
Research Article
Fusion of Motif- and Spectrum-Related Features for Improved
EEG-Based Emotion Recognition

Abhishek Tiwari and Tiago H. Falk

Institut National de la Research Scientifique, Université du Québec, Montréal, Québec, Canada

Correspondence should be addressed to Abhishek Tiwari; abhishek.tiwari@emt.inrs.ca

Received 30 October 2018; Revised 11 December 2018; Accepted 12 December 2018; Published 17 January 2019

Academic Editor: Pietro Aricò
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Emotion recognition is a burgeoning field allowing for more natural human-machine interactions and interfaces. Electroen-
cephalography (EEG) has shown to be a useful modality with which user emotional states can be measured and monitored,
particularly primitives such as valence and arousal. In this paper, we propose the use of ordinal pattern analysis, also called motifs,
for improved EEG-based emotion recognition. Motifs capture recurring structures in time series and are inherently robust to
noise, thus are well suited for the task at hand. Several connectivity, asymmetry, and graph-theoretic features are proposed and
extracted from the motifs to be used for affective state recognition. Experiments with a widely used public database are conducted,
and results show the proposed features outperforming benchmark spectrum-based features, as well as other more recent
nonmotif-based graph-theoretic features and amplitude modulation-based connectivity/asymmetry measures. Feature and score-
level fusion suggest complementarity between the proposed and benchmark spectrum-based measures. When combined, the
fused models can provide up to 9% improvement relative to benchmark features alone and up to 16% to nonmotif-based graph-
theoretic features.

1. Introduction

Human-machine interaction can become more natural once
machines become aware of their surroundings and their
users [1, 2]. ,ese so-called context-aware or affective in-
terfaces can open up new dimensions of device functionality,
thus more accurately addressing human needs while keeping
the interfaces as natural as possible [3]. For example, af-
fective computing can enable applications in which the
machine can learn user preferences based on their reactions
to different settings or even become a more effective tutor by
assessing the student’s emotional/stress states [3]. Auto-
mated recommender and tagging systems, in turn, can make
use of affect information to better understand user prefer-
ences, thus improving system usability [4]. Measuring af-
fective state and engagement levels can also be used by a
machine to infer the user’s perceived quality of experience
[5–9], thus providing the machine with an objective crite-
rion for online optimization.

Human emotions are usually conceived as physiological
and physical responses and are part of natural human-
human communications. Emotions are able to influence
our intelligence, shape our thoughts, and govern our in-
terpersonal relationships [10–13]. Emotion is usually
expressed in a multimodal way, either verbally through
emotional vocabulary or by expressing nonverbal cues such
as intonation of voice, facial expressions, and gestures. As
such, audio-visual cues have been widely used for affective
state monitoring [14]. Alternately, emotions have also been
known to effect neurophysiological signals; thus, biosignal
monitoring has been extensively explored. Representative
physiological signal modalities have included galvanic skin
response (GSR), skin temperature, and breathing and car-
diac activity (via electrocardiography (ECG) and photo-
plethysmography (PPG)) [15–18].

More recently, brain-computer interfaces (BCIs) have
emerged as another tool to accurately monitor implicit user
information, such as mood, stress level, and/or emotional
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states [9, 19, 20]. Within BCI-based affective computing
methods, electroencephalography (EEG) has remained the
most popular modality due to its noninvasiveness, high
temporal resolution, and portability [21], though alternative
modalities, such as near-infrared spectroscopy (NIRS), are
slowly emerging [5, 22, 23]. Typically, with EEG-based
systems, spectral power features have been widely used
(e.g., [18, 24–26]), including frontal interhemispheric
asymmetry features [27–32]. EEG signals, however, are very
sensitive to artefacts, such as eye blinks and muscle
movement [33]. To overcome such issues, artefact removal
algorithms can be used. Alternately, new noise-robust fea-
tures can be developed and/or multimodal fusion strategies
can be explored [34].

In this paper, focus is placed on the latter and motif-
based features are proposed and tested alone or alongside
alternate complementary features. Motif-based analysis has
shown to be useful in the past to recognize sleep states [35],
as well as the effects of anesthesia [36], to detect seizures
[37, 38], and to measure alertness [39]. Motif-based methods
are inherently robust to noise as they deal with the shape of
the time series and are unaffected by the magnitude
[38, 40, 41]. To the best of our knowledge, they have yet to be
explored for affective state monitoring; thus, this paper fills
this gap. In particular, we compare the proposed features
with spectral power and spectral asymmetry benchmark
features. Notwithstanding, one main limitation of motif
features concerns the loss of both amplitude and rate-of-
change information when time series are converted into
motif series [40, 42]. As such, we also explore three different
fusion strategies to combine information from the proposed
motif features and classical benchmark features. Experi-
mental tests on a publicly available database [18] are per-
formed, which show the advantages of the proposed features
over benchmark ones, as well as the benefits of fusion for
affective state monitoring.

,e remainder of this paper is organized as follows.
Section 2 describes the materials and methods used, in-
cluding the database considered, proposed, and benchmark
features, fusion methods used, and performance metrics
used. Section 3 then presents and discusses the results ob-
tained, and conclusions are drawn in Section 4.

2. Materials and Methods

Here, we describe the database used, benchmark features,
proposed motif features, as well as the feature selection
schemes employed, classifiers, and fusion schemes explored.

