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Abstract

blind test.

Background: Understanding the phenotypic drug response on cancer cell lines plays a vital role in anti-cancer drug
discovery and re-purposing. The Genomics of Drug Sensitivity in Cancer (GDSC) database provides open data for
researchers in phenotypic screening to build and test their models. Previously, most research in these areas starts
from the molecular fingerprints or physiochemical features of drugs, instead of their structures.

Results: In this paper, a model called twin Convolutional Neural Network for drugs in SMILES format (tCNNS) is
introduced for phenotypic screening. tCNNS uses a convolutional network to extract features for drugs from their
simplified molecular input line entry specification (SMILES) format and uses another convolutional network to extract
features for cancer cell lines from the genetic feature vectors respectively. After that, a fully connected network is used
to predict the interaction between the drugs and the cancer cell lines. When the training set and the testing set are
divided based on the interaction pairs between drugs and cell lines, tCNNS achieves 0.826, 0.831 for the mean and top
quartile of the coefficient of determinant (R%) respectively and 0.909, 0.912 for the mean and top quartile of the
Pearson correlation (Rp) respectively, which are significantly better than those of the previous works (Ammad-Ud-Din
et al, J Chem Inf Model 54:2347-9, 2014), (Haider et al., PLoS ONE 10:0144490, 2015), (Menden et al., PLoS ONE
8:61318, 2013). However, when the training set and the testing set are divided exclusively based on drugs or cell lines,
the performance of tCNNS decreases significantly and R, and R? drop to barely above 0.

Conclusions: Our approach is able to predict the drug effects on cancer cell lines with high accuracy, and its
performance remains stable with less but high-quality data, and with fewer features for the cancer cell lines. tCNNS
can also solve the problem of outliers in other feature space. Besides achieving high scores in these statistical metrics,
tCNNS also provides some insights into the phenotypic screening. However, the performance of tCNNS drops in the
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Background

Historically, drug discovery was phenotypic by nature.
Small organic molecules exhibiting observable phenotypic
activity (e.g. whole-cell activity) were detected, a famous
example being penicillin, which was serendipitously
found. Phenotypic screening, an original drug screening
paradigm, is now gaining new attention given the fact that
in recent years the number of approved drugs discovered
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through phenotypic screens has exceeded those discov-
ered through molecular target-based approaches. The lat-
ter, despite being the main drug discovery paradigm in
the past 25 years, can potentially suffer from the failure
in identifying and validating the therapeutic targets. In
reality, most FDA approvals of first-in-class drugs actually
originated from phenotypic screening before their precise
mechanisms of actions or molecular targets were elabo-
rated. A popular example of this is aspirin (acetylsalicylic
acid), for which it took nearly a century to elucidate the
mechanism of its actions and molecular targets.
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There are some public phenotypic screening datasets
online to support the study of the pharmacological func-
tions of drugs. Cancer Cell Line Encyclopedia (CCLE) and
Genomics of Drug Sensitivity in Cancer (GDSC) are the
most popular datasets in the field [1].

A pioneer work using machine-learning approaches to
predict drug response on cancer cell lines was by Menden
et al. [2]. The authors used a neural network to analyze
the response of drugs to cancer cell lines on the GDSC
dataset. Their main result was the achievement of 0.72
for the coefficient of determination and 0.85 for the Pear-
son correlation. [3] and [4] are two other works on GDSC
dataset. The first one used kernelized Bayesian matrix fac-
torization to conduct QSAR analysis on cancer cell lines
and anti-cancer drugs, and the second one used multivari-
ate random forests. Both of their results were not as good
as those in [2], which is chosen to be the baseline for our
work.

The first wave of applications of deep learning in phar-
maceutical research has emerged in recent years. Its utility
has gone beyond bioactivity predictions and has shown
promise in addressing diverse problems in drug discov-
ery. Examples cover bioactivity prediction [5], de novo
molecular design [6], synthesis prediction [7] and biolog-
ical image analysis [8, 9]. A typical example of applying
deep learning in protein-ligand interaction prediction is
the investigation done by Ragoza et al. [10].

Convolutional neural network (CNN) is a machine
learning model that can detect relevant patterns in data
and support classification and regression [11]. CNN has
achieved breaking-through results in many areas, includ-
ing pharmaceutical research [12-14] and has won the
championship in ImageNet-2012 [15].

Inspired by the achievements of CNN in these areas,
we are interested to see if CNN, compared to conven-
tional machine-learning techniques [2—4], could signif-
icantly improve the prediction accuracy of phenotypic
drug response on cancer cell lines. In this paper, a twin
CNN networks model called tCNNS is introduced to pre-
dict the drug cell line interaction. tCNNS comprises a
CNN for drugs and another CNN for cancer cell lines,
which will be explained in detail later. The latest version
of the GDSC dataset is adopted to evaluate the perfor-
mance of tCNNS. Unlike previous works, here the struc-
ture of tCNNS is advanced, and it is tested on the bigger
and more complete dataset. Most importantly, it achieves
much better results than previous works. We share our
model online, hoping to make a contribution to other
researchers.

Related work

Erik et al. [16] stated that both the qualitative clas-
sifiers and the quantitative structure-activity relation-
ship (QSAR) models in drug discovery depend on the
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molecular descriptors, which is the decisive step in the
model development process.

