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Abstract

Background: E. coli O157 carries two genes encoding the effector proteins NleH1 and NleH2 which are 87% identical.
Despite the similarity between the proteins, the promoter regions upstream of the genes encoding the effectors are more
divergent suggesting that the actual expression of the genes may be differentially regulated. This was tested by creating
reporter fusions and examining their expression in different genetic backgrounds, media and on contact with host cells. The
function of the proteins was also tested following transfection into host cells.

Principal Findings: Expression of both NleH1 and NleH2 was enhanced when cultured under conditions that stimulated
expression of the Type Three Secretion System (T3SS) and was influenced by the regulators Ler and GrlA. Maximal
expression of NleH1 required 531 bp of the upstream untranslated region but NleH2 required only 113 bp. Interestingly,
contact with host cells strongly repressed expression of both NleH1 and NleH2. Following transfection, both proteins
produced only minor effects on NF-kB activation when assessed using a NF-kB luciferase reporter assay, a result that is
consistent with the recent report demonstrating the dependence on RPS3 for NleH1 modulation of NF-kB.

Significance: This study demonstrates the importance of considering gene regulation when studying bacterial effector
proteins. Despite their sequence similarity, NleH1 and NleH2 are expressed differentially and may, therefore, be translocated
at distinct times during an infection.
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Introduction

Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic

E. coli (EHEC) are important causative agents of infectious diarrhoea

worldwide. EPEC is the leading cause of prolonged watery

diarrhoea in children living in developing countries [1]. EHEC

causes sporadic outbreaks of haemorrhagic colitis and haemolytic

uremic syndrome that have been widely reported in Europe, North

America and Japan. EPEC and EHEC are extracellular pathogens

that mediate an initial attachment via adhesins, such as their flagella

[2,3], prior to a more intimate attachment. This intimate

attachment is characterized as an attaching-and-effacing (A/E)

lesion due to destruction of the brush-border microvilli and

cytoskeletal rearrangements to form pedestals; this is dependent

upon the expression of a Type Three Secretion System (T3SS).

The genes which encode the T3SS machinery, translocators,

effectors, chaperones and its own regulators are within the Locus

of Enterocyte Effacement (LEE) pathogenicity island (PAI). The

T3SS apparatus not only translocates the 7 LEE-encoded effectors

such as Tir [4], Map, and EspF but also other proteins encoded on

prophage elements throughout the genome, which are termed

non-LEE encoded effectors (Nle) [5,6,7,8,9].

Horizontally acquired genetic elements require appropriate

regulation of expression that can be managed by both endogenous

and exogenous elements. Currently, it is understood that

expression of the LEE PAI is tightly regulated by an interplay of

LEE-encoded, global and other horizontally-acquired regulators

(reviewed in [10,11]). The LEE encodes three regulatory elements;

LEE-encoded regulator (Ler), Global Regulator of the LEE

Activator (GlrA) and Grl Repressor (GlrR). Ler is the first open

reading frame of LEE1 and belongs to the H-NS family of

nucleoid-associated proteins which positively regulates transcrip-

tion of both LEE and non-LEE genes [12,13]. Ler activates gene

transcription by counteracting the effects of global regulator H-NS

which silences transcription of genes by binding to curved AT-rich

regions [14]. H-NS has been shown to repress the transcription of

ler and LEE4 [15,16]. GrlA and GrlR are encoded between LEE1

and LEE2, are co-transcribed and transcription of these genes is

dependent upon Ler [16,17]. GrlA can in turn positively regulate

the expression of Ler through interacting with the LEE1 promoter

[18] forming a positive feedback loop [19]. GrlR directly interacts

with GrlA and this interaction is proposed to act as a check-point

to downregulate the feedback loop [18,19,20]. Additional

horizontally acquired elements that regulate the LEE include
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PerC (plasmid encoded regulator C) in EPEC or PerC-like

homologues (Pch) in EHEC, of which there are seven present in

the genome. PchABC can act globally by enhancing the

transcription of LEE1 (ler) and non-LEE encoded genes both

dependent and independent of Ler [21,22,23].

Non-LEE encoded effector H (NleH) was identified as a

homologue of the Shigella flexneri effector OspG [7], a serine-

threonine protein kinase which subverts the host innate immune

response [24]. NleH is conserved amongst the A/E pathogen

family with Citrobacter rodentium encoding one allele and EPEC and

EHEC encoding two alleles [7,25,26]. Despite the protein

similarities of E. coli O157 NleH1 and NleH2 being greater than

80%, we found that their putative promoter sequences were more

divergent and less well conserved, suggesting possible differences in

their regulation and expression. The regulation of expression of C.

rodentium NleH (CRODNleH) has been demonstrated to be largely

post-translational, dependent upon the Ler/GrlA regulon [25].

