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Abstract
Mechanism-driven models based on transmission dynamics and statistic models driven by public health data are two main
methods for simulating and predicting emerging infectious diseases. In this paper, we intend to combine these two methods
to develop a more comprehensive model for the simulation and prediction of emerging infectious diseases. First, we combine
a standard epidemic dynamic, the susceptible–exposed–infected–recovered (SEIR) model with population migration. This
model can provide a biological spread process for emerging infectious diseases. Second, to determine suitable parameters for
the model, we propose a data-driven approach, in which the public health data and population migration data are assembled.
Moreover, an objective function is defined to minimize the error based on these data. Third, based on the proposed model,
we further develop a swarm-optimizer-assisted simulation and prediction method, which contains two modules. In the first
module, we use a level-based learning swarm optimizer to optimize the parameters required in the epidemic mechanism. In
the second module, the optimized parameters are used to predicate the spread of emerging infectious diseases. Finally, various
experiments are conducted to validate the effectiveness of the proposed model and method.

Keywords Emerging infectious diseases · Epidemic mechanism · Swarm optimizer

Introduction

Since 1980, more than 30 emerging infectious diseases
(EIDs) have appeared in the world, such as SARS, COVID-
19, and so on [1]. In particular, up to Dec. 2021, more than
260 million people were infected by COVID-19 and about
5.4 million people died of it, according to the report from the
World Health Organization (WHO) [2]. Moreover, due to the
interconnection among humans, animals, and environments,
it is hard to completely stop the occurrence of EIDs in the
future [3].What humans can do is to takemeasures to control
and prevent the spread of EIDs. Therefore, it is significant to
discover EIDs as early as possible, simulate and predict the
spread of EIDs, and control the spread at an early stage.

The simulation and prediction of infectious diseases are
research hotspots in the field of public health. During the
past decades, researchers have developed some mathemati-
cal mechanisms to uncover the general principles and spread
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process of infectious diseases [4]. Among them, the suscep-
tible–infectious–recovered (SIR) model [5] and its extended
models are most recognized [6–11]. In 1927, Kermack and
Mckendrick developed the SIR model to investigate the
Bubonic plague propagated in London [5]. The idea of the
SIR model is to use a dynamic system to track the transmis-
sion of the virus among disparate nodes in a network. Each
node represents one of the three states (S, I, R) in this system.

Following the work of Kermack and Mckendrick, many
extensions and variants of SIR have been proposed to
simulate epidemic spread. The susceptible–exposed–infect-
ed–recovered (SEIR) model [6, 7] is a famous extension of
the SIRmodel. Li andMuldowney [6] introduced an exposed
stage E, in which people are infected but unconscious about
that. They studied the SEIR model with nonlinear incidence
rates in epidemiology. Besides, the susceptible–exposed–in-
fected–vaccinated (SEIV)model is another famous extension
of the SIR model [8, 9]. Cai et al. [8] investigated the SEIV
model with a nonlinear incidence rate, which exhibits the
disease-free equilibrium and the endemic equilibrium. The
extensions of the SIR model are gained not only by adding
epidemic characteristics but also by changing or removing
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the original epidemic characteristics. The susceptible–in-
fected–susceptible (SIS) model is yielded by deleting the
recovered state and reusing one more susceptible state [10,
11]. In [10], the authors presented a sufficient condition for
asymptotic stability of the healthy equilibrium and proved it
based on the SIS model.

Based on these commonly used epidemic mathemati-
cal mechanisms, some researchers proposed the improved
versions to simulate EIDs and used numerical methods to
optimize the parameters of mechanisms [12–16]. According
to the transmission features, prevention and control strate-
gies, Zu et al. [12] constructed a compartmental model
for the EID, named susceptible–exposed–infectious–sus-
pected–confirmed–recovered (SEISCR), and used the least
square method and Markov Chain Monte Carlo method to
simulate the parameters. Considering the spread of the EID
in Northern Italy, Jose et al. [13] performed the analysis of
parameters and the initial condition of a deterministic SEIR
model, which is solved by a forward Euler finite-difference
scheme. Rezapour et al.[14] use the Caputo fractional deriva-
tive to provide a SEIR model for the EID, and then they
investigated the feasibility region and stability of equilibrium
points. Although there are some studies on various improved
models, they mainly focus on the improvement and analysis
of epidemic mechanisms. The numerical optimization meth-
ods to optimize the parameters of epidemicmechanisms have
not been studied in depth.

Apart from mechanism-driven studies, some researchers
considered data-drivenmethods to simulate and predicate the
spread of EIDs. Different frommechanisms-driven methods,
data-driven methods directly discover internal relationship
from the initial data and automatically build model for prob-
lems. Machine learning is a commonly used data-driven
method [17–21]. Based on the neural network, Wieczorek
et al. [17] used a deep architecture, NAdam training model,
to forecast the spread of the EID. This method can result
in 99% accuracy in some cases. Rustam et al. [18] applied
four machine learning forecasting models, linear regression,
support vector machine, least absolute shrinkage and selec-
tion operator, and exponential smoothing in their research to
predicate the spread of the EID. Hybridizing a 1-D discrete
wavelet transform, Hazarika et al. [20] considered the ran-
dom functional link network to improve the accuracy over the
long-term forecast for the EID.Moreover, time seriesmethod
is another major used data-driven method [22–25]. Based
on two-piece scale mixture normal distributions, Maleki
et al. [23] used autoregressive time series models to forecast
the time series data of the EID. Many traditional symmet-
ric/asymmetric and light/heavy tailed autoregressive models
are involved in Mohsen’s model.

Although various mechanism-driven and data-driven
methods have been proposed, there remain some limita-
tions in the existing studies. On the one hand, mechanisms,
particularly complex mechanisms, are heavily rely on prior
knowledge and assumptions, but sometimes the simulation
result of mechanisms may be wrong [4]. Moreover, if more
practical factors are considered, epidemicmechanismswould
become much more complex with a lot of parameters. It is
difficult to determine the proper values of these parameters.
Consequently, the accuracy of themechanism-drivenmethod
would be affected. On the other hand, though data-driven
methods can track the spreading tendency of EIDs approx-
imatively, they have poor interpretability. In other words,
data-driven methods are limited in elucidating the spread
and persistence principles of EIDs. Moreover, at the early
stage of EIDs, collecting high-quality data is difficult, and
the low-quality collected data bring uncertain influence on
data methods.

