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Abstract: (1) Background: ankle-foot orthosis (AFO) is the most commonly prescribed orthosis to
patients with foot drop, and ankle and foot problems. In this study, we aimed to review the commonly
used types of AFO and introduce the recent development of AFO. (2) Methods: narrative review.
(3) Results: AFO prevents the foot from being dragged, provides a clearance between the foot and the
ground in the swinging phase of gait, and maintains a stable posture by allowing heel contact with
the ground during the stance phase. In clinical practice, the most commonly used AFO include plastic
AFO, walking boot, UD-Flex, and carbon fiber AFO. In addition, for compensating the demerits of
these conventional AFOs, new types of AFOs, including AF Servo, TurboMed, three-dimensionally
printed AFO, and AFO made from kenaf composites, were developed. (4) Conclusions: we think that
our review can guide clinicians in selecting and prescribing the appropriate AFO for each patient in
accordance with their specific physical conditions.
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1. Introduction

Ankle-foot orthosis (AFO) is a commonly used orthosis in patients having weakness
in the ankle dorsiflexor or plantarflexor muscles due to several disorders such as stroke,
cerebral palsy, spinal cord injury, and peripheral nerve injury. In addition, it can be used
in patients with arthritis or ankle and foot deformities or fractures [1–6]. AFO assists
walking by maintaining the alignment of and stabilizing the ankle and foot, and prevents
and corrects ankle and foot deformities [7,8]. AFO prevents the foot from being dragged,
provides a clearance between the foot, and the ground in the swinging phase of gait, and
maintains a stable posture by allowing heel contact with the ground during the stance
phase [9,10].

In this study, we aimed to review the commonly used conventional types of AFOs
and introduce the recently developed AFOs. In addition, we aimed to investigate and
compare the advantages and disadvantages of conventional and recently developed AFOs
and provide useful basic data for prescribing AFOs in clinical practice.

2. Conventional AFO Used in Clinical Practice
2.1. Typical Plastic AFO

Plastic AFO (PAFO) is mainly made of thermoplastics such as polypropylene and
is one of the most widely used orthosis in clinical practice owing to its numerous ad-
vantages such as its relatively low cost, good aesthetics, being easy to clean, and easy
desorption [11,12]. PAFO is customized to the patient’s body, as it is generally produced
by casting the patient’s lower extremity to make a positive plaster model. By placing
thermoformed plastic to cover the positive plaster model, it produces the orthosis in the
exact shape of the model. PAFO commonly consists of a shank shell, foot plate, and Velcro
strap, with hinges on ankle joints as needed [13,14]. PAFO can be classified according to
the presence of hinges, mainly as solid ankle types without hinges and hinged ankle types

Healthcare 2021, 9, 1046. https://doi.org/10.3390/healthcare9081046 https://www.mdpi.com/journal/healthcare

https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0002-3820-2279
https://doi.org/10.3390/healthcare9081046
https://doi.org/10.3390/healthcare9081046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/healthcare9081046
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare9081046?type=check_update&version=2


Healthcare 2021, 9, 1046 2 of 11

with additional hinges. If the purpose is to solely keep the ankle in a neutral position, a
solid ankle type is applied, and the trimline is placed in front of the ankle bone to control
the medial and lateral stabilities of the ankle (Figure 1A) [15].

Figure 1. Types of plastic ankle-foot orthoses (A): solid ankle-foot orthosis, (B): posterior leaf spring orthosis, (C): hinged
ankle-foot orthosis, and (D): patellar tendon-bearing ankle-foot orthosis.

