
TLM-Quant: An Open-Source Pipeline for Visualization
and Quantification of Gene Expression Heterogeneity in
Growing Microbial Cells
Sjouke Piersma1, Emma L. Denham1¤a, Samuel Drulhe2¤b, Rudi H. J. Tonk1, Benno Schwikowski2,

Jan Maarten van Dijl1*

1 Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands, 2 Institut Pasteur, Systems Biology

Lab, Department of Genomes and Genetics, Paris, France

Abstract

Gene expression heterogeneity is a key driver for microbial adaptation to fluctuating environmental conditions, cell
differentiation and the evolution of species. This phenomenon has therefore enormous implications, not only for life in
general, but also for biotechnological applications where unwanted subpopulations of non-producing cells can emerge in
large-scale fermentations. Only time-lapse fluorescence microscopy allows real-time measurements of gene expression
heterogeneity. A major limitation in the analysis of time-lapse microscopy data is the lack of fast, cost-effective, open, simple
and adaptable protocols. Here we describe TLM-Quant, a semi-automatic pipeline for the analysis of time-lapse fluorescence
microscopy data that enables the user to visualize and quantify gene expression heterogeneity. Importantly, our pipeline
builds on the open-source packages ImageJ and R. To validate TLM-Quant, we selected three possible scenarios, namely
homogeneous expression, highly ‘noisy’ heterogeneous expression, and bistable heterogeneous expression in the Gram-
positive bacterium Bacillus subtilis. This bacterium is both a paradigm for systems-level studies on gene expression and a
highly appreciated biotechnological ‘cell factory’. We conclude that the temporal resolution of such analyses with TLM-
Quant is only limited by the numbers of recorded images.
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Introduction

Microorganisms need to adapt to environmental changes by

appropriately adjusting their gene expression [1]. They can

achieve this through carefully controlled signal transduction

pathways that modulate the transcription of individual genes. In

recent years it has become increasingly clear that the expression of

particular genes is often not uniform in the individual cells of a

microbial population, even when these cells are grown under

carefully controlled conditions. Firstly, there can be considerable

noise or heterogeneity in the expression levels of individual genes,

and secondly, there can even be situations of bistability where

particular genes are only transcribed in a sub-population of the

analysed cells. A paradigm for studies on gene expression

heterogeneity is the bacterium Bacillus subtilis. Individual B. subtilis

cells within a population can, for example, differentiate into a

motile state for migration to more favourable environments, a

competent state to take up DNA from the environment, or a

dormant state in the form of spores [2,3]. Microbial gene

expression heterogeneity also has important biotechnological

implications since, for obtaining the highest product yields, all

microbes used in industrial-scale fermentations should express the

gene(s) of interest at the highest possible level; poorly producing

cells are unwanted [4].

The theoretical and practical ramifications of gene expression

heterogeneity have led to a strong interest in effective tools to

monitor and quantify this phenomenon. Most strategies involve

the fusion of the promoter sequence of a gene of interest to a

promoter-less copy of the gene encoding the Green Fluorescent

Protein (GFP). Overall promoter activity and expression of the

gene of interest can then be determined by fluorescence readings

of culture samples. This is achieved in real time using suitable plate

reader assays [5–7]. To investigate gene expression heterogeneity

in different cells of growing populations, alternative approaches

are needed, such as flow cytometry and time-lapse microscopy.

Only time-lapse microscopy allows real-time measurements, and this

technique is substantially less laborious than flow cytometry. Different

time-lapse microscopy set-ups have been described in the recent

literature [8–10]. Though very effective, a significant drawback of

these approaches is that the downstream data analysis usually

requires expensive, highly sophisticated, and/or custom-made
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software [9–12]. Since we needed a simple and readily adaptable tool

for the quantitative analysis of large amounts of time-lapse

microscopy data, we established the TLM-Quant pipeline for data

processing and analyses based on open-source software. This pipeline

was validated using a custom-built fluorescence microscopy set-up

and B. subtilis strains producing GFP from promoters that direct

either homogenous, heterogeneous, or bistable gene expression, as

described by Botella et al. [6]. Importantly, the TLM-Quant pipeline

was then effectively implemented in a large-scale systems biological

analysis on the global network reorganization during dynamic

adaptations of B. subtilis metabolism to nutritional shifts between the

preferred carbon sources glucose and malate [7]. In the latter study,

TLM-Quant allowed us to verify the absence of heterogeneity in the

expression of genes involved in central carbon metabolism. The

respective datasets can be queried at https://basysbio.ethz.ch/

openbis/index.html?viewMode = SIM-

PLE#action = DOWNLOAD_ATTACHMENT&file = populatio-

opulation+homogeneity.pdf&&entity = PROJECT&code = BASYS-

BIO_BIG&space = BASYSBIO_PUBLIC or http://tinyurl.com/

basysbiodata. A detailed description of TLM-Quant as presented

here and in the Tutorial S1 was however not published thus far.