2.1. DEAP Database. ,is study relies on the publicly
available, widely used DEAP (Dataset for Emotion Analysis
using EEG and physiological signals) database. As detailed in
[18], thirty-two healthy participants (50% females, average
age� 26.9 years) were recruited and consented to participate
in the study. ,irty-two channel EEG data were recorded
using a Biosemi ActiveTwo system (Amsterdam, Nether-
lands) at a sampling rate of 512Hz. Electrodes were placed
on the scalp according to the International 10–20 system.

Participants were presented with 40 one-minute long
music videos with varying emotional content. ,ese video
clips were selected based on a previous analysis of several
hundred videos as they were shown to elicit the strongest
reactions across the four quadrants in the valence-arousal
space (i.e., low valence, low arousal; low valence, high
arousal; high valence, low arousal; and high valence, high
arousal). ,e valence-arousal space is a two dimensional
scale used to characterize emotions [43]. Valence refers to
the (un)pleasantness of an event, whereas arousal refers to
the intensity of the event, ranging from very calming to
highly exciting. Using this space, various emotions can be
mapped, as shown in Figure 1. Prior to each video, there was
a baseline period of five seconds where the participants were
asked to fixate at a cross in the middle of the screen. Fol-
lowing the presentation of each video, participants were
asked to rate the music videos on discrete 9-point scales for
valence and arousal using the self-assessment manikins
(SAM) [44]. While other dimensional ratings, such as
dominance and liking were also collected, these have not
been explored herein.

,e EEG data are available for public download in raw
format or in preprocessed format, which includes common
referencing, down-sampling to 128Hz, bandpass filtering
between 4 and 45Hz, and eye blink artefact removal via
independent component analysis. Moreover, only the last
three seconds of the five-second baseline are available. Since
this is a standard pipeline for EEG processing, the analysis
reported herein is done on the preprocessed data. Data per
subject were epoched into forty 60 s long trials with a 3 s long
prestimulus baseline. ,e prestimulus baseline was then
subtracted from the preprocessed data.,e interested reader
can refer to [18] for more details on the DEAP database and
its data collection process.

2.2. Benchmark Features. As mentioned previously, spectral
power features in different EEG bands have been widely used
for affective state monitoring, including for the DEAP data-
base [18, 45]. Moreover, an interhemispheric asymmetry in
spectral power has also been been reported in the affective
state literature [27, 28, 30–32], particularly in frontal brain
regions [29, 31]. Typically, EEG signals are band decomposed
into theta (4< θ< 8 Hz), alpha (8< α< 13 Hz), beta
(13< β< 30 Hz), and gamma (30< c< 45 Hz) bands. Here,
48 asymmetry index (AI) features (12 interhemisphereic
electrode pairs × 4 bands) were computed for the following
electrodes pairs: Fp2-Fp1, F3-F4, F7-F8, FC1-FC2, FC5-FC6,
C3-C4, T7-T8, Cp1-Cp2, Cp5-Cp6, P3-P4, P7-P8, andO1-O2.

Moreover, EEG band ratios have also been explored in
the past for tasks such as human mental state monitoring,
fatigue, attention control, and negative emotional response
monitoring [46–48], thus are also included here as bench-
mark features. ,e ratios computed include c/β, β/θ,

α/θ, (α + β)/c, and (c + β)/θ. ,e ratios are computed in-
dividually over each electrode. Lastly, the Shannon entropy
[49] has been used as a feature to measure the complexity of
the EEG time series. Shannon entropy can be calculated as
follows:
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SE � −
j

Pj · log Pj , (1)

where Pj is the power in sub-band j.

2.3. Motif-Based Features. A motif is a pattern or structure
characterized by the number of nodes or degree (represented
by n) and the connection between them and the number of
points used between these nodes (called lag, represented by
λ). Each motif can be represented as an alphabet or a
number. ,e robustness of motif features comes from the
fact that they only consider the underlying shape of the time
series and not the amplitude. Using this definition, any time
series X(i) can be converted into a motif series Xm(i) using
these given rules (e.g., for degree, n � 3):

Xm(i) �

1 if X(i)<X(i + λ) X(i + λ)<X(i + 2λ) X(i)<X(i + 2λ),

2 if X(i)<X(i + λ) X(i + λ)>X(i + 2λ) X(i)<X(i + 2λ),

3 if X(i)>X(i + λ) X(i + λ)<X(i + 2λ) X(i)<X(i + 2λ),

4 if X(i)<X(i + λ) X(i + λ)>X(i + 2λ) X(i)>X(i + 2λ),

5 if X(i)>X(i + λ) X(i + λ)>X(i + 2λ) X(i)>X(i + 2λ),

6 if X(i)>X(i + λ) X(i + λ)<X(i + 2λ) X(i)>X(i + 2λ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Figure 2 shows the different motifs possible for degree
n � 3 appearing in a particular time series. Once the motif
series has been derived, different features can be extracted
based on the statistics of recurring patterns within the motif
series. ,e features proposed herein are detailed in the
subsections below and only consider motifs of degree n � 3

and lag value λ � 1.,ese parameters have been suggested in
the past for related tasks [39, 50].

2.3.1. Permutation Entropy. Permutation entropy (PE) [41]
is a commonly derived motif-based metric and is calculated
as

PE � −
n!

j

p(j) · log(p(j)), (3)

where p(j) is the relative frequency of the motif pattern
represented by j.