Recently, in drug discovery, researchers started to use
the molecular structure of drugs directly as features
[17-20] instead of using extracted features from open
source software [21, 22]. Due to their good ability to pro-
cess high-dimensional structure data, deep learning has
been largely adopted in this area [16, 23, 24].

From the perspective of machine learning, drug cell line
interaction analysis can be considered as a classification
task where the outputs are some categorical values, such
as sensitivity or resistance, or a regression task where the
outputs are some numerical values, such as ICz. Wang
et al. [25] used support vector machine (SVM) to han-
dle the classification problem by merging drug features
from different sources, such as the chemical properties
and the protein targets. The features they used to repre-
sent cell lines are the same as ours, which are the copy
number variations, gene mutation states and expressions.
Rahman et al. [26] built a random forest based ensem-
ble model for drug sensitivity prediction and they found
that the information of cancer types can help researchers
to enhance the performance even with a fewer number
of samples for training. Ding et al. [27] used the elastic
net to generate a logistic model to predict drug sen-
sitivity. Zhang et al. [28] applied another approach on
the classification problem. It predicted interaction labels
using a drug-drug similarity network and a cell line-cell
line similarity network. These similarity networks were
computed based on the features of drugs and cell lines
respectively.

Regression is more challenging than classification
because there are infinite possible outputs, and many
machine learning models have been adopted to handle it.
Among them, matrix factorization (MF) and neural net-
work (NN) are the two most widely used models and
have been proven to be most useful. In MF, the drug tar-
get interaction matrix is decomposed into two low-rank
matrices, and the interactions among drugs and targets
are represented by the inner products of the vectors in the
two low-rank matrices. Ammad et al. [3, 29] designed a
kernelized Bayesian matrix factorization method for drug
cell line interaction prediction and reported their R? based
on GDSC, which are not as good as the results in Menden
et al. [2]. Chayaporn et al. [30] modified an MF based
recommendation system algorithm and applied it to drug
cell line interaction. The authors tested their algorithms
on GDSC and reported the Spearman correlation as 0.6.
Alexander et al. [31] came up with a deep neural network
to predict the pharmacological properties of drugs and
drug repurposing. They built a fully connected network
and the input features for drugs were the gene level tran-
scriptomic data, which were processed using a pathway
activation scoring algorithm.
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Simplified molecular input line entry specification
(SMILES) of the drugs is converted into vectors using
unsupervised auto-encoder [17, 32]. These vectors can be
used as features or fingerprints of drugs. This method
was further extended for drug discovery by Han et al. [20]
and Zheng et al. [33]. The authors predicted the use of
drugs by comparing the similarity between those vectors
of drugs.

In the recent two years, there are several different deep
neural network (DNN) models that were trained directly
from drug structures and avoided the decisive step. These
DNN models include unsupervised auto-encoder (AE),
supervised convolution neural network(CNN), and recur-
rent neural network (RNN).

Although it is attractive to apply CNN to the formulas of
drugs, it is also very difficult to do so because there is no
uniform pattern in the drug formulas. Instead, researchers
tried to apply CNN on the image of the formulas of drugs
as an alternative solution. Goh et al. [34] adopted a com-
puter vision method to screen the image of drugs. The
advantage of starting from the image of drugs rather than
from their formulas is that it can avoid the massive work
of handling the diversity of drugs. However, the disadvan-
tages are that the accuracy is compromised because the
information will be distorted when mapping drug struc-
tures to images and the performance of this method relies
on the quality of the image processing.

Beyond the application of applying CNN to drug
images, it is also possible to apply CNN to molecular
3D structures directly. Wallach et al. [35] predicted the
binding energy of the small area around an atom, rather
than on the entire structure of drugs. It is interesting
to compare the different representations of drugs, such
as the 3D structured, the feature vectors learned from
SMILES and the features extracted from other software
like PaDEL [36]. They may have different influences on
different problems.

Even though RNN is usually used to handle time
sequence data [37] instead of spatial data, it is very impres-
sive that Lusci et al. [38] applied RNN to the SMILES of
drugs to predict their solubility. The authors converted the
SMILES into indirect graphs, and then fed them into an
RNN. In their work, the authors only considered the prop-
erty of drugs alone, without considering the interactions
among drugs and other biological factors, such as cell lines
or proteins.

We compare our model to that by Menden et al. [2],
where the authors used a neural network to analyze the
IC50 of drugs to cancer cells on the same dataset as ours.
However, their network structure is not advanced enough,
and the features they used are not informative enough. We
designed tCNNS, a convolution neural network (CNN)
based model, to predict the interaction between drugs and
cell lines.
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Methods

In this section, the chosen database GDSC, the prepro-
cessing steps, and the proposed neural network structure
are described in detail to make our experiments easier to
replicate.

Data acquisition and preprocessing

Genomics of Drugs Sensitivity in Cancer (GDSC) [39] is
a public online database about the relationship among
many types of cancer and various anti-cancer drugs. Can-
cer cell lines in GDSC are described by their genetic
features, such as mutations state and copy number vari-
ances. For the drugs, GDSC provides their names and
the compound id (CID). In chemistry, CID is a unique
number assigned to each molecule and can be used as
the reference number to extract more information about
the drugs such as their molecular structures from other
databases. GDSC uses ICsq as the metric of drugs’ effec-
tiveness on cancers. ICsp is the amount of drug needed
to inhibit a cancer by half. The less the value is, the more
effective the drug is. GDSC is an ongoing project and is
being updated regularly. In our paper, GDSC version 6.0
is used. As a comparison, Menden et al. [2] used version
2.0 of the GDSC, which contains much fewer drugs and
cell lines.

