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Abstract There is increasing evidence that the same brain
reward circuits involved in perpetuating drug abuse are
involved in the hedonic urges and food cravings observed
clinically in overweight and obese subjects. A polymor-
phism of the D2 dopamine receptor which renders it less
sensitive to dopamine stimulation has been proposed to
promote self-stimulatory behavior such as consuming
alcohol, abusing drugs, or binging on foods. It is important
to determine how this polymorphism may interact with
other well-known candidate genes for obesity including
polymorphisms of the leptin receptor gene and the
opiomelanocortin gene. Leptin is a proinflammatory cyto-
kine as well as a long-term signal maintaining body fat.
Upper-body obesity stimulates systemic inflammation
through the action of multiple cytokines including leptin
throughout many organs including the brain. The
association of numerous diseases including diabetes
mellitus, heart disease, as well as depression with
chronic low-grade inflammation due to abdominal obesi-
ty has raised the possibility that obesity-associated
inflammation affecting the brain may promote addictive
behaviors leading to a self-perpetuating cycle that may
affect not only foods but addictions to drugs, alcohol,
and gambling. This new area of interdisciplinary research
holds the promise of developing new approaches to
treating drug abuse and obesity.
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Introduction

Addiction is an acquired, chronic relapsing disorder that
begins with some experimentation and pleasurable
responses and, for subgroups of individuals, is followed
by preoccupation, escalation, tolerance, denial, and a series
of medical, psychological, and social consequences that
relate directly to the continued addictive behaviors. Dis-
coveries over the last 20 years have clearly defined a
relationship between obesity and systemic inflammation.
The association of numerous diseases including diabetes
mellitus, heart disease, common forms of cancer, as well as
depression and Alzheimer’s disease with chronic low-grade
systemic inflammation due to abdominal obesity has raised
the possibility that obesity-associated inflammation affect-
ing the brain may promote addictive behaviors leading to a
self-perpetuating cycle that may affect not only foods but
addictions to drugs, alcohol, and gambling.

A key element of chronic addictions is continued
addictive behavior in the face of clear knowledge of the
expected consequences. Many obese individuals identify
specific foods that promote continued consumption in the
face of the known consequences of obesity. Yet they feel
powerless to control these urges. While for many individuals,
these are simply bad habits that can be changed; there is
increasing evidence suggesting that genes implicated in other
addictive behaviors may also be associated with food
addiction, most commonly to sweet and fat foods. Specific
associations of genetic polymorphisms of the dopamine,
opiomelanocortin, and leptin receptor have been hypothesized
to increase the risk of food addiction. Exercise and regular
physical activity can entrain some of the same reward
pathways and its efficacy in maintaining body weight after
weight loss may be due to the activation of neural pathways
involved in the initiation of overeating. Insights into the
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genetics of addictive behaviors associated with obesity
may both lead to improved therapies of obesity and at
same time may provide insights into adjunctive therapies
useful in treating drug addiction, alcoholism, and other
addictions.

Food Urges, Addiction, and Eating Behavior

Humans eat even when they are not physically hungry as
psychological, environmental, and hedonic influences affect
food urges. The peripheral and central pathways which
regulate food intake are geared toward the storage of
calories when food is eaten in excess of metabolic needs,
leading to obesity in situations of high fat and sugar food
availability coupled with sedentary lifestyles.

Dopamine increases the motivation for food intake in
animals and humans as demonstrated by imaging studies
carried out using food images [1]. It has also been
demonstrated that obese individuals have reduced levels
of dopamine D2 receptors and that these are inversely
related to body weight [2]. Presentation of desirable foods
increases metabolism in the orbitofrontal cortex (OFC), the
area of the brain that programs chewing and salivation, in
proportion to the subjective perception of hunger and the
desire to eat [3]. Obese subjects studied with functional
magnetic resonance imaging (fMRI), which detects changes
in blood flow, had evidence of activated striatum and OFC
as well as the insula while viewing pictures of high-caloric
food [4]. Wang and co-workers used positron emission
tomography imaging which detects uptake of 2-deoxy-2
[18F]fluoro-D-glucose (18FDG) to assess the ability of men
and women to inhibit the activation of brain metabolism
following presentation of images of favorite foods. In men
food stimulation with inhibition significantly decreased
activation in amygdala, hippocampus, insula, orbitofrontal
cortex, and striatum, but this did not occur in women [5].
The regions studied are integral to emotional regulation,
conditioning, and motivation of food intake and in men
suppressed activation of the orbitofrontal cortex with
inhibition was associated with decreased self-reports of
hunger. These observations suggest that hormonal mecha-
nisms may underlie a gender difference in the ability to
suppress hunger, and may contribute to the greater
incidence of obesity in women compared to men.