Analysis

For image analysis by TLM-Quant, we will assume that, for

each time point, a phase-contrast image and an overlapping

fluorescent image are available, both encoded in 8-bits (intensity

from 0 to 255). Downstream processing can be generalized to

multiple channels (colours). To visualise and quantify gene

expression heterogeneity, the fluorescence information in the

recorded images is extracted using ImageJ software (available via

http://rsbweb.nih.gov/ij/) [12]. To obtain correct cellular

fluorescence measurements, cells are segmented in phase contrast

images by using the commands ‘Subtract background’ and

‘Convolve’. The kernel used in the ‘Convolve’ command is

specified in Figure 1A and should be adjusted depending on cell

type and exposure time. A copy of the obtained image is converted

to a binary mask (intensity 0 or 255) using the ‘apply’ command in

the threshold dialogue. Figure 1 shows the ImageJ macro

commands for this process and illustrates its performance starting

from an original phase contrast image. The pixel intensities from

the fluorescence image are then subtracted from the mask. This

yields cells with inverted intensities that are analysed by setting a

threshold for all grey values but the minimal grey value, and by

subsequently executing the ‘analyse particles’ command. The

original intensities are then recovered by subtracting the negative

intensities from 255. To measure background fluorescence, the

fluorescence images are first added to the mask, and only values

below 255 are collected. In this way the entire area in the image,

except the cell areas, is analysed using the ImageJ ‘analyse

particles’ command and the returned value represents the average

background fluorescence.

Figure 1. Processing phase contrast images to create segmented cells. (A) ImageJ commands for the processing of phase contrast images to
create segmented cells. (B) Visualization of the image processing from the original phase contrast image, through background subtraction,
convolution, setting of a threshold grey intensity, conversion of values within threshold to mask and de-speckling. Red objects in the processed
image are above the threshold and counted as cells. Notably, non-separated pairs of cells as marked with the white arrow pointing at the site of their
attachment will be counted as one cell.
doi:10.1371/journal.pone.0068696.g001

Tools to Quantify Gene Expression Heterogeneity
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Results and Discussion

The code in Figure 2 is used to create plots as shown in Figure 3

(A-C). Importantly, the R script allows processing of data from

many experiments in a short time period. The output is a high-

resolution PDF file visualizing the levels of expression heteroge-

neity. Figure 3 illustrates three possible heterogeneity scenarios,

namely homogeneous expression (A), ‘highly noisy’ heterogeneous

expression, (B) and bistable heterogeneous expression (C).

Figure 2. Script used in the R software package to generate heatmap plots from ImageJ output data. Note that the indicated directories
are arbitrary examples. The colors.csv file used in this script can be altered for implementing other color schemes.
doi:10.1371/journal.pone.0068696.g002
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255 measured value background– –

For statistical analyses and data processing in R [13,14,15], the

data from ImageJ are saved in CSV format. The derived

normalised fluorescence intensities are obtained using the formula:



We recommend inclusion of controls for homogenous expres-

sion, as in Figure 3A, in all analyses to measure background levels

of expression noise. For studies in B. subtilis, we have implemented

an amyE::Pspac-GFPmut2 strain in which homogeneous GFP

expression can be set at different levels by growing the cells in the

presence of different IPTG concentrations. This is due to the fact

that, in this particular strain, the transcription of gfp is driven by

the IPTG-dependent Pspac promoter. Specifically, we added IPTG

to the growth medium at concentrations of 0.05 mM, 0.1 mM,

0.5 mM, or 1 mM and performed time-lapse fluorescence

microscopy. As expected, this resulted in homogenous expression

of GFP in exponentially growing cells, but at different levels

depending on the IPTG concentration in the growth medium.