Solid AFO (SAFO) is predominantly applied to completely limit the ankle joint move-
ment in patients with foot drop, weak dorsiflexion and/or plantarflexion, ligament injury
about the ankle, mild knee instability, and valgus/varus [16,17]. Posterior leaf spring ortho-
sis (PLSO) is a SAFO, but unlike the conventional SAFO, PLSO has a characteristic trimline
located behind the ankle and has a leaf-shaped corrugation near the ankle (Figure 1B). The
leaf-like creases are intended to strengthen the part of the ankle with the most amount
of movement and repeated loadings. The creases act as a spring in the ankle that allows
slight dorsiflexion in the mid and terminal stances, and this elasticity can also marginally
assist the push-off function in the terminal stance. PLSO is used in the presence of motor
weakness in the ankle dorsiflexor caused by conditions such as cerebral palsy and stroke.
Owing to its greater elasticity and flexibility than those of regular SAFO, PLSO is suitable
for patients with mild cramps or who are more active and have better balance than those
for whom SAFO is used [18–20]. In addition, as the ankle trimline extends further to the
front of the ankle joint, the effectiveness in controlling the instability of the ankle increases.
However, the PLSO does not contribute significantly to ankle stability, as the trimline is
behind the ankle. Therefore, PLSO has a limitation in controlling valgus/varus [20,21].

The hinged AFO (HAFO) is used when ankle movement is permitted but movement
restrictions to a certain extent is required. HAFO is produced by using hinges to connect
two pieces, the shank and foot shells, and the hinges are commonly located on the malleolus
side (Figure 1C). The hinge on the HAFO allows a certain degree of dorsiflexion that makes
it easier for users to walk on uneven surfaces or to climb stairs. It also increases ankle
dorsiflexion in the terminal stance and increases ankle plantar flexion during the pre-swing
phase, which helps users walk naturally [22]. The commonly used hinged types of PAFO
include the overlap, Oklahoma, and Gillette joints (Figure 2). The overlap joint limits
plantarflexion by overlapping the shank and foot shells, and fixing it in with a rivet. The
Oklahoma joint connects a separate shank shell with the foot shell, which creates a space
between the shank shell and the back of the foot shell to allow plantarflexion until the two
pieces meet. The plantarflexion can also be completely limited by fitting the shells at 90◦

without space in between. The Gillette joint, like the Oklahoma joint, connects a separate
shank shell with the foot shell, allowing both plantarflexion and dorsiflexion. HAFO is
widely used in children with spastic diplegia and patients with spastic hemiplegia after
stroke, as it can stretch the ankle plantar flexor to reduce stiffness and reduce disorganized
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muscle-response patterns. It is also used in the presence of low muscle tone (hypotonia),
high muscle tone (hypertonia), flexible pronation or supination, sagittal and/or frontal
plane weakness, excessive plantarflexion, and genu recurvatum. However, it should be
applied into patients with sufficient control of their knee joints and should not be used for
patients with severe mediolateral instability of the ankle [22–24].

Figure 2. Commonly used types of plastic ankle foot joints (A): overlap joint, (B): Oklahoma joint, and (C): Gillette joint.

The patellar tendon bearing AFO (PTB-AFO), unlike other PAFOs, has an additional
anterior shell to support weight with the patellar tendon, which helps to reduce the weight
load on the heel, ankle, and sole, and therefore reduces pain in each of the mentioned
areas (Figure 1D) [25,26]. This is used in cases that require the pressure on the foot to be
minimized, such as ulcers, calcanectomy, plantar skin graft, severe foot/ankle trauma,
and fractures.

In 2007, Balaban et al. [1] measured the walking parameters and angle of the ankle
during walking in 11 children with hemiplegic cerebral palsy according to the presence or
absence of a hinged AFO made with a plantarflexion stop at 0◦ with no dorsiflexion stop.
As a result, with a hinged AFO and bare feet, respectively, the mean velocities were 0.89
and 0.70 m/s; single support averages, 0.38 and 0.36 s; double support averages, 0.18 and
0.23 s; and stride lengths, 0.90 and 0.73 m, which demonstrated significant differences in all
four components. Furthermore, the angle of ankle dorsiflexion at initial contact was 4.79◦

