objective optimization problem, which requires more prior knowledge to a certain extent.*is paper proposes a membrane
evolution algorithm MEA-CNDP to solve biobjective CNDP. MEA-CNDP includes a population initialization strategy based on
the evaluation of decision variables, a strategy to transform the main objective, a strategy to update the membrane inherited pool,
and four membrane evolutionary operators.*e numerical experiments on 16 benchmark problems with random and logarithmic
weights show that MEA-CNDP outperforms other algorithms in most cases. In particular, MEA-CNDP has unique advantages in
dealing with large-scale sparse bi-CNDP.

1. Introduction

*e nature-inspired optimization strategy has shown very
interesting results in many fields, such as teach optimization
techniques and so on [1]. As a new branch of natural
computing, membrane computing has attracted continuous
attention of researchers, it is a computing model abstracted
from biological cells, organs, and tissues. Based on the cell
membrane, the membrane computing establishes a calcu-
lation model based on the function and characteristics of the
cell membrane. Such a calculator is also called the P system.
Membrane computing has been widely concerned since it
was proposed, and it has shown excellent results in many
applications. Most P systems have been proved to have the
same computing power as Turing machines [2, 3]. In theory,
many NP-hard problems can also be solved in polynomial
time using the P system, such as the all-set problem [4] and
Hamilton loop problem [5]. Since membrane computing
was put forward, it has received extensive attention and has
been applied in many fields, such as image processing [6],
numerical optimization [7], and social network analysis [8].

Inspired by membrane computing, Nishida combined
membrane nested structure with other evolutionary algo-
rithms in 2004 and proposed the membrane algorithm
framework (MA) for the first time [9]. Since then, re-
searchers call the algorithms based on this framework
membrane algorithm, which provides a nested structure
compatible with other algorithms, making MA well com-
bined with various algorithms to solve different problems.
For example, a membrane clustering algorithm for auto-
matic clustering is proposed in [10] based on MA, which can
easily find the number of clustering under the control of
evolutionary communication mechanism. Combining par-
ticle swarm optimization (PSO) and MA, a membrane
heuristic algorithm based on particle swarm optimization
(mMPSO) is proposed to solve the path planning problem of
multiobjective robots in dynamic obstacles and dangerous
environments [11]. Moreover, in [12], MA is combined with
differential evolution algorithm (DE), in [13], and MA is
combined with quantum evolution algorithm (QEA).

Based onMA, membrane evolutionary algorithm (MEA)
is introduced, MEA is an evolutionary algorithm framework

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 8406864, 20 pages
https://doi.org/10.1155/2021/8406864

mailto:guoping@cqu.edu.cn
https://orcid.org/0000-0002-5239-8896
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8406864

inspired by the behavior characteristics of biological cells. It
simulates various life activities of cells, realizes information
exchange between cells by relying on membrane, and thus
realizes individual evolution. In [14], a membrane evolu-
tionary algorithm for solving minimum vertex cover
problem (MEAMVC) is introduced, and the experimental
results show that the MEAMVC has good performance in
solving the minimum vertex coverage problem. In [15, 16],
MEA are introduced to solving the maximum clique
problem and travelling salesman problem, respectively.

A crucial research direction in engineering design is to
consider optimization problems. With the continuous
increase of the scale of optimization problems and the
increase of dynamic and random factors, traditional
methods reflect the complexity and instability of calcula-
tion. *erefore, researchers are looking for various new
methods to solve optimization problems. In recent years,
some excellent methods have emerged and have been
applied to various fields. For example, Zapata et al. [17]
propose that a novel hybrid swarm algorithm combining
strengths of self-assembly and the particle swarm opti-
mization greatly improves the convergence speed. Refer-
ence [18] presents a novel application of the metaheuristic
slime mould algorithm (SMA) to the optimal tuning of
interval type-2 fuzzy controllers. Population-based evo-
lutionary algorithm has shown gratifying results in solving
optimization problems, and a new estimation of distri-
bution algorithm (EDA) is introduced in [19]. It maintains
a trade-off between run time and the number of evaluation
points. Reference [20] combines the island model and
cuckoo search (CS) algorithm and thus presents the island-
based CS with polynomial mutation (iCSPM), which
greatly improves the search ability and maintains the
population diversity.

Complex networks can be seen everywhere in both
scientific research and daily life. As an important subject of
optimization problems, the critical node detection problem
(CNDP) aims to identify the critical nodes in complex
networks, which is also a common means to study graph
problems. Similar problems include the critical node
problem (CNP), which aims to minimize the connectivity of
the residual graph under the constraint of the maximum
number of nodes that can be deleted [21]. Cardinality-
constrained critical node detection problem (CC-CNP) is
devoted to minimizing the number of deleted nodes given
the maximum connected component [22].

At present, the methods to solve CNDP mainly include
accurate algorithm and heuristic algorithm. For the accuracy
strategy, most algorithms consider CNDP as an integer
programming problem [23–25], which has significant lim-
itations. In contrast, the heuristic algorithm has achieved
good results in solving CNDP. A hybrid heuristic algorithm
is proposed with the combination of greedy algorithm and
local search algorithm and shows good performance in [26].
In [27], incremental learning based on population is com-
bined with a simulated annealing optimization algorithm
based on combinatorial rank free problem representation to
solve CNDP, which saves space and reduces the need for
individual repair mechanism simultaneously.

Most of the above algorithms treat CNDP as a single-
objective optimization problem. Among them, the maximum
number of nodes that can be deleted and the maximum
number of connected components are often required.
However, in practical problems, prior knowledge is often not
easy to obtain. Moreover, considering the network connec-
tivity and the cost of deleting nodes are often two conflicting
objectives, which should be viewed simultaneously.*erefore,
establishing a biobjective optimization model for CNDP is
considerable. In [28], CNDP is considered a biobjective
optimization problem for the first time, and the Pareto fronts
of some problems are given. In [29], a specific biobjective
optimization model of CNDP is proposed, and the ant colony
algorithm is used to solve it. In [30], a biobjective optimi-
zation model for CNDP is established, and the two objective
functions are the number of connected components and their
cardinal variance, respectively, but this is actually a gener-
alization of pairwise connectivity.

*is paper proposes a novel evolutionary algorithm
based on MA for solving the biobjective critical node de-
tection problem (bi-CNDP) model in [31], called MEA-
CNDP for short. Based on membrane division, differenti-
ation, death, and other life activities, MEA-CNDP designs
and implements four evolutionary operators: division, fu-
sion, cytolysis, and selection operator. Aiming at bi-CNDP, a
new population initialization strategy is proposed in MEA-
CNDP, and the main objective transforming and mem-
brane-to-subproblem matching strategy are adopted to
improve the efficiency of MEA-CNDP. *e main contri-
butions of this paper include the following:

(i) Taking into account the characteristics of bi-CNDP,
a new population initialization strategy based on the
evaluation of decision variables is proposed. By
calculating the number of nondominated front and
the cost of nodes, the importance of each decision
variable can be levelled out, thereby generating a
high-quality initial population.

(ii) Design and implement four evolutionary operators,
including division, fusion, cytolysis, and selection
operator. By the communication between mem-
branes, those evolutionary operators can generate
better individual membrane, eliminate the mem-
brane with poor quality, and update the external
archive membrane.

(iii) A membrane evolutionary algorithm MEA-CNDP
is proposed to solve the bi-CNDP.*e experimental
results on four different types of instances show that
the MEA-CNDP algorithm has unique advantages
in dealing with large-scale sparse bi-CNDP.

*e rest of this paper is organized as follows. Section 2
introduces the basic knowledge and related definition, in-
cluding the concept of MA andMEA, CNDP, and bi-CNDP.
Moreover, some algorithms solving bi-CNDP are intro-
duced briefly. In Section 3, the framework of MEA-CNDP is
proposed, and the details of related strategies for improving
the efficiency are introduced; at last, the implementation of
four types of evolutionary operators is detailed. In Section 4,

2 Computational Intelligence and Neuroscience

based on four types of bi-CNDP instances, the comparative
experiments are designed, and the analysis of the experi-
mental results is given as well, which verified the perfor-
mance of MEA-CNDP. Finally, the conclusion and future
work are drawn in Section 5.

2. Preliminaries

*is section provides the related research basis of this paper.
Firstly, the related content of membrane computing is intro-
duced, and the related knowledge of MEA is submitted. *en,
the related definition and formula of CNDP are presented
briefly, thus providing the multiobjective optimization problem
(MOP) model of CNDP, that is, the biobjective critical node
detection problem (denoted as bi-CNDP). Finally, some related
algorithms solving bi-CNDP are introduced briefly, which are
used in the subsequent comparative experiments.

2.1. Membrane Algorithm and Membrane Evolutionary
Algorithm. As a biological computing model abstracted from
the level of biological cells, membrane computing is com-
mitted to studying the function and characteristics of the cell
membrane in organisms and applying them to optimization
problems; such a calculator is also called a P system [32]. P
system is mainly composed of its structure, material object,
and evolutionary rules. *e main body of the P system is to
construct the membrane structure corresponding to specific
problems by simulating the basic structure of the cell
membrane. Evolutionary rules are the basis of material
communication within and between membranes. Different
rules are implemented to transform different information.

MA is an algorithm framework derived from membrane
computing. MA provides a nested structure compatible with
various other algorithms, enabling various excellent algo-
rithms to solve the final problem in the framework of
membrane computing, aiming at specific subproblems,
giving full play to their respective advantages.

*e nested structure of MA is shown in Figure 1. *e
main structural feature of MA is a layer of nested mem-
branes. *e region between each two nested membranes
contains subalgorithms. In different regions, the sub-
algorithms can be the same or different.*ese subalgorithms
usually solve different stages of the problem or solve dif-
ferent parts of the problem.