Fortunately, the characteristics of mechanism-driven and
data-driven methods are complementary. Containing the
features of EIDs in data, data-driven methods can help
epidemic mechanisms reduce the requirement of assump-
tions and parameters. While revealing the spread process
of EIDs, mechanism-driven methods can help data-driven
method improve the interpretability and reduce the uncer-
tainty caused by bad data. Therefore, it is promising to
integrate the mechanism-driven method and the data-driven
method to explore the study of EIDs.

Few studies have used both mechanism-driven and data-
drivenmethods [26, 27].Yang et al. [26] derived the epidemic
curve from the SEIRmodel, and used an artificial intelligence
approach to predict the epidemic. Feng et al. [27] used the
SEIRmodel to simulate andpredict the epidemic spread trend
in Wuhan and used the data-driven method (LSTM) in non-
Wuhan areas. However, they just use the mechanism-driven
method and the data-driven method to separately simulate
and predict the spread of the EID in different regions. The
characteristics of these two kinds of models are not com-
bined. Moreover, although mechanism-driven methods also
require the actual data [12–16], the actual data are only used
as target in evaluation function or objective function.

Therefore, to alleviate the complexity and lower accuracy
of the mechanism-driven method and lower interpretabil-
ity and high data dependency of the data-driven method,
we focus on combining mechanism-driven and data-driven
methods. We directly apply the initial data to the epidemic
mechanism, revealing the transmission characteristics that
are not discovered by the epidemic mechanism. Thereby the
actual data drives the simulation of the epidemic spread and
the epidemic mechanism provides the biological spread pro-
cess of the EID. The major contributions of this paper are as
follows.
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(1) Considering the significant influence of population
migration on the EID spread, we combine the popu-
lation migration into the SEIR model and then build
a discrete form model of the EID with the population
migration.

(2) Based on the above model, we propose a data-driven
parameter optimization approach. In this approach,
aggregating the actual data of the EID and the popu-
lation migration, we model the process of determining
model parameters as a data-driven optimization process.
Meanwhile, an objective function is constructed in this
approach to minimize the error of the simulated data
and the actual data. So far, an epidemic mechanism-
driven and data-driven model (EMDE) is constructed.
It is consisting of an improved epidemic mechanism
with population migration and a data-driven parameter
optimization approach.

(3) On the basis of EMDE, we propose a swarm-optimizer-
assisted simulation and prediction method, which con-
tains two modules, the simulation module and the
prediction module. In the simulation module, a level-
based learning optimizer is used to search the best
parameter set though EMDE. Combining the optimal
parameter set, the prediction module uses the improved
epidemic model with population migration to predicate
the EID spread in the next few days. An average strat-
egy driven by the actual data is used to predicate the
population migration.

The rest of this paper is organized as follows. We describe
the background information of the particle swarm optimizer,
population migration, and a traditional epidemic mecha-
nism in “Backgrounds”. Then, the process of building the
improved model is provided in “The epidemic mechanis-
m-driven and data-driven model”. Afterward, we describe
how to simulate and predicate the EID spread in “Swar-
m-optimizer-assisted simulation and predication method”.
To certify the effectiveness, experiments are conducted in
“Experiments”. Finally, we summarize this article in “Con-
clusions”.

Background

Since the problem considered in this paper is based on epi-
demic mechanism, background about the traditional SEIR
model is introduced [6, 28, 29]. Moreover, with the human
interconnection increasing, the influence of human activities
on EIDs is unignorable, especially the population migration
[3]. Furthermore, to give a better description of our meth-
ods, we explain some basic techniques about particles swarm
optimization (PSO) [30].

S E I R
Fig. 1 State transition process of SEIR

Table 1 Parameters of SEIR

Variable Explanation

S(t) The number of susceptible people at time t

E(t) The number of exposed people at time t

I(t) The number of infected people at time t

R(t) The number of recovered people at time t

N(t) The total number of people involved in the EID at time
t

β The probability of a susceptible person to be affected
by the infected and then transform into the exposed

α The probability of a susceptible person to be affected
by the exposed and then transform into the exposed

κ The probability of an exposed person transforms into
being infected

γ The probability of an infected person recovers

Traditional SEIR epidemic mechanism

Although many effective epidemic mechanisms have been
proposed, we prefer the SEIRmodel for its appropriate num-
ber of parameters and more in line with the transmission
characteristics of most EIDs at the early stage. The SEIR
model simulates the spread of the epidemic based on infec-
tion states and their connection, where four abbreviations
represent four different states drawn in Fig. 1. In the SEIR
model, the susceptible state (S) means that people are in a
case, where they have low immunity to the virus and are easy
to be infected. The exposed state (E) means that people are
infected but are not detected. Therefore, they unintentionally
expose the virus to healthy people. Analogously, the infected
state (I) means that people are infected. The recovered state
(R) means that the recovered people will never be infected
again. Then, we give a traditional formal of the SEIR model
in Eq. (1), and summarize the explanation of parameters in
Table 1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�S � −βS(t)I (t)

N (t)
− αS(t)E(t)

N (t)

�E � βS(t)I (t)

N (t)
+

αS(t)E(t)

N (t)
− κE(t)

�I � κE(t) − γ I (t)

�R � γ I (t)

, (1)

N (t) � S(t) + E(t) + I (t) + R(t). (2)
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Populationmigration

With the rapid development of society, the interconnection
among humans become more and more frequent. Especially
as transportation facilities become much more convenient,
the large population movement is a significant difference
between the spread of EIDs and past traditional viruses [3,
31–33]. For example, more than 5 million people have left
Wuhan, one of China’s transportation hubs, during the out-
break of COVID-19 [34]. In [35], Du et al. considered the
risk for the transportation of COVID-19 fromWuhan to other
cities. They expected that, before the quarantine, the infected
risk of 130 cities is more than 50%, and the infected risk of
the 4 largest metropolitan areas is up to 99%. Therefore, it is
promising to combine population migration with epidemic
mechanisms. Briefly, the population migration among K dif-
ferent cities can be abstracted as a dynamic matrix Eq. (3):

M(t) �
⎛

⎜
⎝

m1, 1(t) . . . m1, K (t)
...

. . .
...

mK , 1(t) · · · aK , K (t)

⎞

⎟
⎠, (3)

where mi,j(t) is the number of people who migrated from the
ith city to the jth city at time t, and K is the number of cities.
According to Eq. (3), the number of people flow out and in
the ith city can be represented by

mout
i (t) �

K∑

j�1

mi , j (t), (4)

min
t (t) �

K∑

j�1

m j , i (t), (5)

wheremout
t (t) is the total number of people moving out from

the ith city at time t, whilemin
t (t) is the total number of people

moving into the ith city at time t.