with a hinged AFO and −4.28◦ with bare feet, and the ankle dorsiflexion at mid stance
averaged at 11.59◦ and 5.81◦, respectively, which also showed significant differences in
the two components. With such results, walking function has been confirmed to improve
when hinged AFO is used, as compared with walking barefoot. Abe et al. [27] in 2009
evaluated walking function using an 8-m walk test and functional ambulation category
(FAC) with or without using a plastic AFO in 16 hemiplegic stroke patients. As a result,
in the patients who used and did not use orthoses, respectively, the stride lengths were
65.7 ± 13.6 and 56.9 ± 13.6 cm; affected-side step lengths, 34.0 ± 10.0 and 30.4 ± 9.4 cm;
step widths, 29.8 ± 4.4 and 28.2 ± 5.0 cm; velocities, 22.9 ± 6.8 and 18.1 ± 8.1 m/min;
and cadences, 73.3 ± 15.8 and 66.8 ± 21.0 step/min, which all demonstrated significant
differences. The FAC score was 3 points in 9 patients (56.3%), 4 points in 7 patients (43.8%),
and 5 points in none (0%) of the patients prior to wearing the orthosis. However, after
using the orthosis, the FAC score was 3 points in 1 patient (6.3%), 4 points in 5 patients
(31.3%), and 5 points in 10 patients (62.5%), which reported significant improvement in
walking ability.

2.2. Walking Boot (Controlled Ankle Movement Walker, Aircast)

The walking boot (WB) is an orthosis that allows total contact with the anterior and
posterior parts of the calf, ankle, and entire foot (Figure 3A). The WB is equipped with
inflatable pneumatic blades to maintain stable surface contact between the orthosis and the
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user’s skin. The pneumatic blades can also reduce edema and shear forces, and separately
inflate the particular areas that require inflation for total contact [28]. The entire inner part
of the orthosis contains liners to provide cushion for the inner surface. The WB, like a cast,
reduces movement by fixing the lower extremities and ankles at 90◦, but the front plate of
the orthosis can be easily removed to identify and evaluate wounds [28–30]. As the bottom
surface is commonly produced with a rocker bottom, a more natural and comfortable
movement is possible during the toe-off of the initial swing [31]. An angle adjuster can
be added when necessary to adjust the orthosis and allow for ankle movement within
the required range. The WB is used for acute injuries such as ligament sprains/tears,
postoperative stabilization or support, ulcers, or cases with fractures [29,32–35].

Figure 3. Conventional ankle-foot orthoses (A): walking boot, (B): UD-Flex, and (C): carbon fiber ankle-foot orthosis.

Amaha et al. [36] in 2016 retrospectively evaluated patients who had surgeries for
unstable ankle fractures. Of the 47 patients who received follow-up observations for at
least 6 months, 25 wore a plaster cast (PC) and 22 wore a WB, and recovery rates were
monitored in the two groups. As a result, the time taken for the patient to recover the
ability to stand unipedal on the affected side after allowing full weight bearing showed a
significant difference, with a mean duration of 3.1 weeks in the PC group and 1.4 weeks in
the WB group. The time taken for the patient to recover the ability to walk without crutches
was also significantly different, with a mean duration of 4.5 weeks in the PC group and
2.6 weeks in the WB group. This signifies that the WB group demonstrated an outstanding
degree of recovery.

2.3. UD-Flex

Unlike the conventional AFO, UD-Flex is an orthosis designed to be worn at the
front of the foot, with a completely open heel (Figure 3B). The front shell of the orthosis is
U-shaped and has flexibility that allows users to bend the ankle sufficiently. In addition,
the contact area with the foot and orthosis is small, and the open heel area allows users
to receive ground reaction feedback when walking. Therefore, users can actively use
their proprioceptive sensibility. they can walk while accurately recognizing their walking
pattern, which leads to an even more natural way of walking [28,37]. Users were required
to wear shoes one size larger than the normal size for their feet, as the heel was not opened
for the existing PAFOs. Comparatively, UD-Flex provides a better solution for this issue
and allowed users to wear shoes of the same size for both the affected and normal feet.
UD-Flex can be made in sizes according to the length of the foot or can be customized
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to fit the body of the individual. UD-Flex features a consistent state of 5◦ dorsiflexion, is
ultralightweight, and is easy to wear with one hand, which is advantageous for hemiplegic
patients. UD-Flex is applied in patients with foot drop due to mild foot deformity, stroke,
and spinal nerve injury, and is also used to relieve pain and prevent foot deformations
after tendon reconstruction operation. In addition, UD-Flex is used to improve the walking
ability of patients after a certain degree of improvement in symptoms of muscle weakness
is attained, rather than in the early stages of the disease.