2.3.2. Ordinal Distance Dissimilarity. Ordinal distance-
based dissimilarity [38] is a metric with close parallel to
the benchmark asymmetry index and measures the dis-
similarity between two motif series for different electrode
pairs using

Dm(X, Y) �

�����

n!

n!− 1


����������������



n!

i

px(i)−py(i) 
2




, (4)

where px(i) and py(i) are the relative frequencies of the
motif pattern represented by i in electrodes X and Y, re-
spectively, and n is the degree of the motif. In order to
compare against the benchmark asymmetry index, ordinal
dissimilarity is calculated for the same electrode pairs re-
ported in Section 2.2.
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Figure 1: Valence-arousal plot with representative emotions.
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2.3.3. Motif Synchronization. Functional connectivity gives
insight into the dynamic neural interaction of the different
regions of the brain. Recently, motif synchronization has
been proposed as a functional connectivity analysis tool [50]
and measures the simultaneous appearance of motifs in two
time series. For two motif series Xm and Ym, c(Xm; Ym) is
defined as the highest number of times in which the same
motif can appear in Ym shortly after it appeared in Xm for
different delay times, i.e.,

c Xm; Ym(  � cXY � max 

lm

i�1
J
τ0
i , 

lm

i�1
J
τ1
i , . . . , 

lm

i�1
J
τn

i
⎛⎝ ⎞⎠,

(5)

with

J
τ
i (i) �

1, if XMi
� YMi+τ

,

0, else.
 (6)

,e time delay τ ranges from τ0 � 0 to τn, where τn is the
maximum value to be considered, and lm is the size of the
time varying window within the time series. Similarly, the
opposite measure cYX can be obtained by changing only the
order of the time series to YMi

� XMi+τ
. Finally, the degree of

synchronization QXY and the synchronization direction qXY

are given by

Qxy �
max cXY, cYX( 

lm
,

qXY �

0, if cXY � cYX,

sign cXY − cYX( , else.

⎧⎪⎨

⎪⎩

(7)

,e degree of synchronization, QXY, is scaled between 0
and 1, with 0 representing no interaction and 1 suggesting
very high interactions. Feature qXY, in turn, gives the di-
rection of information flow, with 0 indicating no preferred
direction, 1 indicating direction from X to Y, and −1 in-
dicating direction from Y to X. For our calculation, τn has
been chosen as 5 and the window size lm is chosen as 256.

2.3.4. Graph Features. ,e different functional connections
obtained by motif synchronization analysis can be further
extended by means of graph-theoric analysis, where each

electrode on the scalp represents a node on the brain net-
work. Weighted graphs have weights that represent the level
of interaction between the two nodes. Edges with smaller
weights are believed to represent noisy/spurious connections
[51], thus a thresholding is done to obtain an unweighted
graph. Previously, graph-theoretic features have been ex-
plored for affect recognition based on EEG spectral co-
herence measures [52]. Graph-theoretic analysis based on
motifs, however, has yet to be explored, thus both weighted
and unweighted graphs (thresholded to the average value of
the graph weighted) are tested herein. An advantage of motif
synchronization over more popular connectivity approaches
is the ability it provides to measure direction of information
flow for the different nodes in the brain network. From the
weighted and unweighted graphs, several features are
extracted, namely,

(i) Degree of connectivity (k): the degree of connec-
tivity is defined as ki where i is a given node. For the
unweighted network, it is calculated as

ki � 
jϵNe

aij, (8)

where Ne represents the nodes in the network and
aij, i≠ j represents the value of the unweighted
adjacency matrix. For the weighted network, the
formula is

k
w
i � 

jϵNe

wij, (9)

where instead of aij, the weights wij assigned to
each edge are used. ,e average degree of con-
nectivity for the whole network is used as a feature
in our analysis.

(ii) Clustering coefficient (C): the mean clustering
coefficient for an unweighted network is given by

C �
1

Ne



Ne

i

ei

ki ki − 1( 
, (10)

where ei is the number of existing edges between
the neighbors of i and ki is the degree of con-
nectivity for the unweighted network. For a
weighted network, the clustering coefficient value
is given by

X (i) X (i + λ)

X (i + 2λ)

Time series
X (t) 

Figure 2: All motifs of degree n � 3 appearing in a time series.
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where ti is calculated as

ti �
1
2


j,hϵNe

wijwjhwhi 
1/3

, (12)

and represents the geometric mean of the triangles
constructed from the edges around a particular
node i, and kw

i represents the weighted degree of
connectivity.

(iii) Transitivity (Tr): transitivity is defined as the ratio
of “triangles to triplets” in a network and is defined
as

Tr �
3λ

k(k− 1)
, (13)

where λ represents the number of triangles in
network, while k is the average degree of con-
nectivity (weighted or unweighted) of a network.
Transitivity is a global measure of the cluster-
ing coefficient and is equal to it when the degree
of connectivity of all nodes is equal to one
another.

(iv) Characteristic path length (L): for an unweighted
network, L is given by

L �
1

Ne Ne − 1( 


Ne

j�1i≠j
dij, (14)

with dij being the minimum amount of edges re-
quired to connect nodes i and j and is replaced by
the shortest weighted path length dw

ij for the
weighted characteristic path length Lw.

(v) Global efficiency (G): this is calculated using the
inverse of the shortest weighted or unweighted path
for the network, i.e.,

G �
1

Ne Ne − 1( 


Ne

j�1i≠j
d
−1
ij , (15)

where dij is replaced by the shortest weighted
path length dw

ij for weighted global efficiency
measure.