Particle swarm optimizer

Inspired by the intelligent behaviors of social animals, Eber-
hart and Kennedy [30] proposed PSO, where a swarm of
particles traverses the whole solution space to find the global
optimum. PSO is a widely used evolutionary computation
algorithm [36]. In PSO, each particle presents a candidate
solution in the swarm. By some learning strategies, particles
learn fromother particles to guide themselves to find the opti-
mum. With the good exploration and easy implementation,
PSO has been extensively studied and applied in many opti-
mization problems [37–40]. For example, Zhao et al. [37]
proposed a swarm-based stochastic optimization policy to
control the spread of the epidemic and allocate the resource
efficiently.

In this paper, a level-based learning swarm optimization
(LLSO) algorithm is considered, which is first proposed in
[41] for the large-scale problem. Based on PSO, two novel
strategies are proposed in LLSO, including the level-based
learning strategy and exemplar selection strategy. In the level-
based learning strategy, particles are sorted according to
fitness and then divided into several levels. Better particles
belong to higher levels with small indexes. In the exemplar
selection strategy, particles are allowed to randomly pick up
two particles as exemplars, respectively, from two higher lev-
els. Particularly, particles in the second level only learn from
the first level, and the particles in the first level reserve them-
selves. The whole process of the LLSO algorithm is shown
in Algorithm 1.

Algorithm 1 The LLSO Algorithm
1: Initialize Randomly
2: Calculate Fitness
3: While stop criteria is not reached do
4: Sort and divide particles according to level-based learning 

strategy. 
5: Select exemplar according to exemplar selection strategy.
6: Update particles 
7: End

The epidemic mechanism-driven
and data-drivenmodel

The main work of this paper is to solve a simulation and
prediction problem for the EID, under the increasing effect
of population migration. To address this issue, we combine a
standardSEIRepidemicmodelwith themigration population
to reveal the EID spread process. However, parameter values
in the mechanism are different in different EIDs. To deter-
mine the parameters of this mechanism, we further obtain the
public health data and population migration. Based on these
two sets of data, we abstract the parameter solving process
as a data-driven process and define a data-driven objective
function. Besides, the spread of the EID in each city is calcu-
lated separately, since the spread characteristics for the EID
and population migration vary in different regions.

The epidemic mechanismwith populationmigration

Without restrictions on traffic at the early stage of EIDs, peo-
ple of different epidemic states may flow out or into cities,
which increases the spread of EIDs. In other words, people
in high-risk cities many carry the virus to uninfected cities.
Moreover, with the high-speed development of traffic, peo-
ple can travel across many areas in 1 day, resulting in a faster
spread speed of EIDs. Consequently, based on the studies
of other researchers [31, 42], we consider combining the
population migration with the epidemic mechanism in the
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following formulations. First, a matrix yi(t) is constructed to
present the number of people in different states for the ith city
at time t:

yi (t) �

⎡

⎢
⎢
⎢
⎢
⎣

Si (t)

Ei (t)

Ii (t)

Ri (t)

⎤

⎥
⎥
⎥
⎥
⎦

. (6)

Since there are well-protected people and the total pop-
ulation of a city is too large, not all the people of a city
are involved in the EID. Therefore, Ni(t) is not equal to the
total population of a city Zi. In other words, only a part of
migration people may be susceptible, exposed, infected, or
recovered. We summarize the population migration of dif-
ferent states for the ith city in Eqs. (7) and (8):

youti (t) � mout
i (t)

Zi
∗ yi (t), (7)

yini (t) �
K∑

j�1

mout
j , i (t)

Z j
∗ y j (t). (8)

After calculating population migration of each city, we
integrate the above equations with Eq. (1), and obtain the
change value of yi(t):

�yi (t) �

⎡

⎢
⎢
⎢
⎢
⎣

�Si (t)

�Ei (t)

�Ii (t)

�Ri (t)

⎤

⎥
⎥
⎥
⎥
⎦
+ yini (t) − youti (t). (9)

Finally, the discrete form of the EID combined with pop-
ulation migration is obtained in the following:

yi (t + 1) � yi (t) + �yi (t). (10)

Data-driven parameter optimization

Based on the past experience, the epidemic mechanism may
beuseful to reveal potential theEIDspreadprocess.However,
it may also ignore some emerging characteristics. The actual
data can narrow the gap between the epidemic mechanism
and the EID by reflecting uncaptured information.Moreover,
although the improved model describes the spread of the
EID with population migration, parameters in the model are
unclear. To track the changeable characteristics of the EID,
a data-driven parameter optimization approach is developed.
It uses the actual data (�),which assembles the public health

data and population migration data as follows:

(11)

� � { Ĩi (t), R̃i (t), M̃i (t)|for t
� 1, 2, ..., T 1, i � 1, 2, ..., K }.

Variables with a wavy line above represent the actual data.
The parameter set θ i for each city constitute �, which con-
tains the parameter set of all cities:

θi � [βi , αi , κi , γi , S1i , E1i ]. (12)

Apart from the transform probabilities among different
epidemic states, the number of susceptible (S1i) and exposed
people (E1i) on the first day of the EID also need to be opti-
mized. Because there is no explicit principle to determine the
susceptible population. Meanwhile, governments and hospi-
tals are hard to collect the number of exposed people.

The improved mechanism, Eq. (10), cooperates with �

and� to model the process of determiningmodel parameters
as a data-driven optimization process. We define this process
in the following. Ai is the coefficient matrix and is defined as
Eq. (13):

Ai �

⎡

⎢
⎢
⎢
⎣

0 0 0 0
0 κi 0 0
0 0 −γi 0
0 0 γi 0

⎤

⎥
⎥
⎥
⎦

. (13)

Moreover, Fi(t) is the constant term, and vary with migra-
tion population and the spread of the EID:

Fi (t) �

⎡

⎢
⎢
⎢
⎢
⎣

−(βi Ĩi(t)+αi Ei (t))Si (t)
Ni (t)

(βi Ĩi(t)+αi Ei (t))Si (t)
Ni (t)

0
0

⎤

⎥
⎥
⎥
⎥
⎦
+ ỹini (t) − ỹouti (t). (14)

Thus, based on the coefficient term and constant term, Eq.
(10) can be presented as

yi(t + 1) � Ai yi (t) + Fi (t). (15)

Particularly, when t � 1

yi (1) �

⎡

⎢
⎢
⎢
⎣

S1i
E1i
Ĩi (1)
R̃i (1)

⎤

⎥
⎥
⎥
⎦

. (16)

And then, the spread of the EID over K cities is

Y (t) �
K∑

i�1

yi (t). (17)
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I (t) �
K∑

i�1

yi (t)[3] � Y (t)[3]. (18)