MEA is an evolutionary algorithm based on cell division,
fusion, death, and other life activities, according to the
characteristics of the cell membrane to achieve information
exchange between cells. According to the life activities of
cells and the information exchange mechanism between
cells, MEA designs the operators of division, fusion, cy-
tolysis, and selection and uses the membrane parallel op-
timization and heuristic information to realize individual
evolution and further solve the problem.

*e algorithm framework of the membrane evolutionary
algorithm is shown in Algorithm 1. *e framework of MEA
includes four parts: population and membrane structure
initialization, membrane evolution, membrane repair, and
final solution output.

*e primary evolutionary process of MEA is the four
operators of division, fusion, cytolysis, and selection. *e
membrane population is constantly operating these four
operators to make the whole population evolve in a better
direction.

(i) Division operator: in MEA, one individual mem-
brane divides into two submembranes, the sub-
stance in the original individual membrane is
distributed into the two submembranes, and the
original individual membrane is removed. *e
process of division operator is shown in Figure 2(a).

(ii) Fusion operator: in MEA, the fusion operator
merges two individual membranes into one mem-
brane, and all the substances in the original two
membranes enter into the newly formedmembrane,
while the original two membranes and their sub-
stances are removed. *e process of the fusion
operator is shown in Figure 2(b).

(iii) Cytolysis operator: in MEA, the individual mem-
brane with poor performance or without specific
conditions will be dissolved, and the dissolved
substances in the membrane can be deleted or re-
leased into the environmental membrane.

(iv) Selection operator: in MEA, the membrane with
higher fitness or better individuals should be
retained, and the selection operator is used to up-
date the excellent individuals in the membrane
population evolution.

In MEA, each individual membrane is regarded as a
candidate solution, and information exchange and syn-
chronization are realized among multiple individual
membranes; thus, the whole membrane population evolves
in a better direction. Precisely because of such character-
istics, MEA possesses remarkable parallelism and scalability,
flexible coding, and excellent search capability.

2.2. CNDP and Bi-CNDP. CNDP refers to the identification
of one or more nodes that can significantly affect the entire
complex network based on the different importance of each
node in the complex network. *e significant impact here

external region

initial solution 1
initial solution 2

sub-algorithm

internal region

m

1
0

2

Figure 1: *e schematic diagram of the nested structure of MA.

Computational Intelligence and Neuroscience 3

includes the promotion or mitigation of the entire complex
network.

Let G � (V, E) be an undirected weighted graph, the
number of nodes is |V| � n, and the number of edges is
|E| � m. *e goal of CNDP is to determine a subset R⊆V, so
that the residual graph G(V\R) has the minimum number
pairwise connectivity (i.e., the number of a pair of nodes
connected by a path in a graph), where |R|≤K, K is the
maximum number of the deleted nodes allowed. If the nodes
of CNDP are weighted, that is, the weighted critical node
detection problem (denoted as wCNDP) transforms the
constraint to ωR ≤ω, where the ωR is the sum of the weights
of the deleted nodes and ω is the maximum weights of the
deleted nodes allowed. More detailed about wCNDP can be
seen in [30].

To solve the CNDP as a single-objective optimization
problem, it is often required to give themaximum number of
deleted points or determine the maximum number of
connected components. However, in practical issues, the
prior knowledge is often not easy to obtain, and considering
the network connectivity and the cost of deleted nodes are
often two conflicting objectives, which should be viewed
simultaneously. *erefore, it is of great value to establish a
biobjective optimization model for CNDP.

*e model of bi-CNDP is introduced in [31], which
considers the pairwise connectivity and the cost of deleting
nodes simultaneously. Let G � (V, E, C) be a weighted

undirected graph, V � v1, v2, . . . , vn􏼈 􏼉 is the set of nodes of
G, E � (vi, vj)|i, j ∈ 1, 2, . . . , n{ }􏽮 􏽯 is the set of edges, and the
cost of deleting each node is given in C � c1, c2, . . . , cn􏼈 􏼉.

*e first objective function of bi-CNDP is about pairwise
connectivity, which can be calculated by

PWC(G) �
1
2

􏽘
vi,vj∈V,vi≠vj

xij, (1)

where xij � 1 if vi and vj are connected; otherwise, xij � 0; it
can be further normalized as

nPWC(G) �
1

n(n − 1)
􏽘

vi,vj∈V,vi≠vj

xij, (2)

It can be seen that the value range of nPWC(G) is [0, 1],
obviously, nPWC(G) can be considered the measure of
connectivity of the graph because nPWC(G) is proportional
to the number of nodes connected through at least one path.
*e closer the nPWC(G) value is to 1, the closer the graph is
to the connected graph.

After deleting nodes, except for minimizing the
connectivity of the network, minimizing the cost of de-
leting these nodes is considerable. *erefore, the second
objective function of bi-CNDP is used to measure the cost
of deleting the selected nodes R⊆V, which can be calcu-
lated by

Input: problem description, related parameters
Output: the final solution

(1) Membrane structure initialization
(2) Population initialization
(3) while termination criterion not fulfilled do
(4) (1) Division operator: a membrane is divided into two submembranes, and the substances in the original membrane are

distributed in the two submembranes
(5) (2) Fusion operator: two membranes fuse to form a membrane, and the substances in the former two membranes belong to

the same membrane
(6) (3) Cytolysis operator: dissolve several membranes from the population, and the substance in the dissolved membrane are

dissolved as well
(7) (4) Selection operator: select several membranes from the current membrane population to enter the next generation
(8) Individual solution repair
(9) Population repair
(10) return *e final solution

ALGORITHM 1: Framework of MEA.

a, b, c

a, d, e

a2, b, c, d, e

(a)

a, b, c

a, d, e

a2, b, c, d, e

(b)

Figure 2: *e schematic diagram of the division and fusion operator. (a) Division operator. (b) Fusion operator.

4 Computational Intelligence and Neuroscience

nCost(R) �
􏽐vi∈Rci

􏽐vi∈Gci

, (3)

where ci is the weight associated with vi, 􏽐vi∈Gci is drawn to
normalizing, which makes the value range in [0, 1] as well.

*erefore, the model of bi-CNDP can be described as

minimize(nPWC(G(V\R)), nCost(R)),

s.t.

xij + yi + yj ≥ 1, ∀vi, vj ∈ V,

xij + xjk + xki ≠ 2, ∀vi, vj,vk ∈ V,

xij ∈ 0, 1{ }, yi ∈ 0, 1{ }, ∀vi, vj ∈ V,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where y � (y1, y2, . . . , yn) is the decision variables, yi is the
binary variable, yi � 1 if the node vi is deleted, and yi � 0
otherwise. xij shows the connectivity of vi and vj, xij � 1 if vi

and vj belong to the same connected component, and xij � 0
otherwise.

y � (y1, y2, . . . , yn) is the decision variables to be op-
timize, yi values in {0, 1} and changes continuously with the
implementation of the programme, until it evolves into a
good enough solution. *e first constraint ensures that the
residual graph after deleting some nodes includes several
connected components. *e second constraint ensures that,
for three nodes in the same connected component, any two
nodes between them are also in the same connected com-
ponent. *e third constraint specifies the range of values for
xij and yi.

It can be seen that bi-CNDP defined above is NP-hard on
the general graph. Although the Pareto front of the above
model cannot be obtained for the time being for the general
graph, for the CNDP whose graph structure is a tree, the
algorithm with polynomial time can get the approximate
Pareto front of the above model. *erefore, a heuristic al-
gorithm is needed for general graphs to find the approximate
Pareto front of the above bi-CNDP.

2.3. Related Algorithms

2.3.1. MOEA/D. *e strategy based on decomposition is a
practical approach and widely used method in multi-
objective optimization evolutionary algorithm, such as the
multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D) is proposed in [33]. MOEA/D decom-
poses the MOP into several scalar single-objective
optimization subproblems and then optimizes the sub-
problems simultaneously. In MOEA/D, each subproblem is
optimized only according to the information of its adjacent
subproblems, which significantly reduces the computational
complexity of each generation.

In MOEA/D, it is crucial to decompose the MOP into
multiple scalar subproblems, and the common aggregation
functions mainly include the weighted sum approach,
Chebychev approach, and boundary intersection approach
[34]. MOEA/D firstly introduces the decomposition method
into MOP, making the idea of decomposition into the
evolutionary algorithm. In addition, by decomposing the
MOP into multiple scalar optimization subproblems for

optimization, MOEA/D significantly reduces the difficulty of
maintaining population diversity and fitness allocation.

2.3.2. DMOEA-εC. Based on MOEA/D, the decomposition-
based multiobjective evolutionary algorithm with the
ε-constraint framework (DMOEA-εC) is proposed in [35].
DMOEA-εC uses the ε-constraint method to MOPs, it se-
lects one objective function as themain objective, transforms
other objectives into constraints, allocates upper bound
vectors for each subproblem, and then optimizes multiple
subproblems simultaneously for MOP; the ε-constraint
formula can be defined as

minimizefmain � fs(x) + ρ􏽘
m

i�1
fi(x),

subject to

fi(x) − z
∗
i

z
nad
i − z

∗
i

≤ εi, ∀i ∈
1, 2, . . . , m{ }

s{ }
,

x � x1, x2, . . . , xn(􏼁 ∈ Ω,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where 0≤ ε � (ε1, ε2, . . . , εs−1, εs+1, . . . , εm)≤ 1 is the upper
bound vector, and the index of the main objective is selected
from all the objective functions randomly or assigned by the
decision-maker. ρ is a tiny positive number,
z∗ � (z∗1 , z∗2 , . . . , z∗m)T and znad � (znad

1 , znad
2 , . . . , znad

m)T are
the ideal optimal node and ideal worst node, respectively.