(vi) Small-world features: the work in [53] has shown
that human brain networks exhibit small-world
characteristics. A small-world network is charac-
terized by a high clustering coefficient and a small
average path length from one node to another
[54]. Here, three small-world features are com-
puted, namely, (i) the small-world characteristics
length:

Ls �
L

Lrand
, (16)

(ii) the small-world clustering coefficient:

Cs �
C

Crand
, (17)

and (iii) the small-worldness of a network [55]:

S �
Cs

Ls

, (18)

where Crand and Lrand are the corresponding clus-
tering coefficient and characteristic path length
values for a random network, respectively.

(vii) Direction of flow (DoF): As motif synchronization
also provides the direction of information flow in
the brain network graph, a simple feature is ex-
plored here to represent the overall response of the
brain network as either receiving or transmitting
information, on average. DoF is defined as

DoF � 
ij

qij, (19)

where qij is defined as the direction of information
flow with 1 representing information flowing from i
to j, −1 representing information flow in the op-
posite direction, and 0 being no preferred in-
formation flow direction.

Table 1 provides a summary of the number of features
extracted for each feature group and subgroup.

2.4. Feature Selection. Previous work has shown that motif
features convey complementary information to other am-
plitude- and rate-of-change-based features [40, 42]. As such,
we explore the effects of combining the proposed motif-
based features with the benchmark ones. Given the small
dataset size, however, it is important to avoid issues with
curse of dimensionality and overfitting; thus, feature se-
lection is required. Here, three feature selection strategies
have been explored:

(1) ANOVA-based feature ranking and selection: this
selection method is based on calculating the sig-
nificance of the input features with respect to the
output values and returning the ranked features
according to their obtained p values.

(2) Minimum redundancy maximum relevance
(mRMR) feature selection: the mRMR is a mutual
information-based algorithm that optimizes two
criteria simultaneously: the maximum-relevance
criterion (i.e., maximizes the average mutual in-
formation between each feature and the target
vector) and the minimum-redundancy criterion
(i.e., minimizes the average mutual information
between two chosen features). ,e algorithm finds
near-optimal features using forward selection with
the chosen features maximizing the combined
max-min criteria. Previous work showed mRMR
paired with a support vector machine (SVM)
classifier [56] achieved the best performance in
EEG-based emotion recognition tasks [57].
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(3) Recursive feature elimination (RFE): given an ex-
ternal estimator that assigns weights to features, the
least important features are pruned from the current
set of features. ,e procedure is recursively repeated
on the pruned set until the desired number of fea-
tures to select is reached. ,is technique considers
the interaction of features with the learning algo-
rithm to give the optimal subset of features. Since
recursive training and feature elimination is re-
quired, this method takes a significant amount of
runtime.

For the experiments herein, 90% of the data is set aside for
feature selection and classifier training and the remaining 10%
is left aside for testing.,e split was performed with a random
seed of 0 using the scikit-learn function in Python. ,e best
feature selection algorithm and its corresponding optimal
number of features are then selected by grid search. Classifier
training and different fusion schemes are described next.

2.5. Classification. SVMs have been widely used for affective
state recognition [57] and are explored herein as well. Given
their widespread use, a detailed description is beyond the
scope of this paper and the interested reader is referred to
[58] and references therein for more details. Here, SVM
classifiers are trained on two different binary classification
problems, namely, discriminating between low and high
valence states and low and high arousal states. For our study,
a radial basis function (RBF) kernel was used and imple-
mented with the scikit-learn library in Python [59]. As we
are interested in exploring the benefits of the proposed motif
features and comparing them against benchmark features,
we do not perform classifer hyperparameter optimization
and use default parameters instead, namely, λSVM � 1 and
cRBF � 0.01.

Moreover, as the DEAP database relies on 9-point scale
ratings, it has typically been the case where the midpoint is
considered as a threshold, where ratings greater than the
threshold are considered “high,” and those below are con-
sidered “low”. As was recently emphasized in [4], however,

subjects have their own internal biases, thus leading to
varying scales for grading and, consequently, different
thresholds per participant. For example, as reported in [4],
by using a midpoint threshold value of 5, a 60/40 ratio of
high/low levels was obtained across all participants. In turn,
if an individualized threshold was used corresponding to the
value in which an almost-balanced high/low ratio was
achieved per participant, improved results were achieved
[60]. Figure 3, for example, depicts the threshold found for
each participant for arousal and valence in this latter sce-
nario. As can be seen, on average, a threshold of 5 was most
often selected, though in a few cases, much higher or much
lower values were found, thus exemplifying the need for the
individualized approach used herein.

2.6. Fusion Strategies. Here, we explore three different types
of fusion strategies to combine motif-based and benchmark
spectrum-based features, which are described below.

2.6.1. Feature Fusion. As the name suggests, this corre-
sponds to the direct combination of motif and benchmark
features prior to feature selection.

2.6.2. Score-Level Fusion. ,e weighted decision fusion
method proposed in [61] has been used. According to this
technique, the fusion classification probability px

0 for
x ϵ [0, 1] for each class x ϵ 1, 2 can be denoted by

p
x
0 � 

N

i�1
αip

x
i ti, (20)

where i is the index of a particular feature group, N is the
total number of groups used, and αi are the weights cor-
responding to each group ( N

i αi � 1).,e parameter ti is the
training set performance of a particular feature group such
that the fusion probabilities for all classes sum up to unity
and is given by

ti �
Fi


N
i αiFi

, (21)

where, F1 is the F1-score obtained on the training set using a
particular feature group. ,e weight space was searched for
best performance as this is indicative of the contribution to
the outcome made by each of the feature groups.