The repeated stimulation of DA (dopamine) reward
pathways has been proposed by Volkow to trigger adapta-
tions in other neurotransmitters and in brain reward
circuitry that may lead to increases in compulsive behaviors
affecting both food and drug intake [6]. Moreover,
exposure to drugs that elicit dependence alters gene
expression profiles throughout the reward circuitry of the
brain [7]. Drugs of abuse induce repeated profound

dopamine stimulation which, with chronic use, may induce
changes in neuronal plasticity resulting in increased
emotional reactions to drugs and reduced ability to inhibit
drug consumption leading to compulsive chronic drug
abuse [6]. Sugar-induced dependence in rats has been
shown to promote increased consumption of ethanol,
suggesting that food-related dependence may influence
drug addiction [8]. As reviewed above, repeated exposure
to favorite foods, especially those that are calorie dense due
to excess sugar and fat could lead to binge eating disorder,
and poor inhibitory control of food intake [9]. The
increased usage of high fructose corn syrup in the American
diet has been further suggested to reduce satiety that would
have normally been satisfied with consumption of natural
sugars [10]. Studies of rats show that excessive binging on
sugar followed by deprivation creates a state of anxiety and
suggested opiate-like withdrawal [11]. While both path-
ways have similarities, there is a need for more research to
assess whether they are also interacting. That is, whether
addictive drugs affect the emotional reaction to foods and
vice versa. Such an interaction could have significance for
efforts to combat drug abuse as well as obesity. A possible
mechanism for such an interaction is the systemic inflam-
mation associated with obesity which could affect the brain
and promote changes that make individuals more suscep-
tible to dopamine-related rewards.

Genetic Polymorphisms Associated with Obesity
and Food Addiction

Consumption of favorite foods increases dopamine concen-
trations in the nucleus accumbens, activating the meso-
corticolimbic dopaminergic reward pathways of the brain,
resulting in the reinforcing effects of euphoria or pleasure.
These discoveries have been the result of advances in brain
imaging including positron emission tomography scan and
fMRI that enables visualization of brain activation on
simply seeing images of favorite foods.

Since consuming food is critical to survival, it is
perfectly reasonable that this activity would be highly
valued within our inherited biological control mechanisms
that evolved over eons of food scarcity and insecurity. Only
in recent times has there been a surplus of calories available
to all Americans including those in the lower socioeco-
nomic strata. While these foods are inexpensive, they also
have limited nutritional value and excess amounts of sugar
and fat. Pleasurable responses to sugar and fat linked to
activation of reward circuits in the brain activated by
dopamine and other neurotransmitters can lead to food
addiction and obesity in susceptible individuals as has been
documented for drugs, alcohol, tobacco, sexual activity, and
gambling.
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Dopamine Receptor DRD2 Gene

The D2 dopamine receptor (DRD2) gene has most
commonly been linked to alcoholism, although the gene
has been associated with other addictive behaviors such as
smoking, illicit drug use, gambling, and overeating. The
Taq1A polymorphism, the most frequently studied poly-
morphism, is located more than 10 kilobase-pairs down-
stream from the coding region of the DRD2 gene at
chromosome 11q23. Recent studies have further localized
the coding region of Taq1A within the coding region of a
neighboring gene, ANKK1 [12].

The D2 dopamine receptor, a G-protein-coupled receptor
located on postsynaptic dopaminergic neurons, is centrally
involved in reward-mediating and reward-deficiency path-
ways [13]. The DRD2 gene encodes two molecularly
distinct isoforms with distinct functions [14]. Signaling
through dopamine D2 receptors governs physiologic func-
tions related to locomotion, hormone production, and drug
abuse. D2 receptors are also known targets of antipsychotic
drugs that are used to treat neuropsychiatric disorders such
as schizophrenia.

By a mechanism of alternative splicing, the D2 receptor
gene encodes two molecularly distinct isoforms, D2S and
D2L [15]. They are coexpressed in a ratio favoring the long
isoform, D2L. D2L differs from D2S by the presence of an
additional 29 amino acids within the third intracellular loop.
Usiello et al. demonstrated that these receptors have distinct
functions in vivo; D2L acts mainly at postsynaptic sites and
D2S serves presynaptic autoreceptor functions [14].