However, as the upstream sequence of CRODNleH is only ,50%

similar (see Table S1) to that of EHEC NleH1 (z0989) and NleH2

(z6021) we wished to investigate the control of NleH1 and NleH2

gene expression. We also investigated if EHEC NleH1 and NleH2

were under the regulatory control of Ler and/or GrlA.

Results

In vitro expression of nleH1::gfp and nleH2::gfp in E. coli
O157:H7

Our previous work performed transcriptional profiling of the

global changes associated with induction of the LEE, the genes

that encode the E. coli O157:H7 T3SS. We have previously

reported that MEM-HEPES media provides excellent conditions

for expression of the LEE, even when compared to the widely used

DMEM media. For example escJ and escN, which encode basal

apparatus proteins, were both strongly induced in MEM-HEPES

data. Analysis of the same transcriptomic data showed that nleH1

showed a 6.4 fold (p = 0.008) change in expression when cultured

in MEM-HEPES when compared with DMEM (accession

no. GSE6296). Therefore, nleH1 was clearly expressed in vitro

and subject to transcriptional regulation. We aimed to determine if

nleH1 and nleH2 were expressed at the same time during growth in

liquid media and following contact of E. coli O157 with host cells.

Upon assessment of the untranslated region (UTR) upstream of

nleH1 and nleH2, we noted that the first 100 bp were 70%

identical, with this figure falling to 50% identity when extending

this region to 500 bp upstream of the ATG start codon (Figure

S1). To examine if these differences affected nleH1 and nleH2

expression and regulation, we generated a series of promoter

fusions consisting of different lengths of the upstream UTR of the

two genes fused to gfp. In each case, the complete nleH1 or nleH2

coding sequence was included in the fusion to create a ‘‘full-

length’’ translational fusion. Each plasmid was transformed into E.

coli O157:H7 and the amount of GFP produced monitored during

growth in MEM-HEPES (Figure 1A) or DMEM media

(Figure 1B). Highest expression of nleH1::gfp was achieved with

the fusion containing the longest upstream UTR regions: 531 bp

(pAHE8) (Figure 1). Expression of NleH2 was less dependent on

promoter length, requiring only 113 bp (Figure 1A). When

cultured in MEM-HEPES media, the nleH1::gfp and nleH2::gfp

fusions showed markedly higher expression compared when

cultured in DMEM: at an OD600 = 1.2, both fusions gave four-

fold higher expression in MEM-HEPES compared to DMEM

(Figure 1A and B). As the UTR was reduced in MEM-HEPES,

nleH1::gfp showed a step-wise decrease in the amount of

expression, with the fusion driven by the 120 bp UTR (pAHE18)

producing less than 25% of the GFP compared to the 531 bp

UTR fusion (pAHE8; Figure 1A). In comparison, expression of

nleH2::gfp was largely unaffected: reducing the length of the UTR

to 113 bp (pAHE20) still produced 90% of the expression

compared to the fusion containing the 655 bp UTR (Figure 1A).

These results suggest that expression of nleH1 is subject to stricter

control through the influence of transcription factors and/or

secondary DNA structure compared to nleH2, and that this control

depends upon 120–531 bp of the 59 UTR.

Expression in different genetic backgrounds
The data in Figure 1 showed maximal expression of nleH1 and

nleH2 at high optical densities raising the possibility that either

quorum sensing mechanisms or stationary phase sigma factors

may contribute to their regulation. To test this, we transformed the

nleH1::gfp and nleH2::gfp reporter plasmids, pAHE8 and pAHE22

into E. coli K12 and isogenic deletion strains of rpoS and qseC.

Figure 1. Expression of NleH-GFP constructs in E. coli O157:H7
grown in defined media. Constructs consisting of 120 bp (pAHE18),
283 bp (pAHE19) or 531 bp (pAHE8) of the NleH1 59 UTR and 113 bp
(pAHE20), 291 bp (pAHE21) or 655 bp (pAHE22) of the NleH2 59 UTR
cloned upstream of gfp were transformed into ZAP193, grown in MEM-
HEPES (A) or DMEM (B) and GFP fluorescence measured during growth.
All values were corrected for background from a promoter-less GFP
(pAJR70) control measured at the same optical density. Graphs
represent the average of three experimental repeats.
doi:10.1371/journal.pone.0033408.g001

Regulation of NleH

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e33408



Expression was tested in a number of K12 strains, including

BW25113 and MC4100, but in all cases expression was negligible

implying that an O157-specific regulator may be essential for

their production (data not shown). We then assessed the

importance of the LEE-associated regulators, Ler and GrlA for

nleH1 and nleH2 expression. Plasmids pAHE8 and pAHE22 were

transformed into E. coli O157:H7 strain ZAP193, an isogenic ler

deletion strain and ZAP193 containing a mini-Tn5 cassette

insertion in the grlA gene. Expression of nleH1 and nleH2 was

markedly reduced by deletion of either ler and grlA (Figure 2A–B).