2.6.3. Output Associative Fusion. Psychological evidence has
suggested a strong intercorrelation between the valence and
arousal dimensions [62–65]. As such, the output associative
fusion (OAF) method has been used to model the corre-
lations for continuous prediction of valence and arousal
scales [66]. ,e OAF framework has been explored here and
is depicted by the block diagram in Figure 4. As can be seen,
first individual classifiers make the valence and arousal
predictions for each individual feature group. ,is is then
followed by a final prediction step which considers both the
valence and arousal dimensions in order to better predict
each of the two outputs.

Table 1: Summary and grouping of features extracted.

Feature name No. of
features Group

(Weighted) graph
features 20

Motif based features

(Unweighted) graph
features 20

Direction of flow 4
Small-world features 12
Permutation entropy 4
Ordinal distance
dissimilarity 48

Spectral band power
ratio 5

Benchmark spectrum based
featuresShannon entropy 1

Spectral power 4
Asymmetry index 48

6 Computational Intelligence and Neuroscience



2.7. Figure of Merit. Balanced accuracy (BACC) has been
used as the performance metric as it takes into account class
unbalances. Balanced accuracy corresponds to the arith-
metic mean of the classifier sensitivity and specificity, i.e.,

BACC �
sens + spec

2
, (22)

where

sens �
TP
P

,

spec �
TN
N

,

(23)

with P � TP + FN and N � FP + TN, and TP and FP cor-
respond to true and false positives, respectively, while TN
and FN correspond to true and false negatives.

To test the significance of the attained performances
against chance, an independent one-sample t-test against a
random voting classifier was used (p≤ 0.05), as suggested in
[18]. In order to have a more generalized performance of the
classifier, once the feature selection step is performed,
classifier training and testing are performed 100 times with
different train/test partitioning. ,is setup provides a more
generalized performance of the features and their invariance
to the training set used. ,e BACC values reported in the
tables correspond to the mean ± the standard deviation of
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all BACC values attained on the test set over all of the 100
iterations.

3. Results and Discussion

In this section, we show and discuss the obtained results in
terms of impact of feature selection, feature group, and
fusion strategy on overall performance.

3.1. Feature Selection. As mentioned previously, three dif-
ferent feature selection schemes were explored and tested
herein. Feature selection was implemented in the benchmark
features alone, proposed motif feature alone, and in the
combined benchmark-motif set. ,e optimal BACC values
obtained are shown in Tables 2–4, respectively, along with
the final number of features (nofs) used in the models.

As can be seen, for ANOVA-based feature selection,
fewer than 10 features were used in the models for both
valence and arousal dimensions with the benchmark fea-
tures, thus representing roughly one-sixth of the total
amount of available features. For the motif group, in turn,
roughly 40 were shown to be useful, thus amounting to
roughly one-third of the available feature pool. When
combining both feature sets, the optimal model also relied
on roughly 40 features, thus one quarter of the available
feature pool.

,e mRMR algorithm, in turn, generally resulted in
fewer top features but with similar overall BACC, thus
corroborating the results in [56, 57]. For the benchmark
feature set, for example, BACC ≈ 0.54 was achieved with just
three features for valence, thus in line with the ≈ 0.55
achieved with ANOVA-selected features. For arousal and
motif features, similar BACC was achieved, but relying on
roughly half the number of features relative to ANOVA-
based selection. With the combined feature set, in fact,
improved BACC was achieved for the arousal dimension but
with fewer than half the number of features chosen by
ANOVA.

Lastly, RFE selection typically resulted in the highest
accuracy with the best BACC vs. nof tradeoff. ,is is ex-
pected as RFE considers the interaction of features among
themselves and the final outcome. Overall, the best accuracy
was achieved with the combined set, followed closely by the
models trained on the proposed motif features. ,ese
findings corroborate the complementarity of the two dif-
ferent feature types and show the importance of motif
features for affective state recognition.

A one-way ANOVAwas computed between the different
pairs of feature selection algorithms (ANOVA vs. mRMR,
ANOVA vs. RFE, and RFE vs. mRMR) for the benchmark,
motif, and combined feature sets to assess the algorithm
performance. For the benchmark feature set, in the arousal
dimension, the three algorithms perform similarly with no
statistical differences observable. However, for the valence
dimension, the RFE performs significantly better than the
mRMR algorithm (pval < 0.05), while there are no significant
differences observed between RFE and ANOVA perfor-
mances, the RFE obtains a similar performance with fewer

features. For the motif feature set, in the arousal dimension,
we observe the RFE performs significantly better than both
ANOVA (pval < 0.01) and mRMR (pval ≈ 0.01). In the va-
lence dimension, we observe a significant difference in al-
gorithm performance between RFE and mRMR; however,
the performance of ANOVA is not significant compared to
both the algorithms. However, we again observe that RFE
gives similar performance to ANOVA with half the number
of features, thus being more efficient. Finally, for the
combined feature set, in the arousal dimension, both mRMR
and RFE perform significantly better than ANOVA
(pval < 0.01) while there are no differences between mRMR
and RFE performances with mRMR reaching equivalent
performance with fewer features than RFE. In the valence
dimension, we observe ANOVA (pval ≈ 0.05) and RFE
(pval < 0.01) perform significantly better than mRMR, while
there is no performance difference between ANOVA and
RFE in this case. It is interesting to note that the number of
features for both ANOVA and RFE is almost the same. In
general, we find the RFE gives significant or equal perfor-
mance compared to ANOVA and mRMR with fewer
number of features. For feature fusion, the algorithm giving
the highest average performance has been considered the
algorithm of choice.