DMOEA-εC proposes the strategy of main objective
alternation, which exchanges the main objective function
through a specific strategy or periodically and matches the
solution with the subproblem again after the main objective
function alternation. After a new feasible solution is gen-
erated by evolution, DMOEA-εC fits the feasible solution
with the subproblem again so that the feasible solution newly
generated can be utilized to the maximum extent.

2.3.3. I-MOEA/D and I-DMOEA-εC. MOEA/D and
DMOEA-εC perform well on continuous or discrete
benchmark problems, but for bi-CNDP, a more special
strategy is needed to make them adopt the characteristics of
bi-CNDP. *us, the new mating pool and replacement pool
are designed in [31].

In [31], there are four types of strategies for mating pool,
including selecting from the neighbors, the whole pop-
ulation, the neighbors and the population, and the external
archive population. *ere are two strategies for the re-
placement pool, including the local replacement and the
global replacement. *e experimental results have deter-
mined the two algorithms with the best performance,
namely, I-MOEA/D and I-DMOEA-εC.

It is worth noting that so far there are few special al-
gorithms to solve bi-CNDP. As the variant of algorithm
MOEA/D, I-MOEA/D, and I-DMOEA-εC has shown good
results in solving bi-CNDP, inspired by this, this paper aims
to explore new better algorithm to solve bi-CNDP; more
details are introduced in Section 3.

Computational Intelligence and Neuroscience 5

3. The Membrane Evolutionary Algorithm
Solving Bi-CNDP

In view of the bi-CNDP introduced above, this section
designs and implements the membrane evolutionary algo-
rithm MEA-CNDP solving bi-CNDP. Representation of
candidate solutions and related definitions are presented at
first. *en, according to the characteristics of bi-CNDP, the
membrane evolutionary algorithm framework of MEA-
CNDP is designed. Next, some specific strategies are in-
troduced, including population initialization strategy,
membrane inherited pool updating, and main objective
transforming strategy. Finally, the membrane evolutionary
operators, including division, fusion, cytolysis, and selection,
are introduced in detail.

3.1. Representation and Definition of Candidate Solutions.
*e initial membrane structure of the MEA-CNDP al-
gorithm is shown in Figure 3. Membrane 0 is the envi-
ronment membrane (also known as skin membrane) and
provides the foundation of the whole membrane pop-
ulation evolving. In the environment membrane, there
are the membrane population (membrane 1, 2, . . ., N) for
evolution, and the inherited pool (recorded as IP) for
each iteration, the external archive membrane (registered
as EM) for recording the nondominated solutions.
Moreover, all decision variables and upper bound vectors
keep only one copy of them in the environment
membrane.

In the process of population evolving, when the indi-
vidual membrane (membrane i) needs to fuse decision
variables or upper bound vectors, the decision variables or
upper bound vectors are copied into the individual mem-
brane. When an individual membrane is divided, the de-
cision variables and upper bound vectors in it will be
dissolved, whichmeans the number of decision variables and
upper bound vector in the environment membrane will
remain unchanged.

Each evolution only takes place in the membrane
population, that is, the division, fusion, cytolysis, and se-
lection operators are only performed in membrane 1, 2, . . .,
N. Membrane IP is the current inherited pool, which stores
the individual membranes participating in the following
evolutionary process. Moreover, the membrane EM is used
to record the nondominated solutions in the current
membrane population.When a newmembrane is generated,
the membranes in EM will be updated synchronously. After
the evolutionary process is over, the membranes in the EM
will output the final solution.

3.2. Framework of MEA-CNDP. *is section introduces the
framework of the proposed MEA-CNDP algorithm. MEA-
CNDP performs division, fusion, cytolysis, and selection
operators in each evolutionary process and maintains the
convergence of the solution by saving and updating the
optimal solution. Before each evolutionary process, MEA-
CNDP adopts specific strategies to optimize its performance.

*e framework of the MEA-CNDP algorithm is shown
in Algorithm 2. *e parameters of MEA-CNDP are defined
as follows:

(i) N: the size of the membrane population, which is
the same as the upper bound vector

(ii) D: the number of decision variables, which is the
same as the number of the nodes in graph

(iii) T: the size of neighbors, that is the size of neighbor
membrane set of each membrane

(iv) INm: the iteration interval of transforming the
main objective function

(v) DRA_interval: the iteration interval of updating
the IP

(vi) S: the maximum number of membranes allowed in
EM

(vii) δ: the probability of selecting from the neighbor
membranes when executing the division operator

(viii) Costi: the weight of node i, which is the cost of
deleting node i from graph

(ix) MaxGen: the maximum number of evolving

Among the above parameters, T, INm, DRA_interval, S,
and δ are the parameters of the optimization algorithms,
which can be continuously optimized. N and MaxGen can be
selected by the users. D and Costi are definite parameters,
which are determined by the dataset.

In Algorithm 2, MEA-CNDP firstly generates N uni-
formly distributed upper bound vector ε1, ε2, . . . , εN by
dividing each objective axis with equal spacing Δ. Figure 4
shows the process of generating upper bound vectors
through a 3-objective optimization problem model (m� 3),
where the equal spacing Δ � 1/4 (q� 5), 25 upper bound
vectors are generated by this way.

MEA-CNDP designs a population initialization strategy;
lines 3 and 4 calculate the scores of the decision variables and
generate the initial population according to the scores of
decision variables, respectively. *e initial population gen-
erated by the strategy has good characteristics, accelerates
the convergence of the population, and maintains diversity.
Algorithms 3 and 4 show the details.

x1, x2,
m2

m1 m1

m2

1 2

N
IP EM

x1, x2, . . ., xD

0
upper bound vectors decision variables

ε1

ε1, ε2, . . ., εN

εN

x1, x3,

x2, x3,

ε2

Figure 3: *e initial membrane structure of the MEA-CNDP
algorithm.

6 Computational Intelligence and Neuroscience

Input: the critical node detection problem, related parameters
Output: the external archive membrane

(1) Generate the initial membrane structure;
(2) ε1, ε2, . . . , εN← generate N upper bound vectors of uniform distribution
(3) Score← calculate the scores of decision variables;//Algorithm 3
(4) P← generate the initial membrane population;//Algorithm 4
(5) B← calculate the neighbor membrane
(6) Pi← array of size N with all elements value 1;
(7) Initialize the external archive membrane EM;
(8) Initialize Z∗, Znad;
(9) NoF← 0;
(10) CurGen← 0;
(11) while CurGen<MaxGen do
(12) if CurGen % DRAinterval � � 0 then
(13) UpdateIP;//Algorithm 5;
(14) if CurGen % INm� � 0 then
(15) NoF� 1 –NoF;//Transfrom the main objective
(16) Membrane-to-Subproblem Matching;//Algorithm 6
(17) Evolve IP:
(18) Division operator;//Algorithm 7
(19) Update Z∗;
(20) Fusion operator;//Algorithm 8
(21) CytolysisiAndSelection operator;//Algorithm 9
(22) Update Znad;
(23) CurGen←CurGen + 1;
(24) return EM;

ALGORITHM 2: Framework of MEA-CNDP. *e MEA solving bi-CNDP.

Input: D (the number of decision variables), Cost (weights related to deleting nodes)
Output: Score (the scores of decision variables)

(1) Degree←Calculate the degree of the node corresponding to each decision variable in the original graph;
(2) S←∅;
(3) for each xi in the set of decision variables do
(4) if Degreexi

> 1 then
(5) S← S ∪ xi;
(6) Q← S× |D| matrix with all elements value 0;
(7) j← 0;
(8) for each x in S do
(9) Flip the decision variable x in the j-th row of Q to 1;
(10) j++;
(11) Do nondominated sorting on Q;
(12) Score←D× 1 matrix with all elements value Max_Double;
(13) for i� 1 to D do
(14) if Degreexi

> 1 then
(15) Scorei � Fi/Costi;//Fi is the nondominated front number of the i-th row of Q;
(16) return Score;

ALGORITHM 3: Score_Assignment. Calculate the scores of decision variables.

Computational Intelligence and Neuroscience 7

Input: N (population size), D (the number of decision variables), Cost (weights related to deleting nodes), Score (the scores of
decision variables), ε1, ε2, . . . , εN(upper bound vectors)
Output: P (the initial membrane population)

(1) P←∅;
(2) for i� 1 to N do
(3) Generate an empty membrane m;
(4) for j� 1 to rand()×D do
(5) [x1, x2]←Randomly select two decision variables from environment;
(6) if Scorex1

< Scorex2
then

(7) Duplicate x1 and add it to membrane m;
(8) else
(9) Duplicate x2 and add it to membrane m;
(10) m←m ∪ εi;
(11) P←P ∪ m;
(12) return P;

ALGORITHM 4: Initialize_Population. Generate the initial membrane population.

Input: Pi, P (current membrane population), NoF (the mark of main objective function),
Output: IP (the membrane inherited pool)

(1) for each mi in P do
(2) f

oldi

main←Calculate the value of membrane mi to the [(1−NoF) + 1]-th objective function;
(3) f

newi

main←Calculate the value of membrane mi to the (NoF + 1)-th objective function;
(4) for i� 1 to N do
(5) Δi← (f

oldi

main − f
newi

main)/foldi

main;
(6) if Δi > 0.01 then
(7) Pi(i)� 1;
(8) else
(9) Pi(i)� [0.95 + 0.05× (Δi/0.01)]× Pi(i);
(10) IP←∅;
(11) for each m in P do
(12) if *e epsilon vector is permutation of (1, 0, . . ., 0) then
(13) IP← IP ∪ m;
(14) Select ⌊N/5⌋ membranes using binary tournament selection from P and add them to IP;
(15) return IP;

ALGORITHM 5: UpdateIP. Update the membrane inherited pool.