At an OD600 = 1.0, nleH1 expression fell by 50% and 70% when

ler or grlA were deleted respectively (Figure 2A). For nleH2, the

reduction was 50% and 80% in the same backgrounds

(Figure 2B). As a control, we also used a tir::gfp fusion, pAJR75

(Figure 2C) consisting of the LEE5 promoter region. This fusion

also showed ler and grlA dependence for full expression of gfp but

was expressed at much greater levels than nleH1 and nleH2,

typically 15-fold higher.

To confirm the regulatory importance of ler and grlA on nleH1

and nleH2 expression, Q-PCR was used to assess levels of

transcription directly. Strains were cultured in the same MEM-

HEPES media as for the previous assays and cDNA prepared as

described in Materials and Methods. Transcription of both nleH1

and nleH2 was markedly affected in the Dler background, falling

greater than ten-fold (Figure 3). Similarly, deletion of grlA reduced

transcription of both nleH1 and nleH2. The housekeeping gene,

gapA, encoding glyceraldehyde-3-phosphate dehydrogenase

showed only very minor changes in the different regulatory

backgrounds (Figure 3). Expression of the gene encoding Tir, was

found to be highly dependent on both Ler and GrlA confirming

that both regulators are critical for expression of LEE-encoded

effector proteins. Overall, these results confirm that nleH

expression and transcription is dependent upon the presence of

Ler and GrlA, as seen previously with the GFP reporter fusions

(Figure 2A–B).

Single cell expression
Previous work has demonstrated that several LEE-encoded and

Nle effectors can be heterogeneously expressed within a popula-

tion when assessed by either reporter fusions or by indirect

immunofluorescent imaging. To determine if NleH1 and NleH2

expression was homo- or heterogeneous, bacteria transformed

with pAHE8 and pAHE22 were examined using fluorescence

microscopy and the expression of a minimum of 100 bacteria from

at least three fields quantified using Volocity suite software (Perkin-

Elmer). Expression of NleH1 was uniform, with the population

expressing an average of 29 (61) RFU (Figure 4A). In comparison,

it was clear that NleH2 expression was more heterogeneous, with

the majority of bacteria (86%) expressing an average of 4968

relative fluorescence units (RFU) but a small population (14%)

expressing an average of 234655 RFU (Figure 4B). When

expression was assessed in Dler or DgrlA backgrounds, expression

was lower for both NleH1 and NleH2 and the heterogeneity for

NleH2 was no longer detectable. To ascertain whether NleH was

expressed in co-ordination with the T3SS apparatus, the EspA

filaments were immunostained as described previously [13]. The

results show NleH expression is not strictly co-ordinated with the

LEE as 18–20% of the population does not express EspA, but still

express NleH (Figure S2A). Also, this percentage of EspA negative

cells is maintained within the heterogenous population of NleH2-

GFP expressing cells. As expected, EspA filaments are not detected

in a ler negative background and are reduced in the grlA mutant

(Figure S2B–C).

Figure 2. Expression of NleH-GFP and Tir-GFP in E. coli O157:H7
defined LEE regulator mutants. E. coli O157:H7 ZAP193, ZAP193Dler
and ZAP193DgrlA were transformed with constructs expressing NleH1-
GFP (pAHE8; A), NleH2-GFP (pAHE22; B) and Tir-GFP (pAJR132; C). GFP
expression was monitored during growth of the transformants in MEM
media, with a promoterless GFP construct (pAJR70) as a background
control. Fluorescence values were corrected for background and lines
represent the average of three biological repeats.
doi:10.1371/journal.pone.0033408.g002

Regulation of NleH
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Expression of nleH1::gfp and nleH2::gfp in E. coli O157:H7
upon contact with host cells