Bae et al. [37] in 2009 evaluated the function of walking with and without the use of
UD-Flex in 12 hemiplegic stroke patients. The results showed a significant difference in
the peak ankle dorsiflexion in the swing phase between the two groups, with an ankle
dorsiflexion angle of 3.14◦ ± 6.77◦ in the UD-Flex group and 0.56◦ ± 6.40◦ in the non-UD-
Flex group. Such results signify that UD-Flex assists in dorsiflexion during the swing phase
of walking and therefore has an enabling effect on natural gait.

2.4. Carbon Fiber AFO

Carbon fiber is a material with high stiffness, high tensile strength, resistance to high
temperatures, and low weight. Owing to the nature of its material, carbon fiber AFO
(CFAFO) is considered to be better than plastic AFO in terms of energy storage capacity,
light weight, and durability, but it is not commonly used because of its high cost [38–40].
Among the types of plastic orthosis, the solid ankle AFO or posterior leaf spring has a
design similar to that of CFAFO, except that in CFAFO, the heel is open and the shell is thin
throughout the entire orthosis to reduce the pressure exerted on the user (Figure 3C) [40,41].
In addition, the overall satisfaction of users is high, as the appearance is more modern and
the function is superior to the existing orthoses [39,40,42]. The CFAFO, compared with
plastic orthosis, enhances the plantarflexor ankle joint moment and energy efficiency, and
can improve walking ability, as it increases plantarflexor muscle power [38,43]. CFAFO is
used for foot drop, limb proprioception deficiency, M-L instability, mild knee instability,
Charcot–Marie–Tooth disease, and poliomyelitis, where no spasticity is evident [39,44,45].

In 2006, Desloovere et al. [46] compared the differences in ankle movements during
walking using a CFAFO and without using a CFAFO (barefoot) in 15 children with hemi-
plegia. As a result, the angle at initial contact, range of motion during push-off, timing
of maximum dorsiflexion in stance, angle at mid-swing, mean foot progression angle in
stance, and angular velocity at toe-off significantly improved when a CFAFO was worn,
as compared with walking barefoot. This result signifies that the ankle range of motion
improved when the participants walked using a CFAFO as compared with walking bare-
foot. In 2009, Moriello et al. [47] applied carbon fiber orthoses in adolescent male patients
who had traumatic brain injuries and conducted track-and-field training with exercise
reinforcement once a week for 6 weeks, weight support once a week for 15 weeks, and
muscle strength training once a week for 17 weeks to confirm the degree of recovery of
running ability. In patients who initially had a significant left lower extremity weakness,
impaired standing balance, limited endurance, and running limitations of being able to run
10 m by using plastic AFO under the supervision of the coach, after the intervention, muscle
strength in the lower extremities increased, the distance ran independently increased up
to 1 mile, the propulsion to absorb the force applied to the impact during the absorption
phase improved, and the lower extremity extension during the propulsion phase increased.