Input: P (current membrane population), NoF (the mark of main objective function)
Output: P (membrane population)

(1) S←∅;
(2) for each m in P do
(3) Remove the upper bound vector of m and add it to S;
(4) while S is not empty do
(5) εl←Randomly select a upper bound vector from S;
(6) for each mi in P do
(7) yNoF+1←Calculate the value of membrane mi to the (NoF + 1)-th objective function;
(8) dl

i← |yNoF+1 − εl
NoF|;

(9) k← argmini�1,2,...,N(dl
1, dl

2, . . . , dl
N);

(10) Remove the upper bound vector εk of membrane mk;
(11) Add the upper bound vector εl to membrane mk;
(12) Delete the upper bound vector εl of S;
(13) return P;

ALGORITHM 6: Membrane-to-subproblem matching.

8 Computational Intelligence and Neuroscience

Line 5 calculates the neighbor membrane set of each
membrane according to Euclidean distance. *e value of the
upper bound vector of each membrane is used to calculate;
thus, T neighbor membranes are distributed for each
membrane. Line 6 initializes an array of size N with all
elements values equal to 1, which is used to update the IP.

Line 7 initializes the EM, and the nondominated solu-
tions of all individual membranes in the current membrane
population are regarded as the initial object of the EM.

Line 8 initializes the ideal optimal node Z∗ and ideal
worst node Znad, which are the minimum and maximum
value of each objective function of the present membrane

Input: P (current membrane population), IP (the membrane inherited pool), EM (the external archive membrane), δ (the
probability of selecting from neighbors), B (neighbor membrane matrix)
Output: IP (the membrane inherited pool)

(1) for each m in P do
(2) m1←Randomly select a membrane from EM;
(3) m2← Select a membrane from the B(m) with probability δ or from P with probability 1− δ;
(4) A1, A2←∅;
(5) Add the decision variables that are in m1 but not in m2 to A1;
(6) Add the decision variables that are in m2 but not in m1 to A2;
(7) o←m1;//Generate an empty membrane o and duplicate m1(or m2) to o;
(8) if rand()< 0.5 then
(9) [x1, x2]←Randomly select two decision variables from A1;
(10) Remove the decision variable with larger Score in [x1, x2] in o;
(11) else
(12) [x1, x2]←Randomly select two decision variables from A2;
(13) Duplicate the decision variable with smaller Score in [x1, x2] in environment, and add it to o;
(14) if rand()> 0.5 then
(15) [x1, x2]←Randomly select two decision variables from o;
(16) Release the decision variable with larger Score in [x1, x2] in o in environment;
(17) else
(18) [x1, x2]←Randomly select two decision variables from environment that do not exist in o;
(19) Duplicate the decision variable with smaller Score in [x1, x2], and add it to o;
(20) return IP;

ALGORITHM 7: Division.

Input: o (the newly generated membrane), ε1, ε2, . . . , εN(upper bound vectors), NoF (the mark of main objective function), B
(neighbor membrane matrix)
Output: o, B (the updated neighbor membrane matrix)

(1) yoNoF+1←Calculate the value of membrane o to the (NoF + 1)-th objective function;
(2) for l� 1 to N do
(3) CVl � max((yoNoF+1 − Z∗2)/(Znad

2 − Z∗2) − εl
NoF+1, 0);

(4) if CVl �� 0 then
(5) CVl � 1/((yoNoF+1 − Z∗2)/(Znad

2 − Z∗2) − εl
NoF+1);

(6) k← argmini�1,2,...,N(CV1,CV2, . . . ,CVN);
(7) Remove the upper bound vector of membrane o;
(8) Duplicate the upper bound vector εk in environment, and add it to membrane o;
(9) for each mi in B(o) do
(10) ymNoF+1←Calculate the value of membrane mi to the (NoF + 1)-th objective function;
(11) CV1 � max((yoNoF+1 − Z∗2)/(Znad

2 − Z∗2) − εi
NoF+1, 0);

(12) if CV1 �� 0 then
(13) CV1 � 1/((yoNoF+1 − Z∗2)/(Znad

2 − Z∗2) − εi
NoF+1);

(14) CV2 � max((ymNoF+1 − Z∗2)/(Znad
2 − Z∗2) − εi

NoF+1, 0);
(15) if CV2 �� 0 then
(16) CV2 � 1/((ymNoF+1 − Z∗2)/(Znad

2 − Z∗2) − εi
NoF+1);

(17) if CV1<CV2 then
(18) Remove the decision variables of membrane mi;
(19) Duplicate the decision variables of membrane o and add them to membrane mi;
(20) return o and B;

ALGORITHM 8: Fusion.

Computational Intelligence and Neuroscience 9

population, respectively. Z∗ and Znad are updated with the
evolutionary process.

*e NoF and CurGen in lines 9 and 10 mark the main
objective and iteration counter, respectively. NoF ∈ {0, 1},
when NoF� 0, the first objective function is selected as the
main objective; otherwise, the second objective function is
selected. CurGen is used to record the number of iterations,
and the algorithm ended when CurGen meets the maximum
iteration number MaxGen.

Lines 12–22 are the evolutionary process of each gen-
eration in MEA-CNDP. In IP updating (Line 13), the in-
dividual membranes in the original IP are removed
completely, and Algorithm 5 selects the new individual
membranes into IP. In the main objective transforming
(Lines 15–16), the upper bound vectors and individual
membranes are rematched according to Algorithm 6. *e
evolution of IP includes membrane division (Algorithm 7)
and updated Z∗, membrane fusion (Algorithm 8), mem-
brane cytolysis and selection (Algorithm 9), and updated
Znad.

Figures 5–8 illustrate the procedure of MEA-CNDP.
Figure 5 shows the membrane structure after one iteration,
and the value of CurGen will be determined before the next
iteration. If the CurGen can be divided by DRAinterval, Al-
gorithm 5 will be executed, and if the CurGen can be divided
by INm, Algorithm 2 will be executed. Here, we assume that
Algorithms 5 and 6 have been executed. Figure 6 shows the
process and results of executing the division operator. In one
evolution, according to Algorithm 7, membranes mj and m3
are selected to perform the division operation, and mem-
brane o is the generated offspring membrane. Figure 7 shows
the process and results of performing the fusion operator.

According to Algorithm 8, the upper bound vector of
membrane o and the substances in the neighbor membrane
of membrane o are updated. Figure 8 shows the process and
results of performing the cytolysis and selection operator.
According to Algorithm 9, the membrane o interacts with
the membrane in the external archive membrane EM, dis-
solves the bad membrane, and selects the retained
membrane.

MEA designs evolutionary strategy according to the
information exchange between membranes. According to
the life activities of membrane and the information exchange
mechanism between membranes, MEA generates its own
unique division, fusion, dissolution, and selection operators.
MEA uses membrane heuristic information and parallel
optimization to realize individual evolution and solve
problems. In particular, MEA-CNDP takes into account the
characteristics of the bi-CNDP and introduces new strate-
gies such as population initialization and new evolutionary
operators, thereby establishing a new framework to solve bi-
CNDP.

3.3. "e Initialization Strategy. *e pro and cons of the
initial population significantly affect the bi-CNDP, es-
pecially for the models similar to large-scale MOPs. *us,
MEA-CNDP introduces a population initialization
strategy, which includes two parts: evaluating the scores of
decision variables and generating the initial population.
*rough this strategy, not only can the quality of the
initial population be improved but it can also provide
evidence for deciding whether to retain or eliminate
evolutionary genes.

Input: o (the newly generated membrane), EM (the external archive membrane)
Output: EM (the updated external archive membrane)

(1) isDominated← false;
(2) [o_F1, o_F2]←Calculate the objective function values of membrane o;
(3) for each m in EM do
(4) [m_F1, m_F2]←Calculate the objective function values of membrane m;
(5) if o dominate m then
(6) Remove membrane m in EM;
(7) if m dominate o then
(8) isDominated← true;
(9) if o_F1� �m_F1 && o_F2� �m_F2 then
(10) isDominated← true;
(11) if isDominated is true then
(12) Add membrane o to EM;
(13) return EM;

ALGORITHM 9: Cytolysis and Selection.

0 1/4 13/41/2

0 1/4 1/2 3/4 1 0 1/4 1/2 3/4 1 0 1/4 1/2 3/4 1

Figure 4: *e process of generating uniformly distributed upper bound vector.

10 Computational Intelligence and Neuroscience

*e process of calculating the scores of decision variables
can be seen in Algorithm 3, the coding method is used in
[37], and some improvement is executed according to the
characteristic of bi-CNDP. Firstly, since the decision variable
of bi-CNDP is a binary value (if the node is deleted, the value
of the corresponding decision variable will be set to 1;
otherwise, it is 0), Algorithm 3 simplifies the coding process,

adopts binary coding directly, and omits the real vector
coding of the solution. Next, in bi-CNDP, the degree of a
node is taken into account. Nodes with degree 1 are not
included in the score calculating of the decision variables (in
fact, their scores have been assigned to Max_Double). De-
leting nodes with degree 1 in the graph has little effect on the
pairwise connectivity of the graph. Especially in the large-

IP EM
0

m1 m2 m3 m4 mi mj

ε1 ε2 ε3 ε4 εi εj

x5, x6

x3, x4,

x1, x2,

x9, x10

x6, x8,

x3, x5,

x8, x9

x5, x7,

x1, x4,

x9, x10

x7, x8,

x4, x6,

x7, x10

x5, x6,

x3, x4,

x8, x10

x6, x7,

x1, x3,

Figure 5: *e membrane structure before the beginning of a certain evolution.

x1, x3, x6, x7, x8, x10εj

x1, x4, x5, x7, x8, x9ε3

x1, x4, x5, x7, x8, x9ε3

x1, x3, x5, x7, x8, x9ε3

x2, x3, x5, x7, x8, x9ε3

x3, x5, x7, x8, x9ε3

x1, x5, x7 , x8, x9ε3

x1, x4, x5, x7, x8, x9ε3

mj

m3

o

o

o

o

o

o
0

A1 = {x4, x5, x9}, A2 = {x3, x6, x10}

Figure 6: *e membrane structure of performing the division operator.

x2, x3, x5, x7, x8, x9

x4, x6, x7, x8, x9, x10

o

m4

mp

mq

m4

mp

mq
B (o) B (o)

o

0

ε3

ε4

x1, x2, x3, x7, x8, x9εp

x2, x3, x4, x6, x7, x8εq

ε1, ε2, . . ., εk-1, εk, εk-1, . . ., εN

x2, x3, x5, x7, x8, x9ε4

x1, x2, x3, x7, x8, x9εp

x2, x3, x5, x7, x8, x9εq

x2, x3, x5, x7, x8, x9εk

Figure 7: *e membrane structure of performing the fusion operator.