The expression of effector proteins is subject to strict regulation

thereby producing a discrete and carefully orchestrated pattern of

protein injection into host cells. To test the regulation of nleH1 and

nleH2 upon contact with host cells, we examined the expression of

pAHE8 and pAHE22 during the interaction of E. coli O157:H7

with bovine epithelial cells (EBL). Bacteria were initially cultured

to an OD600 = 0.6 in MEM-HEPES media to promote expression

of the T3SS before addition to the cell line at a multiplicity of

infection of 200. When cultured in this media, we had previously

seen rapid onset of GFP expression from these plasmids as optical

density increased. Bacteria in contact with host cells were detected

using an anti-O157 specific antibody and appropriate secondary

conjugate. We examined expression at time points 5, 30, 60, 180

and 420 minutes after initial contact but no expression from nleH1

or nleH2 could be detected, suggesting marked repression of

expression (Figure 5). In contrast, the control plasmid consisting of

the promoter from the gene encoding the small ribosomal subunit

(rpsM) fused to gfp (pAJR145) gave consistent and readily detectible

expression throughout the course of the experiment. We also used

a previously characterized tir::gfp fusion (pAJR75) and this gave

rapid early expression during contact with the EBL cell line. Tir

expression and was evident 60 mins after initial cell contact

(Figure 5) but expression was reduced after that timepoint (data

not shown).

Effect of NleH1 and NleH2 on host cell inflammatory
response

The effect of NleH1 and NleH2 on host cell NF-kB modulation

was then tested. Both proteins share a conserved domain with

serine/threonine protein kinases including the Shigella effector

protein OspG, which has been reported to strongly inhibit the

activation of NF-kB [24]. To test the role of this kinase activity,

site directed mutants in three key residues were created.

Specifically, lysine 159, aspartate 258, and glutamate 173 were

substituted for alanine residues using site-directed mutagenesis. A

K159A substitution results in loss of NleH1 kinase activity [27,28]

and was confirmed by in vitro kinase assays with recombinant

NleH1 protein (results not shown). Mutants D258A and E173A

were created as these are highly conserved residues in Ser/Thr

protein kinases and therefore may play important roles in their

function. Each vector was transfected into a HEK293T cell line

[29] alongside an NF-kB luciferase reporter plasmid and a

constitutively expressed b-gal control plasmid. The b-gal activity

was used to control for any variations in transfection efficiency and

to normalize between replicates. Cells were stimulated using

25 ng.ml21 TNF-a for 24 hours and the fold increase in NF-kB

activity was determined using a luciferase reporter assay. The

vector control gave a 20-fold stimulation of NF-kB activity upon

addition of TNF-a demonstrating that the cells were responding as

expected. Transfection with the vector expressing NleH1, NleH2,

OspG or any of the site-directed variants produced no significant

differences in the level of NF-kB activation as tested by one-way

ANOVA (Figure 6). Although not statistically significant in our

assay, OspG does show a trend towards repression of NF-kB

activation, which was previously reported [24].

Discussion

Over the past ten years, the repertoire of E. coli O157 T3SS

effector proteins has expanded greatly. This can be attributed to

improvements in the sensitivity of mass spectrometry instruments

and some excellent bioinformatics based studies, revealing a

potential suite of over 50 effector proteins. Many of the identified

Nle effector proteins can be grouped due to their high levels of

identity, for example the EspG ‘‘family’’. However, understanding

the temporal expression and function for each of these effectors, in

Figure 3. Quantitative PCR of NleH transcripts in LEE regulator knockouts. RNA was collected from ZAP193 strains WT, Dler and DgrlA
grown to OD600 = 1.2 in MEM and cDNA prepared. NleH1, NleH2, GapA, Tir and 16S RNA transcript was then quantified by q-PCR, NleH values
normalised to that of 16S RNA, and the fold change calculated comparing mutant to wild-type. Bars represent the average of three biological
samples. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0033408.g003

Regulation of NleH
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addition to how they might function co-operatively or antagonis-

tically, presents a daunting challenge for researchers.

In the current study, we examine the expression and regulation

of nleH1 and nleH2 from E. coli O157:H7, which show a high level

of similarity but greater diversity in their upstream UTRs,

providing the potential for differential gene expression. Our

previous work demonstrated that nleA, nleB, nleD, and nleE are

transcribed in E. coli O157:H7 under secretion-permissive

conditions [13]. Using GFP fusions, Q-PCR analysis and through

interrogation of existing microarray data, we found that both

nleH1 and nleH2 were expressed when grown in tissue culture

medium. Maximal expression of gfp reporter fusion to nleH1

required the longest upstream UTR region consisting of 531 bp.