The three downloaded files from GDSC are:

(a) Drug_list.csv, which is a list of 265 drugs. Each drug
can be referred to by its CID or name.

(b) PANCANCER_Genetic_feature.csv, which is a list of
990 cancer cell lines from 23 different types of
cancers. Each cell line is described by at most 735
features. Any feature belongs to one of the two
categories: mutation state or copy number alteration.

(c) PANCANCER_IC.csv, which contains the ICsq
information between 250 drugs and 1074 cell lines.

Note that the numbers of drugs in files (a) and (c) are
inconsistent, and that the numbers of cell lines in files (b)
and (c) are also inconsistent. Some cell lines have less than
735 features. Besides, GDSC does not provide the fea-
tures for drugs, which have to be downloaded from other
datasets. All of these indicate that three preprocessing
steps are needed to clean the data.

1 The first step is to cleanse the drug list. There 15
repeating items in file (a), which are removed. Some
CIDs in file (a) are inconsistent with the CIDs found
in PubChem [40], which is a popular public chemical
compounds database. To enforce the consistency, the
CIDs from PubChem have been adopted. Some drugs
cannot be found in PubChem by referring to their
names in the file (a) and they are removed. As a
result, 223 drugs with both names and CIDs are left.
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2 The second step is to cleanse the cell lines list. For
the 990 cell lines in file (b), 42 of them has less than
735 features. After the removal, 948 cell lines are left.

3 In the third step, only the ICs5g values between the
remaining drugs after the first step and the
remaining cell lines after the second step are used.
All the other ICs values in file (c) are removed. In
summary, there are 223 drugs and 948 cell lines after
preprocessing. Among the 223 x 948 = 211, 404
interacting pairs, 81.4% (172,114) of the IC5q values
are provided in file (c), whereas 18.6% (39,290) are
missing, which are also taken out.

The ICs5¢ data in file (c) are the logarithm of their real
value. To make it easy for training and comparison, the
method reported in [2] is used to normalize the logarith-
mic ICsg values in the (0, 1) interval. Given a logarithmic
IC50 value x, the real value y = €* is got by taking the expo-
nential formal of x, and the following function is used to
normalize y:

1

Iy

Usually y is very small (< 1073), and the parameter
value — 0.1 has been chosen to distribute the result more
uniformly on the interval (0, 1) [2].

Numerical descriptor extraction

Recently, there are some pioneering works that apply
deep neural network (DNN) directly to the simplified
molecular-input line-entry system (SMILES) of drugs.
SMILES is a linear notation form to represent the struc-
ture of molecules, in which letters, digits and special
characters are used to represent the chemical elements
in a molecule. For example, “C” stands for carbon atom
and “=" is for covalent bond between two atoms. Carbon
dioxide can be represent as O=C=0 and aspirin can be
represented as O=C(C)OC1CCCCC1C(=0)O.

There are some challenges to apply CNN on drugs in
SMILES format: first, SMILES can be constructed in var-
ious ways and there can be many possible SMILESs for
each drug; second, the size of the samples for a CNN
should be consistent, but the lengths of the SMILES for-
mat of drugs are different from each other; third, and more
importantly, the SMILES descriptions are composed of
different letters representing different chemical elements,
such as atoms and bonds, and it does not make sense
to apply convolution operation among different chemi-
cal elements. To solve these problems, preprocessing is
needed to convert the SMILES into a uniform format, so
that different chemical elements are separated from each
other and are independently treated under CNN.

To keep unique SMILES format for the drugs, the
canonical SMILES [41] is adopted as the representation
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for the drugs. Among 223 drugs, 184 canonical SMILES
have been found from PubChem by the drug names,
using a python interface for PubChem. The canonical
SMILES of the remaining 39 drugs are downloaded from
the Library of the Integrated Network-based Cellular Sig-
natures (LINCS) [42].

The longest SMILES for the drugs contains 188 symbols,
and most SMILES lengths are between 20 and 90. To keep
the size consistent and retain the complete information, all
SMILESs are left aligned with space padding on the right
if they are shorter than 188.

The neural network cannot directly take the drugs in
SMILES format as input, and it is needed to convert the
SMILES format (they are of uniform length now after han-
dling the second challenge) into a format that can be used
in the neural network. There are 72 different symbols in
the SMILES format for the total 223 drugs. The distribu-
tion of these symbols is quite unbalanced. For example,
carbon atom [C] appears in all the 223 drugs. Mean-
while, there is only one drug containing [Au] and only
one drug containing [C1]. Suppose the rows are used to
represent different symbols, and the columns are used to
represent positions in the SMILES format, then each drug
in SMILES format can be converted into a 72%188 one-hot
matrix which only contains 0 and 1. In the one-hot matrix
for a drug, a value 1 at row i and column j means that the
ith symbol appears at jth position in the SMILES format
for the drug. In tCNNS, each row of the one-hot matrix
is treated as a different channel in CNN, and the 1D con-
volutional operation will be applied along each row of the
one-hot matrix, which restricts convolutional operation
within the same chemical element.

Deep neural network

The structure of the proposed model tCNNS is shown in
Fig. 1. Its input data consist of the one-hot representa-
tion of drugs (phenanthroline is used as an example for
the drugs) and the feature vectors of the cell lines. The
work-flow can be divided into two stages as follows.