Computational Intelligence and Neuroscience 11

scale graph, the effect is almost negligible. On the contrary, it
will increase the impact on “minimize deleting cost.” Finally,
because the nodes in bi-CNDP have weights related to the
cost of deleting themselves, the final calculation results will
be determined by the nondominated front number and the
cost of deleting the corresponding node together, which can
more accurately assess the importance of each decision
variable.

Algorithm 4 shows the process of generating the initial
population. Each individual membrane is generated by
adding decision variables to the empty membrane, and the
selected decision variables are determined by comparing
their scores. *e size of each membrane is set as rand()×D,
which is seen as a random parameter. *e decision variables
with smaller score values are more likely to be selected
because the smaller score values often mean better non-
dominated solutions.

3.4. Membrane Inherited Pool Updating and Main Objective
Transforming. Different individuals in the membrane
population have different upper bound vectors and sub-
problems, which means that the calculation difficulty is also
different. *erefore, it is reasonable to assign different
amounts of computational effort to different individuals
according to the utility value in each generation of evolution.
Algorithm 5 updates the IP through fixed iteration interval,
and in each evolutionary process, only the individual
membranes in IP participate in the evolution, which ensures
the efficiency of the MEA-CNDP algorithm.

Algorithm 5 calculates the utility value of each individual
membrane in Lines 6–9. Every time the IP is updated, all
individual membranes in the original IP are removed. Line
14 selects several individual membranes to enter the IP
through binary tournament selection, which means that the
individual membrane with better utility value will be more
likely to enter the IP. *is process is repeated (N/5 − m − 1)

times to select adequate individual membranes, and these
individual membranes in the IP participate in the

evolutionary process until the IP is updated next time. *e
details of parameter selection can be seen in [35].

Since transforming the main objective is adopted, the
main objective function will convert with a fixed iteration
interval. Among the current membrane population, the
individual membranes that performwell to the original main
objective function may not perform well to the current main
objective function; thus, it is necessary to rematch the
membrane and the subproblem.

Algorithm 6 matches the individual membrane with the
smallest distance from a certain subproblem (in fact, dif-
ferent upper bound vector represents different subproblem)
in N individual membranes to the subproblem. Line 8 de-
fined the formula of calculating the distance. *is matching
strategy is implemented after transforming the main ob-
jective function, which means each upper bound vector is
combined with the fittest subproblem throughout. By
implementing this strategy, the excellent individuals will not
be eliminated because of a single evaluation standard; thus,
the diversity of the membrane population is maintained.

3.5. Evolutionary Operator

3.5.1. Division Operator. In the evolutionary process, the
division operator is used to generate new individual
membranes based on the existing heuristic information to
ensure that the membrane population always evolves in a
better direction. Algorithm 7 shows the implementation
process of the division operator.

One of the parent membranes used to perform division
operator comes from the EM, and another comes from the
whole membrane population or the neighbor membranes of
the current membrane depending on probability. In the
process of division operator, the decision variables shared by
the two parental membranes are retained firstly, and then the
decision variables unique to the two parental membranes are
removed or retained by equal probability. In removing or
keeping decision variables, the selection is made based on
the score of the decision variable, the decision variable with a

EM

x7, x10

x5, x6,

x3, x4,

x8, x10

x6, x7,

x1, x3,

x8, x10

x6, x7,

x1, x3,

x8, x10

x6, x7,

x1, x3,

x8, x9

x5, x7,

x2, x3,

mi mj

EM

mj

EM

o mj

o
εk

εkεi εj εj εj

x2, x3, x5, x7, x8, x9

0

Figure 8: *e membrane structure of performing the cytolysis and selection operator.

12 Computational Intelligence and Neuroscience

smaller score will be retained, and the decision variable with
a larger score will be removed. Finally, to avoid the mem-
brane population falling into the local optimum, the decision
variables are released from the membrane to the environ-
ment or copied from the environment to the membrane with
equal probability. Similarly, the decision variables with a
larger score in the individual membrane will be released,
while the decision variables with a smaller score in the
environment will be copied into the individual membrane.

3.5.2. Fusion Operator. When the division operator gen-
erates a new individual membrane, it may not perform well
for the subproblem corresponding to the upper bound
vector in its membrane, but performs well for the sub-
problem corresponding to another upper bound vector. So,
Algorithm 8 fuses the newly generated individual membrane
with the other upper bound vector, and the neighbor
membrane will also be updated.

Algorithm 8 contains two parts. Firstly, the newly
generated individual membrane is fused with another upper
bound vector suitable itself, to avoid the waste of the newly
generated excellent individual membrane because it does not
adapt to its own upper bound vector. Lines 1–6 define the
steps to search the upper bound vector corresponding to the
newly generated individual membrane, which is conducive
to the convergence of the membrane population. *en,
according to the objective function value of the newly
generated individual membrane, the neighbor membranes
are updated, the nondominated individual membrane is
retained, and the dominated solution is removed.

3.5.3. Cytolysis and Selection Operator. *e selection and
cytolysis operator updates the EM by calculating the
dominant relationship between the newly generated indi-
vidual membrane and the individual membrane in the EM.
All the individual membranes dominated by the newly
generated individual membrane in the external archive
membrane will be dissolved. If no individual membrane
dominates the newly generated individual membrane in the
EM, the newly generated individual membrane will be added
to the EM. Algorithm 9 shows the selection and cytolysis
operator in detail.

*ese four evolutionary operators occurred during the
evolution of the entire membrane population. *e division
operator produces better individual membrane, the fusion
operator matches the individual membrane with the ap-
propriate upper bound vector, and the selection and cy-
tolysis operator guarantees the quality of the EM. *e
execution of different operators promotes the exchange of
information between membranes and makes the entire
membrane population continue to evolve.

In general, MEA-CNDP is a new MEA framework for
solving bi-CNDP. *e main features of the MEA-CNDP
algorithm are as follows: (1) since eachmembrane represents
an individual, the entire solving process can be realized
entirely through membrane evolving. (2) *e evolutionary
process includes not only the evolution of the objects in the
membrane but also the evolution of themembrane structure,

so that excellent individuals can always be maintained. (3)
Since the substance stored in the membrane can be any
object, the complexity of encoding different evolutionary
objects is avoided. (4) *e evolutionary strategy guarantees
the maximum theoretical parallelism of the evolutionary
process and greatly improves the efficiency of the algorithm.
To verify the effectiveness and efficiency of MEA-CNDP,
based on four different types and sixteen different sizes of
CNDP instances, this paper designs relative comparative
experiments of the MEA-CNDP algorithm and some other
algorithms, and the relevant results will be introduced in
Section 4.

4. Numerical Experiments

*is section is devoted to design related experiments to
verify the effectiveness of the proposed MEA-CNDP algo-
rithm and compare it with other existing algorithms on bi-
CNDP. Specifically, four different types of benchmark
problems and datasets of CNDP are outlined firstly. As each
type of problem possesses four different sizes of datasets, 16
benchmark instances, the parameter characteristics of all
instances are introduced as well. To compare the perfor-
mance of different algorithms objectively, the experimental
performance measures are given secondly. *en, the pa-
rameters of all the algorithms involved are provided, as well
as the experimental environment. Finally, the experimental
results of the MEA-CNDP and other algorithms are shown,
and further analysis of the results proves the effectiveness of
the MEA-CNDP.

4.1. "e Benchmark Problems and Dataset of CNDP. Since
there are no specific datasets for the biobjective critical node
detection problem, all of the instances of this paper are
composed of the graphs of several complex networks [27].
*ese graphs are usually studied as single-objective critical
node detection problem, and many effective results have
been obtained. *e datasets contain 16 undirected un-
weighted graphs, all of which are created by complex net-
work generator algorithms. However, few studied deal with
them as MOPs, which are also the motivations and inspi-
rations of this paper.

*e datasets are divided into four types. Barabasi–Albert
(BA) graphs start from a small number of nodes, enriches the
network with the increase of nodes and edges over time, and
finally forms a scale-free complex network graph, which is
proved to be the easiest to process in related data sets.
Watts–Strogatz (WS) graphs simulate a small world with a
more intensive structure, that is, the diameter of the graph is
small, and most nodes can access each other in relatively few
hops, which is the most challenging. Edros–Renyi (ER)
graphs are random, and every pair of vertices in the graph
are randomly connected to form edges according to the
probability, to form a completely random graph. Forest-Fire
(FF) graphs simulate the model of fire spreading in a forest,
different from BA, FF reproduces the heavy tailed distri-
bution, and the network diameter decreases with time. It is
worth noting that although these digitized instances cannot

Computational Intelligence and Neuroscience 13

be reproduced in real networks, the real complex networks
often show the combination of features in these datasets.

For these critical node detection problems, it is vital to
take into account the number of deleted nodes and the
cost of deleting nodes at the same time. *erefore, it is
worthy to consider them from the perspective of MOPs.
MEA has been proved to have its own unique advantages
in solving combinatorial optimization problems [14–16].
Besides, the proposed MEA algorithm in this paper takes
into account the sparsity and large-scale characteristics of
the above application data sets, so it shows excellent
performance. *e experimental results are detailed in
Section 4.4.