nleH1 expression was more dependent on UTR length compared

to nleH2. One interpretation of these data is that a transcriptional

activator may bind strongly in a region further upstream of the

2283 bp 59 UTR of nleH1, and potentially at a similar site for

nleH2, albeit much more weakly. Using ChIP-on-chip analyses,

recent work demonstrated that the EHEC O157 Per-C like

homologue (Pch) regulator directly binds the nleH1 promoter but

binds further upstream in the nleH2 prophage in order to exert its

control [21]. This study also determined that Pch does not have a

consensus binding site, as it has various numbers and positions of

binding sites depending upon the target gene, thus regulating a

broad range of genes. Therefore, the increase in NleH1-GFP

expression with increase in 59 UTR may be due to a direct effect of

Pch binding to the area between 2283 and 2531 bp or an

indirect effect of Pch modulating the promoter’s secondary

structure. This in turn may facilitate the action of another positive

regulator or displace a repressor such as H-NS.

Assessment of the translational fusions in LEE-encoded

regulator, Ler and GrlA deletion strains of E. coli O157:H7

ZAP193 indicated that expression of NleH1 and NleH2 requires

these regulators. Expression was reduced greater in the absence of

GrlA compared to Ler. These data are interesting to compare with

a previous study investigating NleH regulation in C. rodentium [25].

This study also reported reduced expression of the NleH fusion in

C. rodentium DgrlA and Dler mutants compared to wild-type, albeit

not significantly in this organism. In the current study, both nleH1

and nleH2 were subject to transcriptional regulation as demon-

strated by Q-PCR analyses that showed that nleH1 and nleH2

transcripts were reduced approximately four -fold in the absence

of ler or grlA. Therefore Ler and GlrA both influence nleH1 and

nleH2 expression in both E. coli O157 and C. rodentium, but to

markedly different extents. Further work needs to be performed to

elucidate whether these LEE encoded regulators directly interact

with the UTR of nleH1 and nleH2 or indirectly influence

expression via other transcription factors.

Many E. coli O157:H7 virulence factors are expressed

heterogeneously, such as EspA [30], Tir, Map, intimin [31] and

NleA [13], in order to co-ordinate expression of the effectors with

that of the T3S apparatus. Single cell imaging of NleH-GFP

expressing E. coli O157:H7 showed that NleH-GFP is expressed by

all cells in the population. However, the fluorescence of GFP

measured on a per cell basis is homogenous in NleH1 but

heterogeneous in NleH2. When cultured in MEM, only 80% of

the population co-stained for EspA filaments, correlating with

previous reports showing that only a subpopulation of ZAP193

(40–80%) express EspA filaments when cultured in the same

media [32]. This percentage was maintained in the ‘hyperexpres-

sor’ population of NleH2. This shows that although NleH-GFP

expression is induced by the same conditions as that for the LEE, it

is not strictly co-ordinated. In comparison, expression of nleA has

been shown to be closely co-ordinated with the LEE and its

transcription has been shown to be directly regulated by Ler

[13,21,33]. NleA also plays an important role in the virulence of

A/E pathogens [34,35].

The data show that both nleH1 and nleH2 are likely to be

repressed during the early stages of A/E lesion formation and may

be required later in the infection process. NleH-GFP expression

was not detected upon contact with host cells under the conditions

tested, and it has previously been reported that host cell contact

results in a reduction in expression of many non-LEE encoded

genes [13,36]. The persistence of E. coli O157:H7 on host cells has

been shown to be mediated through the transcriptional regulator

GadE [11,37]. The induction of the GAD stress response and

reciprocal repression of the LEE mediated by GadE is, in turn,

controlled by the psr genes. It has been reported that there is a high

association between non-LEE encoded effectors with psr and/or

pch regulated genes encoded on the same horizontally acquired

Figure 4. Fluorescence microscopy of NleH-GFP. pAHE8 (NleH1-
GFP) and pAHE22 (NleH2-GFP) were transformed in ZAP193, ZAP193-
Dler and ZAP193DgrlA and at OD600 = 0.8, dried onto a microscope slide
in 4% PFA and stained for EspA filaments. Volocity quantification
software was used to determine the average GFP fluorescence per voxel
of 100 individual bacteria for NleH1 (A) and NleH2 (B). Each point
represents the average GFP fluorescence from a composite from 16 z-
slice images thus reducing planar effects. Error bars represent the
standard deviation.
doi:10.1371/journal.pone.0033408.g004

Regulation of NleH

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e33408



element [11]. This association led to the hypothesis that the Psr

mediated induction of gadE transcription and subsequent

repression of LEE encoded effectors facilitates non-LEE encoded

effector secretion [11]. It is interesting to note that many Nle

effector proteins, including NleH, exhibit a role in colonisation

rather than A/E lesion production or overt pathogenesis

[25,26,38,39,40,41,42,43].