3. Recent Trends of AFO
3.1. AF Servo

AF Servo was first introduced in Europe in 2014 and is an orthosis with favorable
reviews from many clinicians [48]. AF Servo is made of fabric at the front and plastic
at the back, with the trimline located behind the lateral malleolus (Figure 4A). Unlike
other customized orthosis, AF Servo is produced ready-made in different sizes and can be
worn immediately by operating a dial, which shortens the production period. The BOA fit
system, a closing method that enables simple and intuitive fitting, allows the user to easily
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adjust for an optimal fit by simply operating a dial. As it adheres comfortably according to
the body shape of the individual, users can easily fit their feet into shoes. Furthermore, as
it does not permit loosening, secondary damage can also be prevented [48]. AF Servo is for
patients with mild foot drop; therefore, it is not suitable for patients with severe foot drop
who are unable to raise their feet manually. AF Servo is suitable for patients with mild
foot drop due to Charcot–Marie–Tooth disease, stroke, Guillain–Barre syndrome, multiple
sclerosis, cerebral palsy, and motor neuropathy. Despite its use in clinical practice, to the
best of our knowledge, no studies have investigated its effectiveness. In the future, studies
evaluating merits of AF Servo are needed.

Figure 4. Recent trends of ankle-foot orthoses (A): AF Servo, (B): TurboMed, and (C): three-dimensionally printed AFO.

3.2. TurboMed

TurboMed is a dynamic AFO that can be attached to the exterior of various types
of shoes, such as sneakers, or sandals, or shoes [49]. Through the mechanical design of
TurboMed, the lost dorsiflexion power can be regained, as TurboMed automatically restores
the elastic energy according to the gait during walking. TurboMed has an exoskeleton
design that can be easily removed from most ready-made shoes without contact with the
foot or ankle skin; therefore, users do not have to be concerned about pressure on bone
protrusions or wounds (Figure 4B) [50]. In addition, it has no distinction between left and
right, and is not largely restricted by shoe sizes (available for shoe sizes 160–340 cm) [50].
It is made of a highly durable plastic material and can be thermoformed to fit the user’s
foot width or drooping degree, and its decent adaptability to uneven or inclined ground
enables sports activities such as climbing. TurboMed may be applied for patients with
weakened dorsiflexor, foot drop, hemiplegia, or peroneal nerve palsy caused by stroke,
cerebral palsy, and multiple sclerosis. Other options can be added as needed. For knee
hyperextension, calf atrophy, foot slap, and spasticity, an extension stopper can be added to
limit the bending of the heel support and reduce the range of motion of the TurboMed body
to induce natural walking. If foot inversion is evident, ankle fixation straps can be added
to fix the posture [50]. However, TurboMed is less frequently used because of concerns
that plastic materials might not be able to withstand the applied load [51]. To date, the
number of studies describing the effects of TurboMed are limited. Further studies should be
actively conducted to confirm the improvement of walking function and correction of body
alignment, or to identify improvements of physical damage such as wounds and edema.
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In 2018, Ladlow et al. [52] studied the effect of a passive dynamic AFO with TurboMed-
like characteristics on 23 patients with severe lower extremity trauma. After a mean AFO
use period of 34 months, 21% and 53% increases in the number of patients able to walk
and run independently, respectively, were observed. The proportion of patients reporting
no pain also increased from 13% to 31%.

3.3. D Printed AFO

The 3D printed AFO is a custom orthosis made by additive manufacturing, which is
a method of manufacturing a solid structure by stacking materials in layers (Figure 4C).
The AFO, which is produced by 3D printers, can use software to make fine adjustments to
bone protrusions or wounds, thereby making it possible to produce orthoses that meet the
needs of patients, which is almost impossible to materialize using traditional processes [53].
AFO can be made in various shapes or neatly without leaving surrounding cracks when
producing a specific area to be thick or thin or creating perforations for breathability [54,55].
The advantages of 3D printed AFO include rapid production when most conventional
orthoses require a considerable amount of time to manufacture because the individual
parts must be combined manually; reproducing with the same quality at any time, as the
pieces can be easily duplicated; the freedom of users to choose colors; and the relatively low
price [56–58]. In addition, the light weight eliminates the considerable strain of wearing
the orthosis, and the quality water resistance makes it easy to clean. The material has
excellent durability, as it is made of a nylon-based polymer with a high level of stiffness
and impact strength, or thermoplastic polyurethane, which is one of the non-toxic and
highly flexible thermoplastic filaments [56,57]. The 3D printed AFO can be applied in
patients with conditions such as foot drop, Charcot–Marie–Tooth disease, and plantar
fasciitis caused by conditions such as stroke, cerebral palsy, and multiple sclerosis [56,58].