First stage: A model with two CNN branches is built
to distil features for drugs and cell lines separately. A 1D
CNN is used for the cell-line branch since the input data
are 1D feature vectors for cell lines. Another 1D CNN is
used for the drug branch and treat different symbols as
different channels in the CNN. The convolution is applied
along the length of the SMILES format. The structures
for the two branches are the same. For each branch, there
are three similar layers: each layer with convolution width
7, convolution stride 1, max pooling width 3, and pool-
ing stride 3. The only difference between the layers is that
their number of channels are 40, 80 and 60, respectively.
The choices of these parameters for the CNN are inspired
by the model in [43], in which the author chose a three-
layers network model and used a prime number as filter
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Fig. 1 The upper part is the branch for drugs, and the lower part is the branch for cell lines. Both are inputs of a fully connected network on the
right-hand side. The general work-flow of our model is from left to right. The left-hand side is the input data of one-hot representations for drugs
and the feature vectors for cell lines. The black square stands for 1 and empty square stands for 0. In the middle, there are a CNN branch to process
the drug inputs and a CNN branch to process cell lines inputs respectively. They take the one-hot representations and feature vectors as input data
respectively, and their outputs can be interpreted as the abstract features for drugs and cell lines. The structures of the two convolution neural
networks are similar. The right-hand side is a fully connected network that does regression analysis from the ICsg to the abstract features from the

width. It is found that either reducing the pooling size or
adding the channel number has the potential to enhance
the proposed model but with the cost of losing stability.
Losing stability means that experimental results some-
times become unrepeatable. This problem will be detailed
in “Results” section.

Second stage: After the two branches of the CNN, there
is a fully connected network (FCN), which aims to do
the regression analysis between the output of the two
branches and the ICs values. There are three hidden lay-
ers in the FCN, each with 1024 neurons. The dropout
probability is set to be 0.5 for the FCN during the training
phase [43].

tCNNS is implemented using TensorFlow v1.4.0 [44],
which is a popular DNN library with many successful
applications [44, 45].

Performance measures

Three metrics are adopted to measure the performance of
our model: the coefficient of determination (R?), Pearson
correlation coefficient (R,), and root mean square error
(RMSE). This is the same as that in the benchmark paper
[2].

R? measures variance proportion of the dependent vari-
ables that is predictable from the independent variables.
Let y; be the label of a sample x;, and our label predic-
tion on «; is f;. The error of our prediction, or residual, is
defined as e; = y; — f;. Let the mean of y; be y = % > Vi
there will be the total sum of squares:

SStot = Z()’i -9%,
i

the regression sum of squares:

SSreg = Z(,ﬂ - 5/)2 )
i
the residual sum of squares:

SSwes =Y i—f)* =Y e,

R? is defined as:
_ SSres

SStot
R, measures the linear correlation between two variables.
Y is used as the true label and F as the corresponding
prediction for any sample. Let the mean and standard
deviation of Y be Y and oy respectively, and those for the
prediction F be F and oF respectively. R, is defined as:

E

oyor

R*=1

R, =

RMSE measures the difference between two variables Y
and F, and RMSE is defined as:

RMSE = VE.

Results
In this section, the performance of our model tCNNS is
demonstrated under various data input settings. The titles
and the meaning of these experiments are summarized as
follows:

4.1 Rediscovering Known Drug-Cell Line Responses. In
this part, the drug-cell line interaction pairs are
divided into a training set, a validation set and a
testing set. tCNNS is trained on the training set and
the result on the test set is reported. The validation
set is used to decide when to stop training.
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4.2 Predicting Unknown Drug-Cell Line Responses. In
this part, tCNNS is trained on the known drug-cell
line interaction pairs in GDSC and is used to predict
the missing pairs in GDSC.

4.3 Retraining Without Extrapolated Activity Data. In
this part, tCNNS is trained and tested on a subset of
GDSC data. The subset is called max_conc data, and
it is more accurate than the rest of the data in GDSC.

4.4 Blind Test For Drugs And Cell lines. In this part,
drugs and cell lines, instead of the interaction pairs,
are divided into the training set, the validation set and
the test set.

4.5 Cell Lines Features Impacts. In this part, the
performance of tCNNS is tested with respect to the
different sizes of the feature vectors for the cell lines.

4.6 Biological Meaning v.s Statistical Meaning. In this
part, the input data are transformed in various ways
to check whether tCNNS can capture the biological
meaning in the data.

4.7 Eliminating Outliers. The 223 drugs are visualized in
different feature spaces to show that the features
extracted from SMILES can solve the problem of
outliers in traditional feature space.

Rediscovering known drug-cell line responses
In the 223 x 948 (211,404) drug-cell line interaction pairs,
GDSC provides the ICsq for 172,114 of them. To compare
to the results of previous studies [2], the same procedure
was employed. In this part, those known pairs were split
into 80% as the training set, 10% as the validation set, and
10% as the testing set. This choice was made to guarantee
any drug-cell line pair can only exist either in the training
set or the test set. However, there was no restriction on
the existence of drugs or cell lines. In each epoch, param-
eters in tCNNS were updated using gradient descent on
the training set. The validation set was used to control the
training of the tCNNS. If the RMSE on the validation set
did not decrease in 10 recent epochs, the training process
would stop and the predictions of our model on the testing
set were compared with the given ICsg values in GDSC.