Tables 5 and 6, in turn, report the top 20 features used in
the models that achieved the best BACC for valence and
arousal, respectively. As can be seen for valence (Table 5), the
c/β and β/θ power ratios showed to be important, along with
alpha-band spectral power. ,is corroborates previous work

Table 2: Comparison of different feature selection algorithms and
number of features (nof) for benchmark feature set.

Feature groups
Valence Arousal

BACC nof BACC nof
ANOVA 0.5490 9 0.5316 8
mRMR 0.5404 3 0.5281 4
RFE 0.5531 3 0.5318 15

Table 3: Comparison of different feature selection algorithms and
number of features (nof) for motif-based feature set.

Feature groups
Valence Arousal

BACC nof BACC nof
ANOVA 0.5818 40 0.5362 42
mRMR 0.5757 44 0.5385 20
RFE 0.5872 20 0.5500 16

Table 4: Comparison of different feature selection algorithms and
number of features (nof) for combined benchmark-motif feature
set.

Feature groups
Valence Arousal

BACC nof BACC nof
ANOVA 0.5930 40 0.5446 39
mRMR 0.5816 29 0.5645 17
RFE 0.6010 38 0.5598 20
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which has linked c/β and β/θ to audio comprehension
[67, 68] and, consequently, to perceived valence in low-
quality text-to-speech systems [5]. For the motif-based
features, in turn, small-worldness (c and β band) and
weighted graph features (θ band) showed to be important,
alongside PE for c and β bands. Previous studies have in-
dicated to a time-locked theta-band synchronization oc-
curring during affective picture processing [69] related to the
valence dimension. ,is synchronization seems to be cap-
tured by motif-based graph-theoretic and ordinal similarity
features, as eight of the top 20 features come from the θ band.

Lastly, for the combined feature set, it can be seen that a
mix of benchmark and motif features are selected, thus

exemplifying the complementarity of the two feature sets.
Over the entire nof � 38 features used in the model, 11 are
benchmark features and 27 are motif-based features. In
particular, 17 of the top motif features showed importance
across the motif and combined sets, as well as all of the top
benchmark features across benchmark and combined sets.
Additionally, for the combined set, 6 asymmetry features are
also in the top selected features; of these, 3 are from the same
electrode pairs as the top ordinal dissimilarity measures,
thus showing a complementary nature of the two feature
sets. ,e power ratios α/θ and(c + β)/θ also appear in the
combined feature sets. From the motif feature sets, apart
from the overlapping features, additional Dm and clustering
coefficient features appear in the combined feature set along
with two DoF features from the θ and c bands.

For arousal (Table 6) and benchmark feature set, almost
all power ratios showed to be important alongside several
asymmetry index features, particularly those in the frontal
and parietal regions. Such findings corroborate previous
literature showing the relationship between (i) arousal and
frontal asymmetry [29] in alpha band (e.g., [70]) and other
bands (e.g., [71]), (ii) an inherent asymmetry in the right
parietal-temporal regions, responsible for modulating au-
tonomic and behavioural arousal, and (iii) arousal and EEG
band power ratios [72].

For motif-based features, in turn, roughly half the top
features corresponded to ordinal distance dissimilarity
measures, thus corroborating the literature on EEG asym-
metry and arousal [71, 73]. Moreover, the majority of the top
features are from the beta and alpha bands (13 of the top 16),
which have been linked to attention-based arousal changes
[74] and to changes in visual selective attention [75, 76],
which is very closely linked to arousal [77].

Interestingly, for the combined sets, none of the top
features were from the benchmark feature set, thus sug-
gesting that the proposed motif features conveyed improved
arousal information relative to benchmark features. ,e
majority of the features corresponded to ordinal distance
dissimilarity across all EEG bands. Moreover, the best
achieving model for motif only and combined feature sets
were attained using different feature selection algorithms
(RFE and mRMR, respectively). Notwithstanding, two
features coincided as being important, namely, PE(θ),
Dm(T7, T8)(α), and a third showed similar behaviour (C(α)

and Cw(α)), thus suggesting their importance for arousal
prediction. In the combined set, θ showed up in seven of the
nof � 17, thus also corroborating previous findings [71, 73].
Lastly, most of ordinal dissimilarity features come from
frontal, parietal, or temporal regions, thus in line with
previous research connecting parietal-temporal regions with
autonomic and behavioural arousal, as well as frontal re-
gions with arousal [78].

3.2. Individual Feature Groups. So far, we have explored the
performance achieved with benchmark, motif, and com-
bined feature sets. It is interesting, however, to gauge how
each individual feature subgroup contributes toward af-
fective state recognition. Table 7 reports the balanced

Table 5: Top 20 features used in the best valence models for the
different feature groups.

Benchmark
(nof� 3, FS�RFE)

Motif (nof� 20,
FS�RFE)

Combined (nof� 38,
FS�RFE)

c/β Tr (α) C (α)
β/θ PE (c) c/β
Spectral power (α) Gw (θ) (c + β)/θ

kw (θ) α/θ
Cw (θ) Gw (θ)
C (θ) PE (c)
PE (β) Dm(P3, P4) (β)
S (β) Dm(O1, O2) (θ)
S (c) kw (θ)
Ls (c) Trw (θ)

Dm(T7, T8) (c) C (θ)
Dm(Fc5, Fc6) (β) Spectral power (α)

DoF (θ) C (β)
Dm(P3, P4) (β) kw (β)
Dm(O1, O2) (β) DoF (θ)
Dm(F3, F4) (θ) Cw (θ)

Trw (θ) AI(C3, C4) (β)
Ls (θ) AI(P3, P4) (c)

Dm(O1, O2) (θ) Dm(F3, F4) (θ)
Dm(F3, F4) (β) Dm(T7, T8) (c)

Table 6: Top 20 features used in the best arousal models for the
different feature groups.