There is evidence of a direct association in Taq1A A1
allele carriers with increased body fat and co-morbid
substance use disorders. A clinical study found increased
prevalence of Taq1A A1 allele in obese patients with other
drug dependencies compared to non-abusing obese patients
[16]. Among Taq1A A1 allele carriers, D2 receptor
stimulation could potentially be effective in reducing
craving and reward-seeking [17]. Individualized custom
formulations of neutraceuticals have been proposed to
“treat” individuals with known genetic deficiencies such
as Taq1A A1 allele carriers [18].

Consumption of sweet or fat foods increases dopamine
concentrations in the nucleus accumbens [19], activating
the mesocorticolimbic dopaminergic reward pathways of
the brain [20], resulting in the reinforcing effects of
euphoria or pleasure. The A1 allele of the Taq1A
polymorphism (rs1800497), located≈10 kb downstream of
the DRD2 gene [12] has been investigated for possible
associations with habitual use of alcohol [21, 22], cocaine
[23], nicotine [24–27], and opioids [28]. Evidence indicates
that individuals carrying this allele have reduced brain D2
receptor density compared with other individuals [29–32].
Adolescent girls shown with pictures of palatable food had

weaker activation of the frontal operculum, lateral orbito-
frontal cortex, and striatum if they are carriers of the DRD2
Taq1A A1 allele or the DRD4-7R allele. These girls were
also at risk for future weight gain [33].

Persistent substance abuse in individuals with the A1
allele may be a form of self-stimulatory behavior that
compensates for insufficient dopamine activity [34]. The
A1 allele has also been observed to be associated with
obesity [35–37]. More research is needed to determine
whether the Taq1A genetic polymorphism interacts with
other well-known candidate genes for obesity including
polymorphisms of the leptin receptor gene and others, and
whether these interactive genetic effects could promote the
development of obesity-associated inflammation. In turn,
systemic inflammation could affect the brain leading to
mild depression or other effects which promote continued
addictive behaviors.

Leptin Receptor LEP-R Gene

Other candidate genes for appetite control may interact with
the DRD2 A1 allele to increase the likelihood of overeating
and obesity. The leptin receptor gene has polymorphisms
that affect binding of leptin to the leptin receptor [38]. The
leptin receptor gene (LEP-R, formerly OB-R) identified in
1995, is expressed in the hypothalamus and other organs,
binds to free-circulating leptin released from adipose tissue,
and plays a major role in metabolism and appetite signaling
[39]. Genetic variants potentially affecting receptor struc-
ture, function, and binding to leptin include three single-
nucleotide polymorphisms (SNPs) that result in amino acid
substitutions (Lys109Arg (K109R) rs1137100; Gln223Arg
(Q223R) rs1137101; and Lys656Asn (K656N) rs8179187)
[40–42] located at highly conserved positions in the extra-
cellular domain of the receptor protein.

Research from our group demonstrated an association
between percent body fat and the LEP-R variant Lys109Arg
[43]. Other studies reported linkage of Lys109Arg with fat
mass [44], association with serum leptin levels in young
Dutch men [45], an interaction between Lys109Arg and
menopause with body mass index (BMI) [46], and fat mass
loss in a caloric restriction intervention [47]. While the
DRD2 gene increases the likelihood of food addiction and
obesity [36, 37], the LEP-R gene influences appetite control
and has been associated with elevated levels of body fat and
body composition [43–47]. The joint influence of DRD2
and LEP-R could therefore predispose individuals to weight
gain and obesity if risk alleles are carried from both genes.

Evidence for potential DRD2 and LEP-R interaction has
been demonstrated in mice lacking D2 receptors [48]. D2
receptor knock-out mice demonstrated leptin sensitivity,
while wild-type mice had heavier body weights and were
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leptin resistant. Further studies are needed to characterize
the interplay between genes that encode for reward/pleasure
neurotransmitters and energy balance regulation.

Mu-Opiod Receptor Gene (OPRM1)

The mu-opioid receptor gene (OPRM1, located on chro-
mosome 6q24) is one of four genes whose protein products
bind to endogenous opioids. OPRM1 is a member of the
large family of transmembrane G-protein-coupled recep-
tors. It is widely expressed in both brain and periphery [49].
The mu-opioid receptor is the primary site of action for the
most commonly used opioids, including morphine, heroin,
fentanyl, and methadone. By sequencing, DNA from 113
former heroin addicts in methadone maintenance and 39
individuals with no history of drug or alcohol dependence,
five different SNPs in the coding region of the mu-opioid
receptor gene were identified. The most prevalent SNP is a
nucleotide substitution at position 118 (A118G), predicting
an amino acid change at a putative N-glycosylation site.
This SNP displays an allelic frequency of approximately
10% in the study population. Significant differences in
allele distribution were observed among ethnic groups
studied [50]. In a targeted study of food addiction, the
functional A118G polymorphism of the mu-opioid receptor
gene was found to be associated with binge eating disorders
[51].