Experiments were set in this way to stimulate those real
situations in which the models can only be trained on
known interaction pairs between drugs and cell lines, and
the models will be useful only if it can predict unknown
interaction pairs. The validation set was separated from
the training set so that it would be possible to choose a
suitable time to stop training independently and avoid the
problem of over-fitting.

tCNNS was tested 50 times, and an example of the
regression result is displayed in Fig. 2.

In the 50 repeated experiments, R?> was increased from
0.72 to 0.826 for the mean and 0.831 for the top quar-
tile. R, was increased from 0.85 to 0.909 for the mean and
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0.912 for the top quartile, and RMSE was reduced from
0.83 to about 0.027.

These results clearly showed that tCNNS outperformed
the previous work reported in [2] in many ways, how-
ever, it should be pointed out that the comparison could
be overly optimistic as the version of GDSC has changed
so much and it is difficult to make a direct compari-
son. Instead, some indirect comparisons were made. After
replacing the network reported in [2] with tCNNS, it did
not converge using the features extracted from PaDEL.
Then, the network in [2] was replaced with a deeper
one, a network with three hidden layers and 1024 neu-
rons in each hidden layer. This modified model got R?
of around 0.65 and R, of around 0.81, which is shown
in Additional file 1: Figure S1. It can be seen that the
result was clearly horizontally stratified, which meant that
the neural network lacked representational power using
PaDEL features.

Many hyper-parameters affected the performance of
tCNNS, such as the number of layers and the filter size. It
was found that a smaller pooling size and more numbers
of channels could further enhance the performance, but
with a decrease in stability. For example, when the pool-
ing size was reduced from 3 to 2, the top quartile R? was
further increased to 0.92 and the top quartile R, was fur-
ther increased to 0.96. The cost of this enhancement was
that the network would become unstable and diverge [46]
during the training. To keep experimental results repeat-
able, only the results with parameters that ensure stability
are reported in this paper.

Predicting unknown drug-cell line responses

In this part, tCNNS was trained on all the known inter-
action pairs in GDSC and then it was used to predict the
values for those missing pairs in GDSC. The known pairs
were split into 90% as the training set, and 10% as the vali-
dation set. Again, if the RMSE on the validation set did not
decrease in 10 recent epochs, the training process would
stop and the trained tCNNS was used to predict the values
for the missing items. The results are shown in Fig. 3.

Figure 3 is the box plot of the predicted IC5 values for
missing items grouped by drugs. For each drug, the box
represents the distribution of the values with its related
cell lines. Drugs were sorted by the median of the distri-
bution: the 20 drugs with highest median and 20 drugs
with the lowest median value were plotted. As the real val-
ues for these missing pairs were not known, the accuracy
of our prediction was obtained by survey and analysis as
follows.

Bortezomib was the best drug in our prediction. In
fact, the top 40 pairs with the lowest IC5y value were
all from Bortezomib with some other cell lines. The out-
standing performance of Bortesomib in missing pairs was
consistent with that in the existing pairs. There is some
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Fig. 2 Regression results on the testing set compared to the ground truth ICsg values. The x axis is the experimental ICsg in natural logarithmic scale,
and the y axis is the predicted ICsq in natural logarithmic scale. Different colors demonstrate how many testing samples fall in each small square of
0.1 x 0.1, or the hot map of the distribution, where dark purple indicates more samples (around 30 samples per small square 0.1 x 0.1) and light
blue indicates fewer samples (less than 5 samples per small square 0.1 x 0.1)

supporting information in [47] that the author found that  the former one was initially invented to stop bleeding, and
drug Bortezomib can make cell lines to be sensitive to  the later one was initially used as an anti-diabetic drug.
many other anti-cancer drugs. These two drugs have the potential to cure cancer because

Aica ribonucleotide and Phenformin have the poorest they can inhibit the growth of cell (Aica ribonucleotide) or
performance in tCNNS prediction. Based on our survey, inhibit the growth of Complex I (Phenformin), but their
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drug names

Fig. 3 The predicted missing ICsq values. The drugs are ranged according to the median of their predicted ICsq values with cells. The horizontal axis
denotes the drug names, and the vertical axis denotes their negative log,(ICso) values with cell lines. The left part is the top 20 drugs with lowest
ICsp median, which means that they are probably the most effective drugs, and the right part is the last 20 drugs with the highest ICso median,
which means that they are the most ineffective drugs. For each drug, there is a number in its associated column, which is the number of cell lines
whose interaction with the drug are missing in GDSC
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effects are limited since anti-cancer is only the side effect
of them, and not their main function.

Based on the tCNNS predictions, the ICsg of drug Borte-
zomib with cell line NCI-H2342 was 1.19 % 10~*11g. The
small value indicated that there may be a good therapeu-
tic effect. This prediction was supported by the findings
reported in [48, 49], in which it is highlighted that Borte-
zomib is able to control Phosphorylation that causes lung
cancer and NCI-H2342 is a lung cell line. Similar evidence
to support this prediction can also be found in Cell Sig-
naling Technology’s 2011 published curation set (https://
www.phosphosite.org/siteAction.action?id=3131).