In addition, I(t) is the third element in Y (t), representing
the total infected population over K cities on the tth day.
Furthermore, considering the number of infected people and
recovered people can be required from �, the EID spread of
the tth day can be represented by

yi (t) �

⎡

⎢
⎢
⎢
⎣

yi (t)[1]
yi (t)[2]
Ĩi (t)
R̃i (t)

⎤

⎥
⎥
⎥
⎦
, (19)

where yi(t) [1] is the simulated number of susceptible peo-
ple and yi(t) [2] is the simulated number of exposed people.
Finally, based on the above equations, we construct the
objective function to minimize the error between the actual
infected population and the simulated for K cities over T1
days. In other words, the parameters are optimized to obtain
a minimum gap. w is a scale factor:

f (Ii (t); �, �) � MIN
T 1∑

t�1

| Ĩ (t) − I (t)|w. (20)

So far, we finish the construction of EMDE. On the one
hand, we combine the SEIR model with migration popula-
tion and provide a linear expression form for mathematical
convenience. The epidemic mechanism can take off the
EID’s spread process and give a better interpretation to help
humans resist the EID. On the other hand, the actual data
of the infected population, the recovered population, and
population migration are used to drive the optimization of
parameters. the actual data can revise the epidemic mecha-
nism deviating from the truth.

In general, EMDE combines the mechanism-driven
method and the data-driven method to simulate and predict
the spread of the EID. On the one hand, with the epidemic
mechanismwith population migration, EMDE can reveal the
biological spread process of the EID and reduce the over-
focus on the data. On the other hand, with the data-driven
parameter optimization approach, EMDE can timely revise
the gap between the actual epidemic spread and the simulated
epidemic spread. The actual data (�) used in the approach
can reflect some uncaptured information by the epidemic
mechanism. If the simulated epidemic spread deviates from
the actual spread, EMDE can timely revise this deviation
by the proposed data-driven approach. Therefore, EMDE
combines the advantages of epidemicmechanism-driven and
data-driven methods. Meanwhile, these two methods can
complement each other’s disadvantages in EMDE.

Fig. 2 Flow chart of the simulation module

Swarm-optimizer-assisted simulation
and predicationmethod

Subsequently, a swarm-optimizer-assisted simulation and
prediction method is introduced, which is consisted of two
modules. In the first simulation module, an improved swarm
optimizer is used to assist the parameter optimization, and the
objective function, Eq. (20), is adopted to calculate the fitness
of particles. In the second prediction module, the optimized
parameters and simulated data from the simulation module
are used to predicate the spread of the EID.

Swarm-optimizer-assisted simulationmodule

Module description

The main idea of the simulation module is to help EMDE
explore the optimal parameters. For this purpose, three sub-
modules are developed and the flowchart is drawn in Fig. 2.
First, in the initialization submodule, suitable expressions of
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solutions are generated and initialized according to the range
of parameters. Every solution is a combination of parameters
represented by a particle. Second, with the generated param-
eter’s value,we can usemathematical formulas defined in Eq.
(10) to simulate the spread of the EID in the fitness calcula-
tion submodule. This submodule outputs the result calculated
by Eq. (20) of each solution as fitness to the next submodule.
Third, according to the learning strategies of LLSO, all par-
ticles update themselves to search the optimum. If the stop
criterion is satisfied, the simulation module outputs the best
combination of parameters and is terminated. Otherwise, all
parameter combinations are delivered to the fitness calcula-
tion submodule. In general, the stop criterion is related to the
number of evaluations.

Initialization

First of all, we construct the position of particles to repre-
sent solutions in the initialization submodule. Each solution
is a combination of parameters for K cities. Each city has |θ i |
parameters, where |θ i | is the size of θ i. Thus, the dimension of
a solution is K*|θ i |, D � K*|θ i |. Considering the convenient
transportation nowadays, the interconnection between cities
is frequent, and K is generally a large number. Therefore,
the parameter optimization has a high-dimensional search
space. To better optimize the large-scale problem, a recently
proposed large-scale optimizer, LLSO is adopted in the third
submodule. Besides, because the range of parameters are dif-
ferent, we order them according to their range. The position
of the nth particle can be presented by

(21)

xn � [β1, α1, κ1, γ1, ..., βK , αK , κK ,

γK , S11, E11, ..., S1K , E1K ].

Algorithm 2 Fitness Calculation 
Input X, NP, K, T1 and Φ
1: fitness = zeros(NP,1)
2: For n = 1, …, NP
3: y = zeros(K, T1,4);
4: I = zeros(T1,1)
5: For i = 1, …, K
6: F = zeros(T1, 4)
7: F[1] ← eq.(14) // use xn and Φ to obtain the constant term 

of the first day 
8: A ← eq.(13) // use xn and Φ to obtain the coefficient term
9: y[i][1] ←eq.(16) // the spread of EID on the first day
10: For t = 2, …, T1
11: y[i][t] ← eq.(15) // simulate the spread of EID on the 

tth day
12: I[i][t]= y[i][t][3]
13: y[i][t] ← eq.(19) // use the actual data of infected 

population and recovered population to replace the simulated 
value 

14: End
15: End
16: fitness[n] ←eq.(20) // calculate fitness for the nth particle
17: End
Output fitness

After constructing the position expression, we randomly
generate the value for each particle. All transform probabili-
ties among different epidemic states are within [0,1] and the
range of Si(t) and Ei(t) are within [0, Zi]. For values out of
range, they are assigned the corresponding upper or lower.
The velocity of the nth particle is represented by vn and also
initialized by the above method. All positions of particles
form X. All velocities of particles form V .

Fitness calculation

After initializing the positions of particles, the fitness of each
particle is calculated in this submodule. Thefitness represents
the distance from the optimum position to the particle’s posi-
tion. In this paper, particles with smaller fitness have more
useful information to explore the optimum. Meanwhile, dig-
ging the promising information to guide particles which are
away from the optimum, can accelerate the convergence of
the whole swarm. Thus, it is significant to find out useful
information from better particles in Algorithm 2.

First, the fitness of all particles is set to be zero. A loop is
started to calculate the fitness for each particle in lines 1–2.
Specifically, function zeros(number1, number2) means cre-
ating an all zeros matrix with two dimensions, where the first
dimension size is number1 and the second dimension size is
number2. Entering the loop, the simulated data is initialized
to zero and the process goes to the inner loop in lines 3–5.
Next, for each city, we can use the parameters’ value in xn
and the corresponding equation to initialize Fi, Ai, and yi, at
the first day. Then, the spread of EID over T1 days for the
ith city can be simulated in lines 10–14. After simulating the
spread of the EID for K cities over T1 days, the fitness of
one particle is calculated in line 16. By the above process,
we can obtain the fitness of all particles.