Benchmark
(nof� 15, FS�RFE)

Motif (nof� 16,
FS�RFE)

Combined (nof� 17,
FS�mRMR)

(α + β)/c PE (β) Dm(O1, O2) (θ)
(c + β)/θ Tr (β) DoF (c)
AI(O1, O2) (β) Cs (β) kw (θ)
c/β Dm(T7, T8) (α) DoF (α)
AI(P7, P8) (c) Lw (α) Dm(T7, T8) (β)
AI(F3, F4) (β) Dm(FC1, FC2) (α) Dm(P3, P4) (β)
β/θ PE (θ) Dm(T7, T8) (α)
Spectral power (β) Dm(P7, P8) (c) PE (θ)
AI(Cp5, Cp6) (θ) Lw (c) Dm(F3, F4) (θ)
AI(FC1, FC2) (α) Cw (β) Dm(C3, C4) (c)
AI(P3, P4) (θ) Dm(C3, C4) (β) Cw (θ)
AI(P3, P4) (β) C (α) DoF (θ)
AI(C3, C4) (θ) Dm(Cp1, Cp2) (β) Ls (α)
AI(Cp1, Cp2) (α) Dm(P3, P4) (α) Dm(Fc5, Fc6) (θ)
AI(T7, T8) (c) Dm(F7, F8) (α) Cw (α)

k (α) Dm(Fc5, Fc6) (α)
Dm(Fc5, Fc6) (c)
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accuracy for each individual feature subgroup for the best
achieving model found after RFE feature selection.

As can be seen, for valence, the weighted and unweighted
graph features achieve similar performances though the
model based on the former feature subgroup relies on
nof � 2, as opposed to nof � 8. In fact, all motif-based
features achieved similar performance, with small-
worldness features being the only ones not significantly
better than the benchmark (i.e., p< 0.01 and indicated by an
asterisk in the table). For arousal, in turn, it is observed that
graph and small-world feature subgroups do not signifi-
cantly improve over the benchmark, whereas other motif
features, such as permutation entropy and ordinal distance
dissimilarity, do. Overall, models relying on these two
feature subgroups showed to provide the most discrimi-
natory information for valence and arousal models.

Additionally, among the EEG features, we observe that
SE, θ, and c spectral power never appear as top selected
features.,is could be due to the fact that power and entropy
measures are averaged over all electrodes, thus removing any
spatial information relevant for the features. Notwith-
standing, averaging ensures that the proposed features are
invariant and robust to the electrode set considered, as seen
with the global graph-theoretic features using motif syn-
chronization. For valence, in turn, we observe that none of
the AI features show up among the top in the EEG feature
set alone scenario. When using only motif features, on the
other hand, seven Dm features (out of nof� 20) are selected,
thus suggesting that motif features may carry more relevant
asymmetry signatures for the task at hand. With the com-
bined feature set, it can be seen that proposed features from
all groups appear in the top list for both valence and arousal.

3.3. Fusion Strategies. As mentioned previously, three fusion
schemes were explored: feature, score, and output associative
fusion. Tables 2–4 show the effects of feature fusion and the
gains attained with the combined set relative to using only a
feature group individually. For the valence dimension, for
example, gains of 8.6% and 2.4% were achieved with feature
fusion relative to using benchmark and motif feature alone,
respectively. As shown in Table 5, the model based on the
combined set relied on features from both feature groups, thus
emphasizing their complementarity for valence prediction.

For arousal, feature fusion resulted in more modest gains
relative to the benchmark (i.e., 6.1%) and to motif features

(2.6%). Interestingly, the best model relied on mRMR se-
lected features which did not include benchmark ones. ,e
second best model, on the other hand, was achieved with
RFE feature selection and the top 20 features included seven
benchmark ones (i.e., (α + β)/c, β/θ, AI(01, 02) (β), AI(Fc1,
Fc2) (β), AI(C3, C4) (c), AI(F3, F4) (β), and AI(Fc1,
Fc2) (c)), three of which overlap with the top features se-
lected from the benchmark alone set. ,e remaining
13 features were from the motif group, nine of which showed
to be top features selected in the motif alone set,
namely, PE(β), PE(θ), Lw(α), Lw(c), Cs(β), Dm(P7, P8)(c),
Dm(Fc1, Fc2)(α), Dm(T7, T8)(α), and Dm(C3, C4)(β). By
comparing the feature sets selected by mRMR and RFE, it
seems the former is capable of removing redundancies that
may exist between Dm and AI asymmetry features but
favouring the motif ones as they provide maximum rele-
vance. Four features overlap between the two feature se-
lection algorithms, namely, PE(θ), Dm(Fc1, Fc2)(α),
Dm(T7, T8)(α), and Dm(C3, C4)(β), thus further suggest-
ing their importance for the task at hand.