NleH is a predicted Ser/Thr protein kinase, and the C-terminal

end of the protein shares sequence similarity with that of the S.

flexneri effector OspG. OspG has been reported to modulate host

innate immune responses by interfering with NF-kB activation

[24] with a 70% reduction in NF-kB activation being observed

when five times more OspG (0.5 mg) than the NF-kB reporter

(0.1 mg) was transfected into HEK293T cells. This study reported

a more modest 30% decrease in NF-kB activation when

equivalent concentrations of OspG and reporter plasmid were

used. This is broadly comparable to the level of NF-kB inhibition

we observed (,17%) using OspG when equivalent concentrations

of effector and NF-kB reporter plasmids were transfected (0.4 mg).

During the course of this study, it was reported that NleH1

inhibits NF-kB activation [27,44]. Luciferase reporters were

transfected into HEK293T cells in a manner similar to that which

was carried out in this study. However,cells were stimulated with

four times more TNF-a and analysed 1 hour post-stimulation.

Similar to the OspG study [24], the effector plasmid and the NF-

kB reporter plasmid were transfected at a 4:1 ratio which appears

to amplify the effect (to a similar degree) observed with equivalent

concentrations of vectors [27]. Further work investigating the role

of RPS3 in NF-kB activation led to the demonstration that E. coli

O157:H7 NleH1 can inhibit RPS3 phosphorylation by IKK-b
[45]. Inhibiting the phosphorylation of RPS3 restricts its

translocation into the nucleus, reducing transcription of RPS3

dependant kB sites [27,45,46]. Regardless of this, transcription of

genes controlled by non-RPS3 dependant kB sites can still occur,

providing some additional reasoning as to why NleH1 and NleH2

did not significantly affect NF-kB activation in our assay. The

kinase activity of NleH1 is required to inhibit RPS3 phosphory-

Figure 5. Expression of NleH-GFP upon E. coli O157:H7 ZAP193 contact with EBL cells. ZAP193 transformed with plasmids expressing GFP
constitutively (pAJR145; rpsm::gfp) or translational fusions of nleH or tir to gfp under the control of their native promoter (pAHE8; NleH1-GFP, pAHE22;
NleH2-GFP, pAJR75; Tir-GFP) were added to EBL cells and incubated for 0, 5, 30, 60 or 180 minutes at 37uC, 5% CO2 before the removal of supernatant
and fixation of cells with 4% paraformaldehyde. The panel of images is representative of all time points tested, apart from Tir-GFP, that showed
strong early expression during cell contact but was markedly reduced at 180 minutes.
doi:10.1371/journal.pone.0033408.g005

Figure 6. NF-kB activity in the presence of NleH variants.
HEK293T cells were co-transfected with a luciferase reporter plasmid
under the control of consensus kB sites, a b-galactosidase plasmid and
a control (pCMV), NleH or OspG vector. After 40 hours, cells were
stimulated by the addition of TNF-a (25 ng/ml; 24 hours). Results
represent three biological replicates, where variants were tested in
triplicate and assayed in duplicate. Statistical analysis with one-way
ANOVA shows no significant difference compared with the pCMV
control. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0033408.g006

Regulation of NleH

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33408



lation by IKK-b but it does not directly phosphorylate either

protein. NleH also inhibits the pro-apoptotic pathway via its

interaction with Bax Inhibitor 1 (BI-1) [28]. This interaction with

BI-1 is dependent upon the C-terminal end of NleH but not its

kinase activity; this region of NleH shares high protein identity

with OspG, yet OspG does not interact with BI-1. It has yet to be

elucidated whether NleH phosphorylates proteins other than itself.

Overall, NleH is a multi-functional protein, a common trait for E.

coli O157:H7 effector proteins.

This study highlights the need to not only determine the

function of putative effector proteins but also how their

expression is regulated in relation to the apparatus that secretes

them. We provide further evidence that nleH1 and nleH2 are

expressed under the same conditions that promote LEE

expression but this expression is not strictly co-ordinated in vitro.

Both nleH alleles are transcriptionally regulated by Ler and GrlA

in EHEC in comparison to the post-translational regulation by

LonP protease for C. rodentium, highlighting the importance of

independently investigating the regulation of similar genes in

related pathogens.

Materials and Methods

Bacterial strains and media
Strains used in this study are described in Table 1. Luria-

Bertani broth and two defined media were used, Minimal Essential

Media with HEPES modification (MEM; Sigma M7278), and

Dulbelcco’s Minimal Essential Media (DMEM; Sigma M5671).