Retraining without extrapolated activity data

For each drug in GDSC, there are two important
thresholds called minimum screening concentration
(min_conc), which is the minimum ICsy value verified
by biological experiments, and maximum screening con-
centration (max_conc), which is the maximum ICs value
verified by biological experiments. In GDSC, any ICs
beyond these two thresholds is extrapolated, and not
verified by experiments. In general, IC5y value within
min_conc and max_conc are more accurate than those
outside of the thresholds.

In the GDSC data that we used in this paper, only
max_conc is provided, and there are 64,440 ICs values
below max_conc, which is about 37% of the whole existing
172,114 I1Csq values.

In this part, tCNNS was trained on the ICsy values
below the max_conc threshold, which were randomly
divided into 10% data for validating, 10% data for testing.
The remaining 80% data is used for training and the size is
reduced to 1% while the experiment was repeated 20 times.
The regression result is shown in the Additional file 1:
Figure S2. The comparison against the tCNNS which
trained on whole existing data is shown in Fig. 4.

From Additional file 1: Figure S2, it can be observed
that tCNNS can achieve almost the same good result just
on max_conc data, which was faster because less data
were needed. There were some other properties of tCNNS
that could be concluded from Fig. 4. Firstly, it performed
very well even with very limited training data. For exam-
ple, when tCNNS was trained on only 1% of the existing
ICso values, R? can be almost 0.5 and R, be around 0.7.
Secondly, and more importantly, tCNNS performed bet-
ter with less and more accurate data. The dash lines
(results on data below max_conc) were always above the
solid lines (result on all data), and the final performance
on max_conc data was almost as good as that on the total
data, although the amount of data for the former was only
37% of the latter. To further compare the best performance
on all data and max_conc data only, the distribution of
the 20 times experiments are shown in Additional file 1:
Figure S3.
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There are three experimental results shown in
Additional file 1: Figure S3, which are the experiments
on all data, on the data below max_conc, and on a ran-
dom subset of all data with the same size as those below
max_conc. Comparing the result on data below max_conc
with the result on the random data with the same size, it
was observed that the performance of tCNNS was signifi-
cantly better on data below max_conc than on random
data with the same size, and it proved that tCNNS was
able to utilize the information conveyed by accurate data.

Blind test for drugs and cell lines

In previous experiments, interaction pairs between drugs
and cell lines were randomly selected to be in the train-
ing set, the validation set, or the testing set, which meant
that a specific drug or a specific cell line can exist in train-
ing and testing at the same time. This experimental setting
corresponds to the problem of predicting the effect of a
certain drug on a new cell line when its effect on another
cell line is given. The problem becomes more challenging
if the tested drug is a brand new one, and its effect on any
cell lines is not known. To evaluate the performance of
tCNNS on this challenging problem, a new experimental
setting called blind test was designed.

In the blind test for drugs, drugs were constrained from
existing in training and testing at the same time. The inter-
action pairs were divided based on drugs. 10% (23/223)
drugs were randomly selected and their related ICsg val-
ues were kept for testing. For the remaining 90% drugs,
90% of their related IC5p values were randomly selected
for training and 10% for validating.

In the blind test for cell lines, cell lines were prevented
from existing in the training set and the testing set at the
same time. The interaction pairs were divided based on
cell lines. Similar to the case for drugs, 10% (94/948) cell
lines were randomly selected and their related ICsg values
were kept for testing. For the remaining 90% (904/948)
cells, 90% of the related ICs59 were used for training and
10% for validating.

The blind test for drugs on all data and on the data
below max_conc were repeated for 150 times respectively
to check the distribution of the results. The same num-
ber of experiments for the cell lines were also conducted.
The results on all data are shown in Fig. 5. The results on
data below max_conc data are shown on Additional file 1:
Figure S4 respectively.

From Fig. 5 and Additional file 1: Figure S4, it is
observed that the performance of tCNNS was more
robust with the blind test for cell lines but sensitive with
the blind test for drugs. Without the knowledge of drugs
in training, the performance dropped significantly. Com-
paring the results reported in Fig. 5 and in the Additional
file 1: Figure S4, it can be observed that the extrapolated
data made no contribution in this setting.
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Comparing the results of the blind tests for drugs and
for cell lines, the blind test for cell lines is slightly better,
and the reason is that there is more common information
shared among different cell lines and less among drugs.
For example, cell lines share similar genetic information,
but drugs can be very diversified. To reduce the infor-
mation sharing among cells lines, another experimental
setting was designed in which cell lines from the same tis-
sue cannot exist in training and testing at the same time.
The result was shown in Table 1.

In GDSC, the 948 cell lines belong to 13 tissue types and
49 sub-tissue types. The 13 tissue types were used instead
of 49 sub-tissue types because it can increase the distances
and reduce the similarities among different tissues. Each
time one tissue type was selected as testing data. For the
rest of the tissues, they were mixed together and split into
90% for training and 10% for validation. From Table 1, it
can be seen that the performance decrease differently for
different tissues. For example, blood has the lowest R? and
Ry, in all tissues, which indicated that blood is the most
different tissue from other tissues.

Cell lines features impacts

In GDSC, the 735 features for cell lines after preprocessing
belongs to 310 gene mutation states, and 425 copy num-
ber variations. As different laboratories may use different
methods to extract the features for cell lines, in reality, it
is not easy to have the complete 735 features for all cells.