Parameters optimization with a level-based learning swarm
optimizer

To obtain the optimum value of the parameters, we use a
level-based learning swarm optimizer (LLSO) in this sub-
module. As mentioned in the background of the LLSO
algorithm, the level-based learning strategy and the exem-
plar selection strategy are constructed to evolute particles.
Based on these two strategies, particles are updated by

{
vdi , j ← r1v

d
i , j + r2(x

d
rl1 , k1

− xdi , j ) + ϕr3(x
d
rl2, k2 − xdi , j )

xdi , j ← xdi , j + vdi , j

,

(22)

where the LLSO algorithm allows each particle in level Li
to learn from two particles xdrl1 , k1

and xdrl2 , k2
. They are ran-

domly selected from twodifferent higher levels Lrl1
and Lrl2

.
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rl1 and rl2 are two numbers that are randomly selected from
[1, i-1], respectively, k1 and k2 are random integers selected
from [1, NP/NL]. r1, r2, and r3 are three random numbers
within [0,1], and ϕ is alsowithin [0,1] to control the influence
of the second exemplar.

Thus, by Eq. (22), particles can update themselves by
learning from better particles to close in the optimum. In
other words, as well as particles update, parameters are opti-
mized to minimize the gap between the simulated value and
the actual data.

Algorithm 3 Population Migration Predication
Input T1, T2, T3, K and Φ
1: M = zeros(T1+T2, K, K)
2: For t = 1, …, T1
3: M[t] ←the actual population migration data of the tth days
4: End
5: For t = T1+1, …T2
6: M[t] ←eq.(23) //use average strategy to predicate population 

migration 
7: End
Output M

Predictionmodule

Module description

Based on the output parameters from the simulation module
and the epidemic mechanism, we can predicate the spread of
EID in the next T2 days. The prediction module contains two
submodules, as shown in Fig. 3. First of all, in the population
migration prediction submodule, a simple strategy is used
to predicate the population migration in the next T2 days.
This submodule outputs the predicated population migration
data to the next submodule. Second, in the EID predication
submodule, we can use Eq. (10) to calculate the spread of
EID in the next T2 days.

Population migration predication

Whatwe focus on in this paper is the spread of the EID. How-
ever, there is no populationmigrationmechanism to predicate
the migration between K cities. Thus, an average strategy is
used to predicate population migration. Due to the popula-
tionmigration in approach days is similar, we use the average
population migration in the previous T3 days to represent
population migration in the next day. In other words

M(t) �
⎛

⎝
T 3∑

p�1

M(t − p)

⎞

⎠/T 3, for all t�T 1 + 1, ..., T 1+T 2.

(23)

We summarize this process in Algorithm 3. First of all, we
initialize the population migration matrix (M) of T1 + T2 to
be zeros. Then, in lines 2–3, the actual data of population

Fig. 3 Flow chart of the prediction module

migration for T1 days are filled into M. Finally, according
to Eq. (23), we can predicate the population migration in the
next T2 days.

Algorithm 4 EID Predication 
Input K, T1, T2 and M
1: preY = zeros(T2, 4) 
2: y = zeros(K, T2+1,4)
3: yin = zeros(K, T2+1,4)
4: yout = zeros(K, T2+1,4)
5: For i = 1, …, K
6: y[i][1] ← eq.(16) // the spread of EID on the first day
7: For t = 2, …, T1
18: y[i][1] ←eq.(15) // simulate the spread of EID on the tth day
8: y[i][1] ←eq.(19) // use the actual data of infected 

population and recovered population to replace the simulated 
value

9: End
10: End
11: For i = 1, …, K
12: // calculate the influence of population migration on the EID on 

the first day
13: yout[i][1] ← eq.(7)
14: yin[i][1] ← eq.(8)
15: For t = 2, …, T2+1
16: y[i][t] ← according to eq.(10) // predicate the spread of the 

EID on (t+T1-1)th day 
17: // calculate the influence of population migration on the EID on 

the (t+T1-1)th day
18: yout[i][t] ← eq.(7)
19: yin[i][t] ←eq.(8)
20: End
21: End
22: preY ← eq.(17)
Output preY
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EID predication

According to Eq. (10), the EID spread situation of the T1th
day, yi(T1), is critical to the EID prediction in next the T2
days. However, only the number of infected people and the
number of recovered people can be required from the actual
data. Thus, we simulate the spread of EID until the T1th day
to obtain Si(T1) and Ei(T1) for all cities. Moreover, with
explicit yi(T1), the influence of EID in the specified city on
other cities, though population migration, can be captured.
All process of EID predication is summarized in Algorithm
4. After initializing variables in lines 1–4, the EID spread of
K cities over T1 days is simulated in lines 5–11. And then,
the process enters a loop to predicate the EID for each city in
line 12. At the beginning of the loop, we calculate youti (T 1)
and yini (T 1). Then, the EID predication is implemented in
lines 15–16.

Complexity analysis

In this section, we make a complexity analysis of the pro-
posed method from three parts. First, the time complexity of
the fitness calculation submodule in Algorithm 1 is O(NP ×
K × T1). Second, according to the complexity analysis of
[41], the LLSO algorithm takesO(NP ×D + NP × log(NP))
without considering the time of function evaluations. Thus,
the time complexity of the parameter optimization submod-
ule is O(NP × D + NP × log(NP)). Third, from Algorithm
4, the time complexity of the EID prediction submodule is
O(K × T1 + K × T2). We ignore the time complexity anal-
ysis of other submodules, since their complexity is smaller
comparedwith the above parts. Therefore, the total time com-
plexity of the proposed method is O(NP × (K × T1 + D) +
NP × log(NP)).

Experiments

To certify the effectiveness of the proposed model (EMDE)
and method, four comparison experiments are conducted in
this section. In the first experiment, EMDE is compared with
three pure data-driven methods to prove its validity. In the
second experiment, we further investigate the effectiveness
of the data-driven parameter optimization. In the third exper-
iment, the swarm-optimizer-assisted module in the proposed
method is compared with two numerical optimization meth-
ods to optimize parameters. In the last experiment, LLSO is
compared with other swarm optimizers to prove the advan-
tage of using LLSO in our method. To be fair, all methods
conducted in the second experiment use the prediction mod-
ule, which is proposed in our method.

Parameters setting

We summarize the parameters setting in this paper in the
following:

(1) We take the spread of COVID-19 in China as an exam-
ple to conduct experiments.