Glucose was added to the MEM to give a final concentration of

0.2%. Antibiotics were included where necessary at the following

concentrations: 50 mg/ml kanamycin (Kan), 12.5 mg/ml chloram-

phenicol (Chl), 100 mg/ml ampicillin (Amp), 15 mg/ml gentamy-

cin (Gent).

Plasmid-based translational fusion construction and NleH
expression constructs

Three promoter lengths and the entire coding sequence for

NleH1 and NleH2 were amplified from strain TUV-930 and

cloned into pAJR70 to create pAHE8, pAHE18-22 (Table 1).

Figure S1 shows the putative promoter regions that were amplified

and cloned to create the constructs.

Table 1. Bacterial strains and plasmids used in this study.

Strain Description Reference/Source

TUV 93-0 EHEC O157:H7 strain EDL933; stx2 derivative [49]

ZAP198 EHEC O157:H7 strain NCTC 12900 stx2 [50]

ZAP198Dler Unmarked ler deletion mutant in strain ZAP198 [50]

ZAP198DgrlA-Tn-Kan grlA transposon mutant in EHEC strain ZAP198 (Tn5) [51]

BW25113 E. coli K-12. [52]

BW25113 rpos:Kan BW25113 Keio mutant of rpoS. [52]

MC1000 araD139 D(araABC-leu)7679 galU galK D(lac)X74 rpsL thi. [53]

VS184 MC1000DqseC [54]

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F9 proAB lacIqZDM15 Tn10 (Tetr)] Stratagene

Plasmid

pAJR70 pACYC eGFP [30]

pAHE8 pAJR70 V [BamHI KpnI 2531 bpNleH1_291::gfp] This study

pAHE18 pAJR70 V [BamHI KpnI 2120 bpNleH1_291::gfp] This study

pAHE19 pAJR70 V [BamHI KpnI 2283 bpNleH1_291::gfp] This study

pAHE20 pAJR70 V [BamHI KpnI 2113 bpNleH2_293::gfp] This study

pAHE21 pAJR70 V [BamHI KpnI 2291 bpNleH2_293::gfp] This study

pAHE22 pAJR70 V [BamHI KpnI 2655 bpNleH2_293::gfp] This study

pAJR75 pAJR70 V [BamHI KpnI 2442 bp including LEE5 promoter cloned in frame 59 to egfp Roe 2004

pAJR145 pACYC rpsm::GFP+ Roe 2004

placZ b-galactosidase enzyme constitutively produced by mammalian expression vector Stratagene

NF-kB luc Firefly luciferase gene under the control of canonical NF-kB promoter Stratagene

pCMVTag3A N-terminal myc tagging mammalian expression vector Stratagene

pCMV-NleH1 pCMVTag3A V [PstI HindIII - NleH1 ORF] This study

pCMV-NleH2 pCMVTag3A V [PstI HindIII – NleH2 ORF] This study

pCMV-NleH1(D258) Site directed mutant (SDM) of NleH1 residue D258 to alanine (A) This study

pCMV-NleH1(E173) SDM of NleH1 residue E173 to alanine (A) This study

pCMV-NleH1(K159A) SDM of NleH1 residue K159 to alanine (A) This study

pJ201-OspG OspG ORF with PstI+HindIII sites DNA2.0/this study

pCMV-OspG pCMVTag3A V [PstI HindIII - OspG ORF] This study

doi:10.1371/journal.pone.0033408.t001
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Expression plasmids for NleH1 and NleH2 were made as shown

in Table 1. Site directed mutants were made using the Quick

Change 1 mutagenesis system (Stratagene).

Analysis of bacterial fluorescence
Constructs pAHE8 and 18–22 were assessed by growing

ZAP193, and mutant where indicated, transformants overnight

in LB Chl then the next morning diluted to a final OD600 of 0.08

into minimal media the next morning. Typically, 20 ml was

cultured in Erlenmeyer flasks shaken at 180 rpm, 37uC. At regular

intervals, 1 ml of culture was removed from the flask and 200 ml

aliquots were analysed in triplicate with a fluorescent plate reader

(Fluorostar Optima; BMG) at 37uC. For any strain and media

combination, the promoterless gfp plasmid pAJR70 was included

as a control. Fluorescence was plotted against OD600 using

Graphpad Prism 5 software and a line of best fit obtained. Using

this method, data were corrected for background fluorescence. At

least three biological replicates were carried out for each

experiment. To measure single-cell expression by fluorescence

microscopy, strains were grown in MEM and at OD600 0.8 a

100 ml aliquot was removed and diluted 1:1 in 4% paraformal-

dehyde. 20 ml was dried onto a microscope slide and EspA

filaments stained as described previously [30]. The slides were

examined by fluorescence microscopy on a Zeiss Axioskop M1

fluorescence microscope, using the appropriate filter sets and a Z-

stack of 16 images was captured at a spacing of 0.15 mm using

Volocity software (PerkinElmer). These images were used to create

a composite image that reduced the spatial effects of bacteria in

different focal planes. The average gfp units per voxel (cubic pixel)