Besides, researchers may also have smaller and different
feature groups for cell lines. It is attractive if tCNNS can
have good performance with fewer features for cell lines.
In this part, tCNNS performance was tested with differ-
ent smaller numbers of features for cell lines to check the
change of the performance with respect to the change
of numbers of features for cell lines. The corresponding
results in this part are shown in Fig. 6.

Biological meaning v.s statistical meaning

tCNNS takes the one-hot representation of the SMILES
format as the features for drugs. Initially, in the one-hot
representation of the SMILES format, each row represents
a symbol, and each column represents a position in the
SMILES format, which is left aligned. For researchers, the
SMILES format is a well-defined concept with biological
meaning. However, tCNNS may lack the ability to com-
prehend the biological meaning of the SMILES format and
it instead relies on the statistical pattern inside the data. To
verify this hypothesis, the one-hot representation of the
SMILES format was modified in three ways as follows:

1 The order of the symbols was randomly shuffled,
which equals shuffling the rows in the one-hot
representation.

2 The SMILES format was cut into two pieces, and the
positions of which were switched. It is equivalent to
shift the columns in the one-hot representation.
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3 The positions in the SMILES format were shuffled,
which equals to shuffling the columns in the one-hot
representation.

The experiments were repeated 10 times in the three
settings respectively and the results were compared with
those obtained by using the SMILES format without any
modification. The comparison is shown in Additional
file 1: Figure S5. In the last two ways of the modification,
the biological meaning of SMILES is corrupted. Initially,
it was expected that the only the result of the first mod-
ification would be the same with the benchmark. It was
surprising to see that the performances were similar in
all three modifications. The stability among these results
mean that tCNNS actually does not capture the biological
meaning of the SMILES format for drugs, and it relied on
the statistical patterns inside the SMILES format, cell line
features, and the IC5g values.

Eliminating outliers
In the last column of the Additional file 1: Figure S5, the
results of tCNNS are compared with that of the baseline

work [2]. As GDSC has been changed in recent years,
it was impossible to use the same data as [2]. In the
experiment, the method introduced in [2] was applied to
current data. PaDEL(version 2.1.1) was used to extract 778
features for each drug. For cell lines, 735 features were
used, instead of the 157 features used in the old version of
GDSC [2].

To check the differences between the features extracted
using PaDEL and the features extracted from the SMILES
descriptions using CNN, the distribution of the drugs
were visualized in different feature spaces. In a deep neu-
ral network, the fully connected layer is responsible for
regression analysis, and CNN is used for extracting high-
level features from the drug features. The input data for
the fully connected network is the output of CNN tranche.
Hence when drawing the distribution of drugs using CNN,
the output of the last layer of CNN tranche was used for
drugs.

The distribution of cell lines in genetic features space
of GDSC was also compared with that found in the out-
put space of the last layer in CNN. The visualization tool
used was t-SNE [50], which was widely used to visualize
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Table 1 Tissue-Specific Test To conclude, there are seven subsections in this section,

Tissue name Data amount R? Ro RMSE and they are summarized as follows:
Aero digestive 13806 0.703 0.843 0.0375
Tract (0.826) (0.916) (00280) 4.1 Rediscovering Known Drug-Cell Line Responses. In
Blood 3me 0500 0724 00449 this part, tCNNS was trained on 80% data as the
(0.833) (0.917) (0.0276) training set and tested on the other 10% data. The
Bone 6826 0.659 0.813 0.0405 . % d d lidati
(0.825) (0.915) (0.0283) remaining 10% data were used as a validation set to
Breast 9277 0657 0811 0.0383 decide when to stop training. The experiment was
(0.829) (0.919) (0.0281) repeated 50 times and tCNNS achieves 0.826, 0.909
Digestive 17200 0667 0817 0.0384 for mean R?, R,, respectively, and 0.831, 0.912 for top
system (0.830) (0.918) (0.0262) quartile of R?, R, respectively.
Kidney 5199 0.669 0.819 0.0386 Predicti I D I Li
0822) 0914) ©00286) %2 Predicting Unknown Drug-Cell Line Responses.
Lung 34086 0614 0.784 00371 tCNNS was used to predict the missing interaction
(0.827) (0.919) (0.0285) pairs in GDSC. A literature survey was carried out
Nervous 15763 0702 0839 0.0364 and some published works that support the
dystem (0.830) (0.918) (0.0280) predictions of tCNNS were found and discussed.
Pancreas 5358 0.703 0.840 0.0370 .. th E lated Activity D
(0.820) 0913) (©00287) %3 Retraining Without Extrapolated Activity Data.
Skin 10488 0676 0.824 00394 tCNNS was trained on max_conc data. Those ICsq
0.827) 0.917) (0.0281) values below max_conc are divided as 80% for
Soft tissue 3165 ?-712 : ?-853 ) ?-0384) training, 10% for validation and 10% for testing.
0.821 0914 0.0284 . g C e
Thyroid 5715 067 082 00410 F%gure 4 shows that no statistically significant
(0.833) 0.918) (0.0277) difference can be found between the results of
Urogenital 17112 0.715 0.849 0.0363 tCNNS trained on data below max_conc and that on
System (0.825) (0.914) (0.0282) the whole data in 4.1.