(2) Authoritative data of 30 cities from January 24, 2020,
to March 15, 2020, are used in our experiments. These
30 cities are selected, since they have large population
in China. The name of cities is shown in Table 2. K is
the number of cities, K � 30.

(3) The population migration data is obtained from
qianxi.baidu.com/ and the data set of COVID-19
is obtained from github.com/BlankerL/DXY-COVID-
19-Data.

(4) Due to D � K*|θ i |, D is equal to 180.
(5) We set the number of particles (NP) in a particle swarm

to 500, NP � 500, and set the max evaluation number
to 3000*D.

(6) Attentionally, T1 is the simulation days, T2 is the pre-
diction days, and T3 is the days used to predicate the
population migration.

(7) We use the root mean square error (RMSE) as the
evaluation criteria in all experiments, where T is the
evaluated days, Ĩ (t) is the actual infected number of
people for K cities, and I(t) is the simulated or predi-
cated the number of infected people for K cities.

RMSE �
√
√
√
√ 1

T

T∑

t�1

( Ĩ (t) − I (t))2, (24)

(8) For all experiments, we repeat 20 times and use the
average value as result.

(9) To better exhibit results, we count the w/l/t for each
experiment, which represents that our method wins on
w other methods, loses on l other methods and draws
on d other methods.

(10) The p value of each experiment is calculated through
ttest2 function in Matlab. The symbols, “ + ”, “−”,
and “ � ” above the p value, respectively, represent
our method significantly better than, worse than, and
equivalent to the comparison method.

Comparison experiment with data-driven methods

In this experiment, three data-driven models, including poly-
nomial regression (PR), kernel ridge regression (KRR), and
autoregressive integrated moving average model (ARIMA)
are compared to EMDE. We directly use these data-driven
methods provided by the sklearn and the statsmodels libraries
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Table 2 Name of 30 cities

Chongqing Shenzhen Zhengzhou

Shanghai Changsha Xian

Beijing Kunming Ganzhou

Chengdu Fuzhou Handan

Tianjin Nanyang Wenzhou

Guangzhou Linyi Weifang

Wuhan Shijiazhuang Zhoukou

Hangzhou Haerbin Qingdao

Nanjing Suzhou Xuzhou

Changchun Baoding Heze

in Python. Two groups of simulation experiments are con-
ducted, where the simulated days (T1), respectively, are
7 days (1 week) and 21 days (3 weeks). For each simulation
group, three groups of prediction experiments are imple-
mented, where the prediction days (T2) are, respectively,
3 days, 7 days, and 10 days. We summarize the result in
Tables 3 and .

First, the simulation ability of our method is competitive.
In Table 3, for T2 � 0 days, although the simulation per-
formance of KRR exceeds EMDE in all instances, EMDE

outperforms PR in all instances. Moreover, for ARIMA,
EMDE outperforms it in two instances, loses to it in one, ties
with it in one. In Table 4, for T1 � 21 days and T2 � 0 days,
KRR also exceeds EMDE in all instances, but EMDE only
loses to ARIMA in one. Moreover, our method draws with
PR. Therefore, we recognize EMDE is competitive to data-
driven models in simulation ability. In other words, EMDE
is comparable to some data-driven algorithms, but it cannot
be compared to all data-driven algorithms.

Second, the prediction performance of EMDE is good. In
Table 3, forT2�3days,T2�7days, andT2�10days, there
are totally 12 (4*3) instances.Among these instances, EMDE
outperforms all other data-driven methods in 6 instances and
performs better than two in 6 instances. In Table 4, there also
totally are 12 instances for three prediction groups. EMDE
exceeds all other comparisonmethods in 8 instances and out-
performs two in 4 instances. Therefore, we consider EMDE
has the superiority of prediction ability.

Subsequently, we analyze the simulation ability and pre-
diction ability of EMDE in the following.

(1) EMDE has competitive simulation ability is acceptable.
Because data-driven models are based on the actual
data, they can precisely simulate the spread of the EID.

Table 3 Comparison results with data-driven methods for simulation days being 7 days (T1 � 7)

Predicated days Instances/Methods 1–2 weeks 2–3 weeks 3–4 weeks 4–5 weeks

– – RMSE P value RMSE P value RMSE P value RMSE P value

T2 � 0 days EMDE 3.42E + 02 – 4.64E + 02 – 4.11E + 03 – 2.67E + 02 –

PR 1.20E + 02 7.64E-10− 8.02E + 01 1.23E-36− 1.28E + 03 3.50E-59− 1.40E + 02 9.90E-32−

KRR 7.56E + 02 1.25E-14+ 2.30E + 03 1.56E-49+ 6.09E + 03 3.39E-56+ 6.39E + 03 1.03E-63+

ARIMA 3.48E + 02 7.67E-01= 3.97E + 02 3.28E-22- 4.32E + 03 1.99E-37+ 4.26E + 02 1.35E-33+

w/l/d 1/1/1 1/2/0 2/1/0 2/1/0

T2 � 3 days EMDE 2.27E + 02 – 7.32E + 02 – 1.52E + 03 – 7.71E + 02 –

PR 8.77E + 02 7.07E-17+ 1.08E + 03 1.61E-29+ 2.88E + 04 8.87E-63+ 2.87E + 02 3.10E-18−

KRR 2.44E + 03 6.95E-27+ 7.83E + 03 2.68E-54+ 2.06E + 04 7.43E-60+ 1.41E + 04 1.53E-45+

ARIMA 3.43E + 02 8.25E-05+ 2.24E + 02 1.51E-32− 2.53E + 03 1.36E-35+ 2.21E + 03 3.52E-27+

w/l/d 3/0/0 2/1/0 3/0/0 2/1/0

T2 � 7 days EMDE 1.86E + 03 – 1.49E + 03 – 5.89E + 03 – 7.94E + 02 –

PR 7.75E + 03 3.11E-24+ 4.48E + 03 7.83E-39+ 1.49E + 05 6.35E-68+ 6.01E + 03 3.68E-28+

KRR 5.57E + 03 1.94E-20+ 1.26E + 04 1.15E-49+ 2.70E + 04 3.94E-52+ 2.19E + 04 1.10E-39+

ARIMA 2.50E + 03 4.38E-07+ 4.42E + 02 3.28E-30− 3.09E + 03 1.81E-35- 4.73E + 03 7.62E-26+

w/l/d 3/0/0 2/1/0 2/1/0 3/0/0

T2 � 10 days EMDE 4.03E + 03 – 9.05E + 03 – 1.03E + 04 – 1.06E + 03 –

PR 1.87E + 04 2.62E-29+ 3.74E + 03 7.51E-40− 3.23E + 05 1.34E-70+ 1.56E + 04 5.07E-36+

KRR 8.96E + 03 2.46E-20+ 2.27E + 04 1.24E-47+ 3.14E + 04 2.43E-48+ 2.79E + 04 4.49E-41+

ARIMA 4.96E + 03 1.64E-07+ 7.95E + 03 7.74E-27+ 6.86E + 03 1.78E-33− 6.74E + 03 2.88E-28+

w/l/d 3/0/0 2/1/0 2/1/0 3/0/0

In order to highlight the effectiveness of the proposed method, we have marked some experimental results that are significantly better than the comparison algorithms
in bold
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Table 4 Comparison results with data-driven methods for simulation days being 21 days (T1 � 21)