was quantified, for at least 100 bacteria with a minimum volume of

4 mm3, using Volocity Quantification software (Perkin-Elmer).

These values were exported and plotted in GraphPad Prism 5

(GraphPad Software, USA).

Expression on contact with EBL cell lines
Embryonic bovine cell (German Collection of Microorganisms

and Cell Cultures, no. ACC192, provided by Dr Arvind Mahajan,

University of Edinburgh) were prepared and cultured as described

previously [47]. The ZAP193 strain transformed with the

appropriate GFP reporter plasmids was cultured in MEM-HEPES

to OD600 0.8 at 37uC, added to the multichamber slide, and

centrifuged onto the EBL cells (10006g) for 5 min (Time 0). The

cells were stained at intervals by removal of the culture and

addition of CellMaskTM Deep Red plasma membrane stain

(Invitrogen) before fixation with 4% paraformaldehyde. Time

points analysed were 0, 5, 30, 180, and 420 min after addition.

Immunostaining was performed using Mast a-O157 antibody and

a-rabbit AlexaFluor-555 conjugate secondary antibody. Fluores-

cence analysis using Zeiss and Volocity software was then

performed as described previously.

RT-PCR analysis
Triplicate ZAP193, ZAP193DgrlA and ZAP193Dler were

cultured in MEM-HEPES media to an OD600 = 1.2. Bacterial

pellets were suspended in RNAProtect Bacteria Reagent (Qiagen).

Total RNA was extracted using Qiagen RNeasy Mini kit and

cDNA synthesis was carried out using a Qiagen QuantiTectTM

Reverse Transcription kit. Duplicate qPCRs were carried out

using a Qiagen QuantifastTM SYBRH green PCR kit and

Stratagene MX3000 and primers listed in Table S2. All the

experiments were performed according to manufacturer’s instruc-

tions.

Transfection of HEK293T cells
HEK293T cells [29] were cultured in DMEM (Invitrogen

21989) supplemented with 1 mM L-Glutamine, 10% foetal calf

serum and penicillin/streptomycin. HEK293T cells were plated at

a density of 56104 cells per well of a 24 well plate and, once 90%

confluent, transfected with 0.4 mg of control (pCMV) or expression

plasmid (pCMVNleH1, pCMVNleH1K159A, pCMVNle-

H1E173A, pCMVNleH1D258A pCMVNleH2 or pCMVOspG

(DNA 2.0), 0.4 mg NF-kB luciferase reporter plasmid (Stratagene)

and 0.1 mg b-galactosidase plasmid (a gift from Dr. Alison Michie).

TNF-a (25 ng/ml) was added 40 hours after transfection.

24 hours after stimulation, cells were washed twice with PBS

before lysates prepared and analysed with Dual-LightH System

(Applied Biosystems). Luciferase activity was determined and

normalized to b galactosidase activity as described [48]. Each

assay was performed in triplicate, measured in duplicate and

repeated three times.

Supporting Information

Figure S1 655 bp of upstream untranslated region
(UTR) of E. coli O157:H7 EDL933 NleH1 (z0989) and
NleH2 (z6021) were aligned using ClustalW. Primers

designed to construct translational fusions to GFP are labelled;

green for NleH1 and blue for NleH2.

(TIFF)

Figure S2 pAHE8 (NleH1-GFP) and pAHE22 (NleH2-
GFP) were transformed into ZAP193 (A), ZAP193Dler (B)
and ZAP193DgrlA (C) and at OD600 = 0.8 fixed with 4%
paraformaldehyde onto a microscope slide. Expression of

NleH-GFP (green) and immunostained EspA filaments (Alexa-

Fluor555; red) were observed using the appropriate filter sets.

Micrographs are the composite image from 16 z-slices with

0.15 mm spacing.

(TIFF)

Table S1 Sequences containing promoter regions were
obtained from coliBASE and aligned using ClustalW.

(DOC)

Table S2 Oligonucleotides used in this study.

(DOCX)
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