Human Diets, Obesity, and Inflammation

Over the last 200 years, changes in the human diet and
lifestyle have outstripped the ability of the genome to adjust
to a changing environment and billions of people around
the world are now overfat as a result [52–58]. While studies
demonstrate that hunter–gatherers ate over 800 varieties of
plant foods [59], Americans eat only about three servings
per day which fail to provide the naturally occurring
antioxidants, phytochemicals, vitamins, and minerals es-
sential to good health. Highly processed foods with refined
starches, sugars, fats, and oils often fail to contain essential
nutrients found in nutrient-dense foods [60]. At the same
time, labor-saving devices of all kinds and advances in
transportation have made a highly sedentary lifestyle
possible in just the last 30 years [61]. A global epidemic
of obesity and chronic disease that is underestimated using
the BMI is sweeping the globe as industrialization and
improved standards of living are spreading to urban centers.
Certain ethnic groups including African–Americans,
Asians, Asian Indians, Latinos, Native Americans, and
Eastern Europeans are genetically susceptible to Metabolic
Syndrome resulting from the accumulation of visceral fat

with resulting inflammation [62]. It is estimated that in the
next 10 years, the majority of all heart disease will be
associated with type 2 diabetes mellitus [63].

The metabolic syndrome has emerged as an important
cluster of risk factors for atherosclerotic disease. Common
features are central (abdominal) obesity, insulin resistance,
hypertension, and dyslipidemia, with high triglycerides and
low high-density lipoprotein cholesterol. According to the
clinical criteria developed by ATP III, it has been estimated
that about one of every four adults living in the USA merits
the diagnosis. The presence of the metabolic syndrome is
highly prognostic of future cardiovascular events.

Chronic inflammation may represent a triggering factor
in the origin of the metabolic syndrome: stimuli such as
overnutrition, physical inactivity, and aging would result in
cytokine hypersecretion and eventually lead to insulin
resistance and diabetes in genetically or metabolically
predisposed individuals. Alternatively, resistance to the
anti-inflammatory actions of insulin would result in
enhanced circulating levels of proinflammatory cytokines
resulting in persistent low-grade inflammation. A generally
enhanced adipose tissue-derived cytokine expression may
be another plausible mechanism for the inflammation/
metabolic syndrome relationship. The role of adipose tissue
as an endocrine organ capable of secreting a number of
adipose tissue-specific or enriched hormones, known as
adipokines, may play a pathogenic role in metabolic
syndrome. Although the precise role of adipokines in the
metabolic syndrome is still debated, an imbalance between
increased inflammatory stimuli and decreased anti-
inflammatory mechanisms may be an intriguing working
hypothesis. The chronic inflammatory state that accompa-
nies the metabolic syndrome associates with both insulin
resistance and endothelial dysfunction, providing a connec-
tion between inflammation and metabolic processes which
is highly deleterious for vascular function. However, small
amounts of weight loss which relieve the pressure for
abdominal adipocytes to proliferate have been shown to
reduce inflammation in patients with type 2 diabetes [64],
and in two large trials to reduce the incidence of new cases
of diabetes over 5 years by 58% in individuals with glucose
intolerance and insulin resistance [65].

Conclusion

Our brains are programmed to activate the pleasure centers
of the brain on visualizing food and then eating it, to
remember the food that was eaten in specialized memory
neurons, and to activate our digestive processes including
chewing and hormone secretion in preparation for digesting
a delicious meal. Eating food is a life-giving event in the
wild and so it is perfectly reasonable that this activity
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would be highly valued within our inherited biological
control mechanisms. However, when the stimuli are linked
in susceptible individuals to increases in reward circuitry
activity as detected in changes in dopamine and glucose
metabolism, then neuronal plasticity could be altered in
ways that both increase the tendency to eating disorders and
obesity as well as drug addiction. Whether these pathways
interact in susceptible individuals is unknown but has
potential significance for efforts to prevent or treat chronic
drug abuse through changes in diet and lifestyle including the
treatment of obesity which may reduce brain inflammation.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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