In 2019, Xu et al. [58] randomly divided 60 patients with plantar fasciitis into a
group wearing prefabricated AFO and a group wearing customized 3D printed AFO, and
compared the degree of pain after 8 weeks. As a result, the mean visual analog scale score
decreased from 8.72 ± 3.93 to 5.25 ± 1.22 in the group wearing prefabricated AFO and
from 7.34 ± 3.43 to 3.12 ± 0.51 in the group wearing 3D printed AFO, demonstrating
significantly greater pain control effects than the group that did not use prefabricated AFO.

3.4. Kenaf Composites

Kenaf composite (Figure 5) is made of natural fibers with strong durability that meets
the minimum criteria for mechanical properties required for AFOs [59]. Kenaf is a woody
base plant that grows up to 5.5 m in 6–8 months; therefore, when used as a composite,
its availability and production costs are not a problem [59,60]. In addition, Kenaf fibers
have a trait of absorbing oils and liquids, which can help reduce the possibility of skin
irritation, as it can absorb sweat when used as an orthosis [59,61]. However, as kenaf alone
is insufficient to withstand the minimum strength applied to the orthosis, it is better to
combine the reinforcement material (fiber) with the matrix (resin) to improve the durability
of the orthosis [59–61]. When producing AFO using Kenaf composites, it is possible to
maintain the strength and stiffness of the material while reducing cost and weight, and
AFO that are eco-friendly and recyclable can be produced [59]. In 2019, Shahar et al. [59]
discovered that carbon fiber composites are the best material for AFOs owing to their low
weight and high strength when comparing with the existing materials such as wood, metal
and leather, plastic, and carbon fiber composites. However, by mentioning that the cost
of using plastic orthosis is higher owing to the high cost of raw materials, Shahar et al.
stated that Kenaf composites can be used as a replacement for carbon fiber composites
or plastics and for additive manufacturing using 3D printing technology; therefore, the
use of Kenaf composites is expected to increase in the future. However, as no studies
have been conducted on the effect of AFO made of Kenaf composites, such studies must
be conducted.
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Figure 5. Kenaf composites.

4. Conclusions

In this study, we described the most commonly used and recently developed AFO.
Compared to conventional AFOs, recently developed AFOs have better durability, shorter
production time, more sophisticated shape-making ability, easier donning, or improved
appearance, depending on their types. However, these superior qualities do not necessar-
ily preclude conventional AFOs. The convergence of high-intensity materials and high
technology may be economically burdensome, and patients may not want to prematurely
use recently developed AFOs because they have no confidence in the products. A variety
of new AFOs have been developed, but the most widely used in clinical practice is plastic
AFOs because they are relatively inexpensive, vary in type depending on the additional
materials used, and can be worn regardless of shoe type. However, plastic AFOs are
slightly less durable than recently developed AFOs.

The selection of an appropriate AFO that considers both the physical and psycho-
logical state of the user is important to achieve the most successful rehabilitation and
increase convenience in daily living. Because different AFOs have different indications,
contraindications, features, and user preferences, the appropriate AFO should be selected
depending on the status of the user. Future research should consistently be conducted to
continuously update AFO selection guidelines and systematically classify which AFO type
is most effective for each disease, increasing user preference. In addition, the effectiveness
of AFOs that are still being developed should be obtained through clinical trials.

We consider our review to be useful for clinicians when prescribing the appropriate
AFO for the specific needs of patients in the future. In addition, this review provides
information to broaden the choices of AFO during AFO prescription by clinicians.
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