For decision fusion, in turn, the weight space was
searched in steps of 0.1, and it was found that for valence, the
benchmark feature set resulted in a weight of 0.2 (i.e., 0.8 for
motif features), whereas a weight of 0.3 was found for
arousal (i.e., 0.7 weight for motifs). Such findings highlight
the importance of motif features over the benchmark ones
for both valence and arousal prediction. ,e BACC results
shown in Table 8 show the effect of score-level fusion over
feature fusion. As can be seen, gains are attained only for the
arousal dimension, thus further suggesting the comple-
mentarity of the two feature groups. For comparison pur-
poses, a random voting classifier is also shown for
comparison, and all attained BACCs are shown to be sig-
nificantly better than chance (p≤ 0.01).

Lastly, the output associative fusion method was out-
performed by all other fusion methods, despite showing to be
significantly better than chance. Notwithstanding, for the
valence dimension, it achieved results similar to score-level
fusion without the need for an exhaustive search of weights.
Here, only two feature groups were explored, thus such
advantage may become more critical in more complex sce-
narios involving additional feature groups (e.g., amplitude
modulation [4]). Overall, feature-level fusion showed to be
the best strategy for valence and was observed to be signif-
icantly better than score-level (pval ≈ 0.01) and output as-
sociative fusion (pval ≈ 0.01), whereas score-level fusion for
arousal was significantly better than both feature (pval < 0.01)
and output associative fusion (pval < 0.01). In both cases, the
proposed motif features showed to provide important dis-
criminatory information and to be complementary to existing
benchmark features.

3.4. Comparison with Previous Work. ,ere is increased
interest in affective state recognition from EEG, and dif-
ferent methods have been recently proposed in the literature,
many of which have also relied on the DEAP database. ,e
work in [20], for example, explored graph-theoretic features
computed from magnitude square coherence values. Such

Table 7: Performance comparison of different individual feature
groups and subgroups.

Feature (sub) group
Valence Arousal

BACC nof BACC nof
Weighted graph 0.5662∗ 2 0.5066 6
Unweighted graph 0.5581∗ 8 0.5006 6
Small world 0.5533 6 0.5208 2
Other motif 0.5578∗ 9 0.5632∗ 12
Spectral power, AI 0.5400 15 0.5344 11
Power ratio 0.5467 3 0.5000 1
∗Cases where the results are significantly greater than a random voting
classifier.
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features were shown to outperform several other spectral-
based and wavelet-basedmethods, and on the DEAP dataset,
they achieved an F1 score of 0.63 for valence and 0.60 for
arousal using an SVM classifier. For direct comparisons, the
best models proposed herein achieved an F1 score of 0.5883
for valence and 0.6960 for arousal, thus representing a 16%
increase in arousal, but a drop of 6.6% for valence. It is
important to emphasize, however, that the results in [20]
relied on leave-one-sample-out (LOSO) cross validation;
thus, the reported results are likely higher than what are
achieved with the method described herein.

More recently, in turn, the work in [4] proposed new
amplitude modulation coupling features to gauge connec-
tivity patterns as a function of valence and arousal. BACC
values of 0.594 and 0.598 were reported for valence and
arousal, respectively, using SVM classifiers and feature fu-
sion, whereas somewhat lower values were attained with
score-level fusion for arousal (no changes seen for valence).
,e values reported in [4] were obtained using a LOSO
cross-validation scheme. Under the same testing setup, our
proposed schemes achieve a BACC of 0.614 and 0.581 for
valence and arousal, thus representing a 3.3% increase and a
2.85% decrease in performance, respectively. It is important
to point out that motif-based methods did not rely on
amplitude or rate of change information; therefore, fusing
them with amplitude modulation features might further
improve performance.

3.5. Study Limitations. ,is work has taken the first steps at
gauging the advantages of motif-based features over exiting
spectrum-based benchmarks. To this end, no optimization
was done on the classifiers per se in order to directly
compare performances achieved with the same classifier
setup but with varying feature inputs. As such, it is expected
that further gains may be observed not only with classifier
hyperparameter optimization but also with more complex
classification methods or alternate fusion schemes.,e work
in [20], for example, showed that relevance vector machines
(RVMs) and fusion of RVMs outperformed SVMs, especially
for the arousal dimension. Recent work using deep neural
networks has also shown to be a promising route [79].
Future work should explore these more complex machine
learning principles combined with motif-based features.

4. Conclusion

In this work, we propose the use of motif series and graph
theoretic features for improved valence and arousal level
predictions. Experiments on the widely used DEAP database
show the proposed motif features outperforming several

spectrum-based benchmark features. Feature-level fusion
showed to provide important accuracy gains for both
emotional dimensions, thus highlighting the complemen-
tarity of the two feature groups for affective state recogni-
tion. Score-level fusion, in turn, provided further
improvements for arousal prediction. Overall, gains of 8.6%
for valence and 9.2% for arousal could be achieved with the
proposed system relative to the benchmark, and gains up to
16% could be achieved relative to prior art.
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[76] A. Wróbel, “Beta activity: a carrier for visual attention,” Acta
Neurobiologiae Experimentalis, vol. 60, no. 2, pp. 247–260,
2000.

[77] J. Coull, “Neural correlates of attention and arousal: insights
from electrophysiology, functional neuroimaging and psy-
chopharmacology,” Progress in Neurobiology, vol. 55, no. 4,
pp. 343–361, 1998.

[78] L. J. Metzger, S. R. Paige, M. A. Carson et al., “Ptsd arousal and
depression symptoms associated with increased right-sided
parietal eeg asymmetry,” Journal of Abnormal Psychology,
vol. 113, no. 2, p. 324, 2004.

[79] F. Movahedi, J. L. Coyle, and E. Sejdić, “Deep belief networks
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