Predicated days Instances/Methods 1–4 weeks 2–5 weeks 3–6 weeks 4–7 weeks

– – RMSE P value RMSE P value RMSE P value RMSE P value

T2 � 0 days EMDE 2.73E + 03 – 2.60E + 03 – 2.48E + 03 – 2.70E + 02 –

PR 1.67E + 03 3.61E-51− 2.38E + 03 3.27E-46− 2.55E + 03 2.36E-14+ 3.21E + 02 5.86E-11+

KRR 2.13E + 03 1.58E-46− 1.85E + 03 3.02E-56− 1.63E + 03 1.35E-34− 1.90E + 02 1.79E-14−

ARIMA 2.69E + 03 1.54E-24− 2.71E + 03 4.24E-40+ 4.10E + 03 7.33E-40+ 8.56E + 03 1.36E-52+

w/l/d 0/3/0 1/2/0 2/1/0 2/1/0

T2 � 3 days EMDE 1.60E + 03 – 2.43E + 03 – 7.31E + 02 – 3.00E + 02 –

PR 2.79E + 03 7.00E-30+ 2.06E + 03 1.78E-30− 5.43E + 03 1.16E-20+ 1.25E + 03 5.61E-19+

KRR 1.14E + 04 2.94E-47+ 4.70E + 03 2.08E-45+ 2.54E + 03 5.57E-13+ 1.66E + 03 5.90E-22+

ARIMA 3.45E + 03 1.57E-33+ 2.94E + 03 4.22E-33+ 2.16E + 03 3.54E-11+ 1.83E + 02 2.72E-04−

w/l/d 3/0/0 2/1/0 3/0/0 2/1/0

T2 � 7 days EMDE 1.74E + 03 – 5.55E + 03 – 2.35E + 03 – 8.39E + 02 –

PR 8.58E + 03 2.47E-37+ 2.53E + 03 1.74E-39− 1.33E + 04 1.94E-17+ 3.46E + 03 5.95E-19+

KRR 1.62E + 04 1.60E-43+ 1.37E + 04 1.27E-47+ 9.78E + 03 2.63E-14+ 6.77E + 03 1.18E-25+

ARIMA 4.92E + 03 5.02E-31+ 7.02E + 03 1.59E-33+ 5.71E + 03 2.21E-08+ 8.99E + 02 4.15E-01=

w/l/d 3/0/0 2/1/0 3/0/0 2/0/1

T2 � 10 days EMDE 1.55E + 03 – 7.91E + 03 – 3.56E + 03 – 1.36E + 03 –

PR 1.92E + 04 1.53E-50+ 8.41E + 03 4.51E-21+ 2.17E + 04 3.29E-18+ 6.07E + 03 5.10E-20+

KRR 2.11E + 04 2.17E-51+ 2.08E + 04 9.93E-48+ 1.66E + 04 1.42E-15+ 1.28E + 04 2.72E-27+

ARIMA 6.68E + 03 2.53E-40+ 1.02E + 04 1.95E-33+ 8.68E + 03 1.70E-08+ 1.65E + 03 1.82E-02+

w/l/d 3/0/0 3/0/0 3/0/0 3/0/0

In order to highlight the effectiveness of the proposed method, we have marked some experimental results that are significantly better than the comparison algorithms
in bold

However, in EMDE, due to the lack of the number of
susceptible and exposed people in the epidemic mech-
anism, we use the simulated value of S(t) and E(t)
combined with the actual data Ĩ (t) and R̃(t) to calculate
S(t +1),E(t +1), I(t +1),R(t +1). There is a gapbetween
the simulated data and actual data, which influences the
simulation accuracy of our method. Thus, it is avail-
able that the simulation performance of EMDE cannot
exceed some data-driven models, such as KRR. How-
ever, EMDE is also precise because of the existence of
the epidemic mechanism that our method can capture
the mechanism of epidemic transmission. Therefore,
EMDE has comparable simulation capability with some
data-driven models, such as PR and ARIMA.

(2) We attribute the good prediction ability of EMDE to
the combination of epidemic mechanism-driven and
data-driven. On the one hand, the epidemic mechanism
can reduce the over-focus on the changes of numerical
value but not the spread of the EID. Thus, the use of
the mechanism-driven method can conquer the overfit,
which usually make pure data-driven methods in trou-
ble. Moreover, the epidemic mechanism can provide
the conversion relationship between different states in
the spread of the EID. It increases the interpretability

of epidemic spread with EMDE. On the other hand,
the data-driven method can capture the unexpressed
information of the mechanism. When the mechanism
deviates from reality, the data-driven method can revise
this deviation by the actual data. Therefore, it is reason-
able that EMDE has better prediction ability than these
data-driven methods.

Comparison experiment for the data-driven parameter
optimization approach

In this section, we conduct experiments to certify the effec-
tiveness of the data-driven parameter optimization approach
in EMDE. This approach is the key to combining the
mechanism-driven method and the data-driven method in
EMDE. For writing convenience, we denote the EMDE
model without using the data-driven parameter optimization
approach as EMDE-1. All experiment settings are the same
as the comparison experiment with data-driven methods for
EMDE.We summarize the result in Tables 5 and 6. Since we
conduct the experiment on each instance with various pred-
icated days, there are 16 instances in each table. From Table
5, we can see EMDE significantly outperforms EMDE-1 in
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Table 5 Comparison results for the data-driven parameter optimization (T1 � 7)