Next, the standard deviation in cellular fluorescence in one time-

lapse image was plotted as a function of the mean cellular

fluorescence intensity in that particular time-lapse image

(Figure 4A). Importantly, the standard deviation in the cellular

fluorescence, which essentially represents the background noise

when GFP is homogeneously expressed, showed a linear

correlation with the mean fluorescence intensity. Accordingly,

the corresponding regression line equation can be used for

background noise correction in other analyses. This is illustrated in

Figure 4B, where the correction is applied to the Pspac-GFP strain

grown in the presence of 0.05 mM IPTG.

As exemplified in Figure 3D, large numbers of heterogeneous

gene expression measurements at different time points and for

different promoter-GFP fusions can be readily compared using bar

charts generated in spread sheet editors, like LibreOffice Calc or

Microsoft Excel [7]. In this case, averages and standard deviations

are calculated from the combined fluorescence values. However,

the bar charts do not discriminate between highly heterogeneous

and bistable gene expression. Notably, Microsoft Excel is not

‘open source’, but since the vast majority of potential users of

TLM-Quant have easy access to Excel, we should mention this

option.

Figure 3. Heatmap plots created using the R script in Figure 2. (A) B. subtilis cells expressing a fusion of the IPTG-inducible Pspac promoter
with GFP [6,7] show homogeneous fluorescence. (B) B. subtilis cells expressing a fusion of the authentic promoter of the sunA gene to GFP show
heterogeneous fluorescence when grown on a Luria Bertani agarose medium. (C) B. subtilis cells expressing the same sunA promoter GFP fusion as in
B show bistable heterogeneous fluorescence when grown on an M9 agarose medium. Note that at early time points already two populations of cells
with differing fluorescence intensities can be distinguished. AU, arbitrary units. (D) Bar diagrams for easy comparison of the outcomes of multiple
heterogeneity measurements during growth on M9 medium as shown in panels A-C. At t = 2 h, cells are in the exponential growth phase (blue bars);
at t = 5 h, the highest numbers of cells are observed (red bars); at t = 10 h, a minimum in the cell numbers has been reached due to cell death (green
bars); and at t = 17 h, the surviving cells have resumed growth (purple bars). Heterogeneity is expressed in arbitrary units (AU).
doi:10.1371/journal.pone.0068696.g003
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In conclusion, time-lapse microscopy is currently the only

method that allows real-time measurements of promoter activity,

reflected by GFP expression, at the single cell level. Here we

document the TLM-Quant pipeline, which allows the user to

readily visualise and quantify gene expression heterogeneity using

freely available open-source tools. Importantly, this pipeline is

simple and robust – there are almost no thresholds and parameters

to fine-tune. Since TLM-Quant is based on free open-source tools

that almost every one can master, it is easy to adapt to a wide

range of different – and potentially new – types of images. Thus,

while we describe the use of TLM-Quant for the soil bacterium B.

subtilis 168, the established scripts can be applied to studies on gene

expression heterogeneity in all other microorganisms that can be

grown in a time-lapse microscopy system.

Supporting Information

Tutorial S1 The Tutorial includes detailed instructions
for the implementation of TLM-Quant.

(PDF)

Figure 4. Quantification of expression heterogeneity. To obtain baseline values for GFP expression heterogeneity, a B. subtilis Pspac-GFP strain
was used in which the fluorescence intensity of the cells can be varied by varying the amount of the inducer IPTG in the growth medium. Importantly,
the variation in GFP fluorescence in this cell population is minimal compared to cells expressing GFP from non-engineered promoters. Therefore, the
observed variation can be regarded as a baseline for GFP expression heterogeneity. (A) Standard deviation in the fluorescence intensity of individual
cells of B. subtilis Pspac-GFP as a function of the mean fluorescence intensity of the cell population. The analysis included 535 measurements collected
from four cultures supplemented with IPTG to 0.05 mM, 0.1 mM, 0.5 mM, or 1 mM. (B) Example to illustrate the effectiveness of the applied
heterogeneity correction. When applied to a Pspac-GFP strain grown in the presence of 0.05 mM IPTG the correction shows close to zero levels of
expression heterogeneity over a period of at least 12 h. At later time points cells started to lyse in this experiment resulting in a slightly increased GFP
expression heterogeneity. Black line, raw fluorescence data; Grey line, Pspac-GFP subtracted data.
doi:10.1371/journal.pone.0068696.g004
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