In order to characterize the graph structure of the
above datasets accurately, some related quantities are
shown in Table 1. n is the number of nodes, m is the
number of edges, 〈d〉 represents the average degree of
nodes, which can be formulated as 〈d〉 � 2 · m/n, and nAP
represents the number of articulation nodes. CC repre-
sents the value of the clustering coefficient, D represents
the average shortest path length [28], |D1| represents the
number of nodes having degree 1, and N(|D1|) represents
the number of nodes whose neighboring nodes having
degree 1 [36]. Among these characteristics, consider the
number of articulation nodes nAP because the graph with
larger nAP is easier to fragment. *e clustering coefficient
CC can describe the clustering tendency of nodes. *e
average shortest path length D represents the average
distance between two randomly selected nodes in the
graph.

Since these networks are not weighted in the original
network, new benchmark instances are created by assigning
a weight value to each node of each network, and the weight
of each node is regarded as the cost of removing the node.
*e weight generation method comes from [31] and can be
described as follows:

(1) Assign weight to nodes randomly, for example,
cost(v) ∈ [0.2, 3],∀v ∈ V

(2) Assign weight to nodes according to the degree, for
example, cost(v) � log(dv) + 0.5,∀v ∈ V, where dv

represents the degree of the node

4.2. Performance Measures. In this paper, the inverted
generational distance (IGD) [37, 38] and the hypervolume
(HV) [39, 40] are chosen as performance measures.

4.2.1. IGD. IGD can provide combined information on the
convergence and diversity of the known solution. *erefore,
it is widely used to evaluate the approximate solution set of
MOPs.

Let P∗ denote a subset of pareto-optimal solutions
uniformly distributed along with the true PF and P be an
approximation set obtained by multiobjective optimization
algorithms. *e IGD measures the average distance from
each point in P∗ to its nearest point in P regarding the
objective space. It is calculated as

IGD P
∗
, P(􏼁 �

􏽐x∈P∗d(x, P),

P
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

(6)

where d(x, P) represents the Euclidean distance from x to its
nearest neighbor in P. Generally, a smaller IGD value in-
dicates a better convergence and diversity of P. In MEA-
CNDP, for calculating IGD, N nondominated solutions are
selected from the external membrane using the crowding
distance approach [41]. P∗ is chosen from the combination
of all the solutions obtained by the experiments over 20
independent runs.

4.2.2. HV. HV is used to calculate the volume covered by the
obtained dominant individual in the objective space, espe-
cially when the true PF of the MOPs in the application are
unknown. It is calculated as

HV � volume ∪
nPF

i�1
vi􏼒 􏼓, (7)

where nPF is the number of nondominated individuals in the
approximation solution sets. For every individual i in the
nondominated solution set, vi is the hypervolume of ref-
erence pointω and individual member i. InMEA-CNDP, for
calculating HV, the reference point ω is set as 1.1 times the
nadir point in P∗ for each instance.

4.3. Experimental Environment and Parameter Setting. So
far, algorithms I-MOEA/D and I-MOEA/D-εC have shown
the best results in solving bi-CNDP; therefore, this paper
analyzes and compares the proposedMEA-CNDP algorithm
with these two algorithms. To be fair, the relevant param-
eters are set as follows: Algorithms I-MOEA/D and
I-MOEA/D-εC use the same parameters and use binary
vectors to encode the feasible solution. For algorithms
I-MOEA/D, I-MOEA/D-εC, and MEA-CNDP, the pop-
ulation size N is set as 300, 400, 500, and 600 for each
instance when the number of nodes is n≤ 500,
500< n≤ 1000, 1000< n≤ 2500, and 2500< n≤ 5000. For the
external population of algorithms I-MOEA/D and I-MOEA/
D-εC, the external membrane of algorithmMEA-CNDP, the
size S is set as S � ⌊1.5 · N⌋, where ⌊ · ⌋ returns the nearest
integer in the negative infinity direction.

For algorithms I-MOEA/D and I-MOEA/D-εC, the
parameterized uniform crossover [42] and random muta-
tion [22] are adopted to generating new candidate solutions.
Besides, the control parameters of the related generation
operation are the same as those in [22], that is, the biased
probability of crossover is set as 0.65, and the random
mutation probability of each decision variable of the solution
is set as 0.03.

For algorithms I-MOEA/D, I-MOEA/D-εC and MEA-
CNDP, the size of the neighborhood is set as ⌊0.1 · N⌋, the
probability of selecting an individual from the neighborhood
is set as 0.9. For algorithms I-MOEA/D and I-MOEA/D-εC,
the maximal number of replacement is set as ⌊0.01 · N⌋. *e
maximum number of iterations I is set as 2500, 4000, 6000,
and 7500 when the number of nodes is n≤ 500,
500< n≤ 1000, 1000< n≤ 2500, and 2500< n≤ 5000. For

14 Computational Intelligence and Neuroscience

algorithms I-MOEA/D-εC and MEA-CNDP, the iteration
interval of transforming the main objective function is set as
⌊20% · I⌋. When the number of iterations reaches the
maximum, all algorithms end.

All comparison algorithms are run on a personal
computer with a 2.20GHz CPU and 8GB RAM. Each al-
gorithm runs independently 20 times to obtain statistical
results.

4.4. ExperimentalResults andAnalysis. As mentioned above,
the comparative experiments are carried out in three al-
gorithms (i.e., I-MOEA/D, I-MOEA/D-εC and MEA-
CNDP). Considering I-MOEA/D, I-MOEA/D-εC and their
variants, only the best results among their various variants
are considered in the following experiments, that is, in the
mating pool selection strategy, the “-NP-EP” method is
adopted, and the “-G” method is adopted in the replacement
pool strategy. All of the experimental results of I-MOEA/D
and I-MOEA/D-εC are from [31]. Tables 2–5 exhibit the
total comparative experimental results of the three algo-
rithms. *e values in Tables 2 and 3 are the average IGD on
all test instances with random weights and logarithmic
weights, respectively. *e values in Tables 4 and 5 are the
average HV on all test instances with random weights and
logarithmic weights, respectively. For each indicator, the
bold data in each table are the best mean metric values of
each instance. Noteworthy is that, for fair comparison, the
same parameters in the three algorithms are given the same
values. As for the specific parameter in MEA-CNDP algo-
rithm, the experiments to detect the influence of parameters
on the experimental results are designed and implemented,
and therefore, the excellent parameters are selected. *e
experimental results in the tables are the results of selecting
better parameters.

Tables 2 and 3 show the results of the IGD metric values
on all test instances with random weights and logarithmic
weights. As shown in Table 2, in 16 test instances with
randomweights, theMEA-CNDP algorithm performs better
than other algorithms in 11 instances. Further analysis can

find that, in all instances of BA and FF of four different sizes,
the MEA-CNDP algorithm also has significant advantages
over other algorithms. Moreover, the MEA-CNDP algo-
rithm shows poor results in theWS instance. In ER instance,
the MEA-CNDP algorithm and I-MOEA/D-εC algorithm
show competitive performance. *e experimental results in
Table 3 show that, in 16 test instances with logarithmic
weights, the MEA-CNDP algorithm performs better than
other algorithms in 10 instances. Specifically, in 16 instances,
the MEA-CNDP algorithm shows absolute advantage in BA
and FF instances with all sizes of graphs and shows slightly
worse results in WS and ER instances.

Tables 4 and 5 show the results of the HV metric values
on all test instances with random weights and logarithmic
weights. Different from the experimental results of the IGD
metric, it is evident that the performance of theMEA-CNDP
algorithm in the HV metric is far better than the other
algorithms. Specifically, the MEA-CNDP algorithm achieves
the best solution on all sizes of 16 instances with random
weights and achieves the best on 15 out of 16 instances with
logarithmic weights, proving that the MEA-CNDP algo-
rithm possesses good convergence and population diversity.

It can be seen from the results of the above comparative
experiments that, MEA-CNDP algorithm has good per-
formance for most of the instances, except for the WS and
ER instances.

To better measure the performance ofMEA-CNDPmore
accurately, further experiments of I-MOEA/D-εC andMEA-
CNDP algorithms are carried out. Figures 9 and 10 exhibit
the degree of improvement of the MEA-CNDP algorithm
relative to the I-MOEA/D-εC algorithm. In Figure 9, PIRIGD
is calculated by formula (8), and IGD(A) represents the IGD
metric of algorithm A. PIRIGD represents the relative change
rate of the IGD metric of the algorithms MEA-CNDP and
MOEA/D-εC as the number of decision variables increases.
*e smaller the IGD, the better the solution. So, MEA-
CNDP shows worse results than I-MOEA/D-εC in small-
scale instances of WS and ER. However, with the increase of
the number of decision variables, theMEA-CNDP algorithm
shows better results.

Table 1: Some related quantities of the sixteen benchmark instances.

Instance n m <d> nAP CC D |D1| N(|D1|)

BA500 500 499 1.996 164 0 5.663 336 149
BA1000 1000 999 1.998 324 0 6.045 676 290
BA2500 2500 2499 1.999 825 0 6.901 1675 729
BA5000 5000 4999 1.999 1672 0 8.38 3328 1475
WS250 250 1246 9.968 0 0.473 3.327 0 0
WS500 500 1496 5.984 0 0.42 5.304 0 0
WS1000 1000 4996 9.992 0 0.483 4.444 0 0
WS1500 1500 4498 5.997 0 0.48 7.554 0 0
ER235 235 350 2.979 48 0.006 5.339 39 37
ER466 466 700 3.004 84 0.002 5.974 69 64
ER941 941 1400 2.976 177 0.005 6.559 147 139
ER2344 2344 3500 2.986 419 0.001 7.516 396 354
FF250 250 514 4.112 83 0.276 4.816 57 50
FF500 500 828 3.312 195 0.247 6.026 160 136
FF1000 1000 1817 3.634 362 0.216 6.173 280 236
FF2000 2000 3413 3.413 725 0.245 7.587 552 477

Computational Intelligence and Neuroscience 15

Table 2: *e experimental results of IGD of MEA-CNDP and other algorithms on random weights instance.