The first column is the 13 tissue names which are ranged in alphabetical order. The . .
second column is the number of the ground true ICsg values for each tissue. The last 4.4 Blind Test For Drugs And Cell lines. Drugs and cell

three columns are R?, R, and RMSE that our model tCNNS achieved by training on lines were restricted from existing in the training set
all the other tissue data. The number in the bracket is the result for the validation set and the testing set at the same time. In the blind test,

high dimensional data in deep learning. The visualization the performance of tCNNS drops significantly,
results are shown in Fig. 7. It can be seen that there were 7 especially in the drug blind test where the mean of R,,
outliers in the PaDEL space for drugs. However, the prob- drops to 0.2 and the mean of R? drops to barely above 0.
lem does not exist in the features space for drugs extracted 4.5 Cell Lines Features Impacts. The number of features
by tCNNS. for cell lines was reduced from about 700 to about 50.
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Fig. 7 Visualization of drugs and cells in high-dimensional space. a) Drugs in PaDEL space (778 dims), b) Drugs in CNN space (420 dims), ) cells in

mutation space (735 dims), and d) cells in CNN space (1680 dims)

(d) Cells in CNN space

The mean of R? remains above 0.80 when the
number of features drops to 300, and it is still above
0.72 even when the number of features drops to 50.

4.6 Biological Meaning v.s Statistical Meaning. As the
results remain almost the same with different
modifications to the input data, it can be concluded
that tCNNS relies on the statistical pattern, instead of
capturing the biological meaning in the data.

4.7 Eliminating Outliers. 7 outliers exist in the traditional
drug feature space. However, this problem does not
exist in the feature space extracted from SMILES by
tCNNS.

Discussion

In Fig. 2, it can be observed that tCNNS is most accurate
in the middle part, but less accurate in the two ends in
the figure. In the bottom left corner, the input ICsp val-
ues are small but the predictions of tCNNS are incorrectly
large. In the top right corner, the input ICsq values are
large but the predictions of tCNNS are incorrectly small.
This means that tCNNS can be further optimized if it can
enhance its performance in these two areas.

Based on these results, it is concluded that the connec-
tions between the ICs values and the SMILES format of
drugs are stronger than those observed between the 1Cs
values and the features extracted using PaDEL.

Although the extrapolated data cannot enhance the
accuracy of the model, they can help to improve scalabil-
ity. The tCNNS model trained on all data performs well

when tested on data below max_conc, which is natural
because the later is a subset of the former. However, the
model trained on data below max_conc performs poorly
when tested on all data. R? drops to 0.33 and R, drops
to 0.6. When tCNNS is trained on all data, it learns gen-
eral knowledge which is useful on the whole dataset. That
is why its performance remains stable when tested on
data below max_conc. On the other hand, when tCNNS is
trained on data below max_cong, it learns knowledge that
only be applicable to this specific subset of all data. Its per-
formance is dragged down by data above the max_conc
when tested on all data. Although the performance of
tCNNS on all data and data below max_conc is similar, the
paths they achieve the performance are different.

Comparing the result on data below max_conc with that
on all data, it can be seen that the means of R? were almost
the same, and the mean of R, on all data was only a bit
better than that on the data below mac_conc. Moreover,
the variations of R? and R, on data below max_conc was
a bit bigger than those on all data. To conclude, the con-
tribution from low quality extrapolated data was limited,
and they can only reduce variation and improve R, a bit.

The results in the blind test give us some hint that with
limited budgets, the in vivo experiment should be care-
fully arranged to cover a wider range of drugs and cells
from different tissues to get better in silico predicting
power.

It is very important to have the specific drug or cell line
in the training stage before the performance is predicted.
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Experimental results support that even with only one or
two related ICsg value, the performance will be signifi-
cantly improved. For example, NCI-H378 is a special cell
line for lung cancer in GDSC, and there are only two ICs
values records for it. For other cell lines, all of them have
at least 20 ICsp values. tCNNS can still make accurate pre-
dictions one of the ICsq values for NCI-H378 if the other
value is used during the training. Based on the results, the
best drug for NCI-H378 is Bortezomib, which has been
previously recalled [48, 49].

Moreover, tCNNS predicts another potential drug Doc-
etaxel for them. The predicted ICsy value between Doc-
etaxel and NCI-H378 is 0.03ug (third smallest for NCI-
H378), and the predicted IC59 between Docetaxel and
NCI-H250 is 0.04ug (forth smallest for NCI-H250). 1t is
reported in [51] that APR-246 is a potential useful drug on
lung cancer because of its synergy with 7P53 mutations
in lung cells, and there is an "additive effects” between
APR-246 and Docetaxel.

The visualization result of outliers highlights that CNN
can distribute the drugs and cell lines more uniformly
than features using PaDEL and features of GDSC. For
drugs, those seven outliers in the PaDel space are exactly
the seven drugs that are composed of multiple parts. The
structures of the outliers are shown in the Additional file 1:
Figure S6.

Conclusion

In this paper, a model called tCNNS has been illustrated
for phenotypic screening between cancer cell lines and
anti-cancer drugs. tCNNS has been tested on a new ver-
sion of GDSC with more data compared to previous
works. It has achieved a much better coefficient of deter-
minant and Pearson correlation than previous works and
has made predictions for missing values in GDSC with
trustful evidence. tCNNS can also converge with a very
small set of training data and fewer features for cancer
cell lines, which is economically efficient. tCNNS can take
SMILES as input data for drugs, and this can solve the
outlier problem occured in previous works where drug
fingerprints are used as features.

Additional file

Additional file 1: Supplementary. Some experiments results and figures
are in the supplementary file of this paper. (PDF 378 kb)
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