Instance I-MOEA/D I-DMOEA-εC MEA-CNDP
BA500 3.19E− 03 1.74E− 04 1.66 E− 04
BA1000 1.57E− 02 5.76E− 04 2.49 E− 04
BA2500 4.74E− 04 4.64E− 04 9.95 E− 05
BA5000 7.57E− 03 7.34E− 04 4.60 E− 04
WS250 2.23E− 02 9.36 E− 04 5.85E− 03
WS500 1.50E− 02 6.23 E− 04 3.84E− 03
WS1000 1.65E− 02 1.40 E− 03 6.14E− 03
WS1500 4.89E− 02 4.27E− 03 4.14 E− 03
ER235 3.52E− 02 2.64 E− 04 8.04E− 04
ER466 8.79E− 03 8.64 E− 04 2.46E− 03
ER941 2.70E− 02 4.62E− 03 2.20 E− 03
ER2344 2.28E− 02 6.99E− 03 1.99 E− 03
FF250 5.20E− 02 9.84E− 04 1.18 E− 04
FF500 3.75E− 02 2.73E− 03 1.45 E− 03
FF1000 2.28E− 02 1.33E− 03 1.14 E− 03
FF2000 2.58E− 02 2.81E− 03 9.36 E− 04

Table 3: *e experimental results of IGD of MEA-CNDP and other algorithms on logarithmic weights instance.

Instance I-MOEA/D I-DMOEA-εC MEA-CNDP
BA500 3.41E− 02 2.13E− 04 1.33 E− 04
BA1000 6.16E− 03 4.21E− 04 3.03 E− 04
BA2500 2.77E− 02 6.19E− 04 2.34 E− 04
BA5000 6.05E− 03 5.48E− 04 3.33 E− 04
WS250 2.28E− 02 4.82 E− 04 8.49E− 03
WS500 7.86E− 03 6.16 E− 03 1.53E− 02
WS1000 9.84E− 03 8.15 E− 04 1.02E− 03
WS1500 7.15E− 03 6.42E− 04 6.33 E− 04
ER235 2.19E− 02 5.92 E− 04 1.80E− 03
ER466 1.42E− 02 2.62 E− 03 4.40E− 03
ER941 2.35E− 03 2.52 E− 03 3.94E− 03
ER2344 7.54E− 03 6.17E− 04 4.03 E− 04
FF250 5.19E− 02 4.10E− 03 2.07 E− 03
FF500 1.30E− 02 9.19E− 04 8.02 E− 04
FF1000 9.05E− 02 6.81E− 03 6.26 E− 03
FF2000 3.24E− 02 4.46E− 03 3.78 E− 03

Table 4: *e experimental results of HV of MEA-CNDP and other algorithms on random weights instance.

Instance I-MOEA/D I-DMOEA-εC MEA-CNDP
BA500 9.15E− 03 6.81E− 02 3.52 E− 01
BA1000 8.81E− 05 4.33E− 04 3.24 E− 03
BA2500 8.87E− 06 4.55E− 05 1.09 E− 04
BA5000 6.48E− 05 7.56E− 05 1.20 E− 04
WS250 3.44E− 01 4.04E− 01 7.49 E− 01
WS500 2.89E− 01 3.57E− 01 5.56 E− 01
WS1000 3.95E− 02 3.17E− 02 8.20 E− 02
WS1500 6.61E− 02 7.67E− 02 4.10 E− 01
ER235 2.98E− 01 4.23E− 01 5.81 E− 01
ER466 1.16E− 01 3.45E− 01 5.23 E− 01
ER941 2.48E− 02 4.89E− 02 9.14 E− 02
ER2344 5.41E− 05 2.25E− 04 1.15 E− 03
FF250 1.37E− 01 4.22E− 01 7.20 E− 01
FF500 7.11E− 02 1.19E− 01 5.32 E− 01
FF1000 4.96E− 03 1.72E− 02 5.22 E− 02
FF2000 3.86E− 04 5.67E− 04 1.20 E− 03

16 Computational Intelligence and Neuroscience

Table 5: *e experimental results of HV of MEA-CNDP and other algorithms on logarithmic weights instance.

Instance I-MOEA/D I-DMOEA-εC MEA-CNDP
BA500 5.25E− 02 1.89E− 01 9.20 E− 01
BA1000 1.39E− 04 5.95E− 04 1.20 E− 03
BA2500 5.59E− 05 4.54E− 05 3.66 E− 04
BA5000 4.99E− 05 6.58E− 05 1.21 E− 04
WS250 3.41E− 01 4.49 E− 01 4.10E− 01
WS500 1.58E− 01 2.77E− 01 9.10 E− 01
WS1000 1.75E− 01 6.51E− 02 2.53 E− 01
WS1500 2.54E− 02 7.73E− 02 4.20 E− 01
ER235 3.05E− 01 5.78E− 01 1.09 E+ 00
ER466 1.24E− 01 2.16E− 01 8.40 E− 01
ER941 9.53E− 03 1.68E− 02 9.80 E− 02
ER2344 6.47E− 04 6.01E− 04 3.97 E− 03
FF250 2.68E− 01 5.62E− 01 1.12 E+ 00
FF500 3.88E− 02 6.09E− 02 1.70 E− 01
FF1000 3.77E− 03 7.74E− 03 1.50 E− 02
FF2000 4.22E− 03 9.89E− 03 5.17 E− 02

250 500 1000 1500

PI
R

The number of decision variables

Random
Logarithmic

-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2

(a)

235 466 941 2344

PI
R

The number of decision variables

Random
Logarithmic

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

(b)

Figure 9: *e PIR changes with the increase in the number of decision variables of the IGD metric of WS and ER instances on random and
logarithmic weights. (a) WS instance. (b) ER instance.

250 500 1000 1500

PI
R

The number of decision variables

Random
Logarithmic

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

(a)

235 466 941 2344

PI
R

The number of decision variables

0

1

2

3

4

5

6

Random
Logarithmic

(b)

Figure 10:*e PIR changes with the increase in the number of decision variables of the HVmetric of WS and ER instances on random and
logarithmic weights. (a) WS instance. (b) ER instance.

Computational Intelligence and Neuroscience 17

PIRIGD �
IGD(I − DMOEA − εC) − IGD(MEA − CNDP)

IGD(I − DMOEA − εC)
.

(8)

In Figure 10, PIRHV is calculated by formula (9), and
HV(A) represents the HV metric of algorithm A. PIRHV
represents the relative change rate of the HV metric. *e
larger the HV, the better the solution, which means that the
MEA-CNDP algorithm is always better than the I-MOEA/
D-εC algorithm in HV metric, and this advantage becomes
more obvious as the number of decision variables increases.
*us, it can be seen that the MEA-CNDP algorithm pos-
sesses better adaptability for large-scale MOPs.

PIRHV �
HV(MEA − CNDP) − HV(I − DMOEA − εC)

HV(I − DMOEA − εC)
.

(9)

In addition, some potential knowledge can be derived
from the initialization strategy of the MEA-CNDP. Algo-
rithms 3 and 4 introduce the evaluation method of decision
variables and the initial population generation strategy,
respectively. Among them, for evaluating the score value of
decision variables, Algorithm 3 eliminates the consideration

of nodes with degree 1 and considers those with a degree
greater than 1 because deleting the nodes with degree 1 in the
graph will only have a small impact on calculating the
pairwise connectivity of the residual graph. It can be seen
from Table 1 that there are no nodes with degree 1 in WS
instances and only a few nodes with degree 1 in ER instances;
in other words, WS and ER instances are relatively denser
graphs. Furthermore, Algorithms 3 and 4 consider the ratio
of the nondominated front number to the cost of deleting
nodes as the scores of decision variables, which also shows
that the MEA-CNDP algorithm is more suitable for sparse
graphs.

An excellent initial population will have a significant
impact on the subsequent solution space search. As can be
seen, the I-MOEA/D-εC algorithm uses the random ini-
tialization strategy; in contrast, MEA-CNDP designs the
above specific initialization strategy. Figure 11 shows the
population generated by the initialization strategy of MEA-
CNDP and random initialization strategy in the objective
space, and each population contains 50 solutions for the four
types of instances of 500 decision variables with random
weights, where f1 and f2 are two objective function values.
Not difficult to see from Figure 11, the random population

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2
f1

f 2

The initialization strategy of MEA-CNDP
Random initialization strategy

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f 2

0 0.2 0.4 0.6 0.8 1 1.2
f1

The initialization strategy of MEA-CNDP
Random initialization strategy

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f 2

0 0.2 0.4 0.6 0.8 1 1.2
f1

The initialization strategy of MEA-CNDP
Random initialization strategy

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f 2

0 0.2 0.4 0.6 0.8 1 1.2
f1

The initialization strategy of MEA-CNDP
Random initialization strategy

(d)

Figure 11: Initial population generated by the initialization strategy of MEA-CNDP and a randomly generated population in objective
space. (a) BA instance. (b) WS instance. (c) ER instance. (d) FF instance.

18 Computational Intelligence and Neuroscience

initialization strategy often has poor convergence and
population diversity, so that it is easy to cause the subsequent
search to fall into the local optimum, thereby deteriorating
the entire algorithm process. In contrast, the population
initialization strategy of the MEA-CNDP algorithm con-
siders the characteristics of each decision variable itself. It
performs the necessary screening of the solution when the
population is initialized, so that the entire initial population
has a higher quality, which is undoubtedly beneficial to
produce a better solution. *is also shows that our strategy
has greater advantages when facing large-scale sparse graphs
such as BA and FF instances.

5. Conclusion and Future Work

As a classical problem in combinatorial optimization, CNDP
is often studied as a single-objective optimization problem.
However, this kind of research method has some limitations
and cannot cover all the problems. In addition, as a kind of
new evolutionary algorithm, MEA has its unique advantages
in solving such combinatorial optimization problems with
graph properties.*erefore, this paper is devoted to research
a membrane evolution algorithm to solve the problem of bi-
CNDP (MEA-CNDP). In MEA-CNDP, a population ini-
tialization method based on decision variable evaluation is
proposed. *en, some measures to enhance the efficiency of
the MEA-CNDP algorithm are presented, including the
main objective function transforming, membrane and
subproblem matching strategies. Finally, according to the
algorithm framework of MEA-CNDP, we design and im-
plement the correlation division, fusion, cytolysis, and se-
lection operators. To verify the effectiveness of MEA-CNDP,
the comparative experiments are designed.*e experimental
results show that MEA-CNDP has good performance in
solving bi-CNDP.

For future work, there are two potential research di-
rections. At first, the population initialization strategy is
worth further consideration, a more accurate method to
calculate the score of the decision variable can be designed,
and updating the score of the decision variable in the
evolutionary process is considerable as well. Another in-
teresting research direction is considering some local search
strategies in the design of evolutionary operators, which can
further enhance the quality of solutions.

Data Availability

All the original experimental data in this article are from
http://individual.utoronto.ca/mventresca/cnd.html.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] R. E. Precup, E. L. Hedrea, R. C. Roman, E. M. Petriu,
A. I. Szedlak-Stinean, and C. A. Bojan-Dragos, “Experiment-
based approach to teach optimization techniques,” IEEE
Transactions on Education, vol. 64, 2021.

[2] G. Paun, “Computing with membranes,” Journal of Computer
and System Sciences, vol. 61, 2000.

[3] L. Pan, T. Wu, Y. Su, and A. V. Vasilakos, “Cell-like spiking
neural P systems with request rules,” IEEE Transactions on
Nanobioscience, vol. 16, pp. 513–522, 2017.

[4] G. Ping, Z. Jian, C. Haizhu, and Y. Ruilong, “A linear-time
solution for all-SAT problem based on P system,” Chinese
Journal of Electronics, vol. 27, 2018.

[5] P. Guo, Y. Dai, and H. Chen, “A P system for Hamiltonian
cycle problem,” Optik, vol. 127, 2016.

[6] D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, and H. Peng,
“Membrane computing and image processing: a short sur-
vey,” Journal of Membrane Computing, vol. 1, 2019.

[7] M. Han, C. Liu, and J. Xing, “An evolutionary membrane
algorithm for global numerical optimization problems,” In-
formation Sciences, vol. 276, 2014.

[8] B. Balasundaram, S. Butenko, and I. V. Hicks, “Clique re-
laxations in social network analysis: the maximum k-plex
problem,” Operations Research, vol. 59, 2011.

[9] T. Y. Nishida, “Membrane algorithms: approximate algo-
rithms for NP-complete optimization problems,” in Appli-
cations of Membrane Computing, Springer, Berlin, Germany,
2007.

[10] H. Peng, J. Wang, P. Shi, A. Riscos-Núñez, and M. J. Pérez-
Jiménez, “An automatic clustering algorithm inspired by
membrane computing,” Pattern Recognition Letters, vol. 68,
2015.

[11] X. Y. Wang, G. X. Zhang, J. B. Zhao, H. N. Rong, F. Ipate, and
R. Lefticaru, “A modified membrane-inspired algorithm
based on particle swarm optimization for mobile robot path
planning,” International Journal of Computers, Communica-
tions & Control, vol. 10, 2015.

[12] J. Cheng, G. Zhang, and T. Wang, “A membrane-inspired
evolutionary algorithm based on population P systems and
differential evolution for multi-objective optimization,”
Journal of Computational and"eoretical Nanoscience, vol. 12,
2015.

[13] G. Zhang, J. Cheng, M. Gheorghe, F. Ipate, and X. Wang,
“QEAM: an approximate algorithm using P systems with
active membranes,” International Journal of Computers,
Communications & Control, vol. 10, 2015.

[14] P. Guo, C. Quan, and H. Chen, “MEAMVC: a membrane
evolutionary algorithm for solving minimum vertex cover
problem,” IEEE Access, vol. 7, 2019.

[15] P. Guo, X. Wang, Y. Zeng, and H. Chen, “MEAMCP: a
membrane evolutionary algorithm for solving maximum
clique problem,” IEEE Access, vol. 7, 2019.

[16] P. Guo, M. Hou, and L. Ye, “MEATSP: a membrane evolu-
tionary algorithm for solving TSP,” IEEE Access, vol. 8, 2020.

[17] H. Zapata, N. Perozo, W. Angulo, and J. Contreras, “A hybrid
swarm algorithm for collective construction of 3D structures,”
International Journal of Artificial Intelligence, vol. 18, 2020.

[18] R. E. Precup, R. C. David, R. C. Roman, A. I. Szedlak-Stinean,
and E. M. Petriu, “Optimal tuning of interval type-2 fuzzy
controllers for nonlinear servo systems using Slime Mould
Algorithm,” International Journal of Systems Science, 2021.

[19] A. Soares, R. Râbelo, and A. Delbem, “Optimization based on
phylogram analysis,” Expert Systems with Applications,
vol. 78, 2017.

[20] B. H. Abed-Alguni, “Island-based cuckoo search with highly
disruptive polynomial mutation,” International Journal of
Artificial Intelligence, vol. 17, 2019.

Computational Intelligence and Neuroscience 19

[21] A. Arulselvan, C. W. Commander, L. Elefteriadou, and
P. M. Pardalos, “Detecting critical nodes in sparse graphs,”
Computers & Operations Research, vol. 36, 2009.

[22] A. Arulselvan, C. W. Commander, O. Shylo, and
P. M. Pardalos, Cardinality-Constrained Critical Node De-
tection Problem, Springer, New York, NY, USA, 2011.

[23] M. Di Summa, A. Grosso, and M. Locatelli, “Branch and cut
algorithms for detecting critical nodes in undirected graphs,”
Computational Optimization and Applications, vol. 53, 2012.

[24] M. Ventresca and D. Aleman, “A randomized algorithm with
local search for containment of pandemic disease spread,”
Computers & Operations Research, vol. 48, 2014.

[25] K. Pavlikov, “Improved formulations for minimum connec-
tivity network interdiction problems,” Computers & Opera-
tions Research, vol. 97, 2018.

[26] B. Addis, R. Aringhieri, A. Grosso, and P. Hosteins, “Hybrid
constructive heuristics for the critical node problem,” Annals
of Operations Research, vol. 238, 2016.

[27] M. Ventresca, “Global search algorithms using a combina-
torial unranking-based problem representation for the critical
node detection problem,” Computers & Operations Research,
vol. 39, 2012.

[28] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia, “A
general evolutionary framework for different classes of critical
node problems,” Engineering Applications of Artificial Intel-
ligence, vol. 55, 2016.

[29] L. Faramondi, G. Oliva, S. Panzieri et al., “Network structural
vulnerability: a multiobjective attacker perspective,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 49, 2019.

[30] M. Ventresca, K. R. Harrison, and B. M. Ombuki-Berman,
“*e bi-objective critical node detection problem,” European
Journal of Operational Research, vol. 265, 2018.

[31] J. Li, P. M. Pardalos, B. Xin, and J. Chen, “*e bi-objective
critical node detection problem with minimum pairwise
connectivity and cost: theory and algorithms,” Soft Com-
puting, vol. 23, 2019.

[32] G. Zhang, M. Gheorghe, L. Pan, and M. J. Pérez-Jiménez,
“Evolutionarymembrane computing: a comprehensive survey
and new results,” Information Sciences, vol. 279, 2014.

[33] Q. Zhang and L. Hui, “MOEA/D: a multiobjective evolu-
tionary algorithm based on decomposition,” IEEE Transac-
tions on Evolutionary Computation, vol. 11, pp. 712–731, 2008.

[34] S. Mardle and K. M. Miettinen, “Nonlinear multiobjective
optimization,” Journal of the Operational Research Society,
vol. 51, 2000.

[35] J. Chen, J. Li, and B. Xin, “DMOEA-ϵC: decomposition-based
multiobjective evolutionary algorithm with the ϵ-constraint
framework,” IEEE Transactions on Evolutionary Computation,
vol. 21, 2017.

[36] A. Veremyev, V. Boginski, and E. L. Pasiliao, “Exact identi-
fication of critical nodes in sparse networks via new compact
formulations,” Optics Letters, vol. 8, 2014.

[37] Q. Lin, Y. Ma, J. Chen et al., “An adaptive immune-inspired
multi-objective algorithm with multiple differential evolution
strategies,” Information Sciences, vol. 430, 2018.

[38] E. Zitzler, L. *iele, M. Laumanns, C. M. Fonseca, and
V. G. Da Fonseca, “Performance assessment of multiobjective
optimizers: an analysis and review,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 2, 2003.

[39] S. Huband, P. Hingston, L. While, and L. Barone, “An evo-
lution strategy with probabilistic mutation for multi-objective
optimisation,” in Proceedings of the 2003 Congress on Evo-
lutionary Computation, CEC’03., Canberra, Australia, 2003.

[40] L. While, P. Hingston, L. Barone, and S. Huband, “A faster
algorithm for calculating hypervolume,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 1, 2006.

[41] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II,” Lecture Notes in Computer Science,
vol. 1917, pp. 849–858, 2000.

[42] W. M. Spears and K. A. De Jong, “On the virtues of pa-
rameterized uniform crossover,” in Proceedings of the 4th
International Conference on Genetic Algorithms, San Diego,
CA, USA, July 1991.

20 Computational Intelligence and Neuroscience