Predicated days Instances/Methods 1–2 weeks 2–3 weeks 3–4 weeks 4–5 weeks

– – RMSE P value RMSE P value RMSE P value RMSE P value

T2 � 0 days EMDE 3.42E + 02 – 4.64E + 02* – 4.11E + 03* – 2.67E + 02* –

EMDE-1 3.22E + 02 3.36E-01 5.18E + 02 1.16E-09 4.31E + 03 3.70E-24 2.76E + 02 9.65E-10

T2 � 3 days EMDE 2.27E + 02* – 7.32E + 02* – 1.52E + 03 – 7.71E + 02* –

EMDE-1 4.13E + 02 5.68E-07 1.12E + 03 1.99E-15 8.45E + 02 1.56E-18 1.04E + 03 2.36E-12

T2 � 7 days EMDE 1.86E + 03* – 1.49E + 03* – 5.89E + 03 – 7.94E + 02* –

EMDE-1 2.60E + 03 5.45E-08 2.52E + 03 5.40E-15 6.34E + 02 3.99E-33 1.53E + 03 3.90E-11

T2 � 10 days EMDE 4.03E + 03* – 9.05E + 03* – 1.03E + 04 – 1.06E + 03* –

EMDE-1 5.09E + 03 2.41E-08 1.05E + 04 1.66E-14 2.20E + 03 2.99E-27 1.54E + 03 1.77E-07

In order to highlight the effectiveness of the proposed method, we have marked some experimental results that are significantly better than the comparison algorithms
in bold

Table 6 Comparison results for the data-driven parameter optimization (T1 � 21)

Predicated days Instances/Methods 1–4 weeks 2–5 weeks 3–6 weeks 4–7 weeks

– – RMSE P value RMSE P value RMSE P value RMSE P value

T2 � 0 days EMDE 2.73E + 03* – 2.60E + 03* – 2.48E + 03* – 2.70E + 02* –

EMDE-1 2.94E + 03 6.70E-14 2.67E + 03 1.05E-12 2.54E + 03 1.66E-09 2.79E + 02 2.39E-02

T2 � 3 days EMDE 1.60E + 03* – 2.43E + 03 – 7.31E + 02 – 3.00E + 02* –

EMDE-1 3.12E + 03 5.67E-20 2.06E + 03 3.32E-08 7.47E + 02 8.90E-01 4.82E + 02 1.47E-06

T2 � 7 days EMDE 1.74E + 03* – 5.55E + 03 – 2.35E + 03 – 8.39E + 02* –

EMDE-1 5.13E + 03 1.23E-22 4.84E + 03 2.53E-07 2.30E + 03 8.74E-01 1.28E + 03 6.90E-06

T2 � 10 days EMDE 1.55E + 03* – 7.91E + 03 – 3.56E + 03 – 1.36E + 03* –

EMDE-1 5.62E + 03 8.03E-23 6.95E + 03 1.16E-06 3.41E + 03 7.83E-01 2.00E + 03 1.95E-05

In order to highlight the effectiveness of the proposed method, we have marked some experimental results that are significantly better than the comparison algorithms
in bold

12 instances, lose to EMDE-1 in 3 instances, and reaches a
drawwith EMDE-1 in 1 instance. In Table 6, EMDE exceeds
EMDE-1 in 10 instances, loses in 3 instances, and draws
3 instances. Therefore, we can see from the experimental
result that the data-driven parameter optimization approach
is effective in EMDE.

It is available to believe the data-driven parameter opti-
mization approach works. Because the actual data (�),
assembling the public health data and population migration
data, is used not only in the objective function but also in
the simulation of the EID. Since the epidemic mechanism
is essentially an iterative process, if the simulation of the
EID goes wrong on 1 day, the simulation of the EID will be
wrong after that day. Using � in the simulation of the EID
can timely revise the gap between the actual epidemic spread
of the EID and the simulated epidemic spread through the
epidemic mechanism. In other words, this approach drives
the simulation of the EID as close to the actual spread as
possible. However, the actual data of the susceptible people
and the exposed people are unavailable, whichmay affect the

performance of our approach. Thus, it is also reasonable that
EMDE loses to or draws with EMDE-1 in fewer instances.

Comparison experiment with numerical optimization
methods

In the third experiment, we compare the swarm-optimizer-
assisted simulation module (SSM) with two numerical
optimization methods to prove the validity, which are tra-
ditionally used in parameter optimization for epidemic
mechanisms. A nonlinear least-squares curve-fitting with 4th

order Runge–Kuttamethod (NLSRK) [15], and a least square
and Markov Chain Monte Carlo (LSMCMC) method [43]
are used. Two groups of simulation experiments are con-
ducted, where the simulation days, respectively, are 7 days
and 21 days. The results are shown in Tables 7 and .

In Tables 7 and 8, SSM outperforms LSMCMC in all
instances, and only loses to NLSRK in one instance. Thus,
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Table 7 Comparison results with numerical methods for simulation days being 7 days (T1 � 7)

Instances/Methods 1–2 weeks 2–3 weeks 3–4 weeks 4–5 weeks

– RMSE P value RMSE P value RMSE P value RMSE P value

SSM 3.42E + 02 – 4.64E + 02 – 4.11E + 03 – 2.67E + 02 –

NLSRK 4.05E + 02 4.84E-03+ 1.31E + 03 3.77E-43+ 1.38E + 04 2.49E-69+ 1.86E + 04 9.62E-73+

LSMCMC 9.50E + 04 1.63E-26+ 4.72E + 04 9.97E-49+ 1.09E + 04 2.93E-56+ 1.04E + 05 1.58E-52+

w/l/d 2/0/0 2/0/0 2/0/0 2/0/0

Table 8 Comparison results with numerical methods for simulation days being 21 days (T1 � 21)

Instances/Methods 1–4 weeks 2–5 weeks 3–6 weeks 4–7 weeks

– RMSE P value RMSE P value RMSE P value RMSE p value

SSM 2.73E + 03 – 2.60E + 03 – 2.48E + 03 – 2.70E + 02 –

NLSRK 2.64E + 03 7.07E-31− 4.37E + 03 3.05E-63+ 5.77E + 03 9.96E-46+ 9.04E + 03 4.70E-53

LSMCMC 1.65E + 04 1.58E-46+ 7.24E + 05 1.85E-52+ 2.57E + 04 2.14E-27+ 9.00E + 03 6.74E-39

w/l/d 1/1/0 2/0/0 2/0/0 2/0/0

we recognize SSM has effectiveness compared with numeri-
cal optimization methods. This conclusion is reasonable and
we analyze it in the following:

(1) The swarm optimizer is used in SSM to optimize the
parameters, which has good performance in solving
optimization problem.

(2) Moreover, theLLSOalgorithmhas good performance in
the high-dimension problem,which satisfies the require-
ment of our model. However, when the number of
parameters increases, the traditional numerical method
is difficult to work well.

Comparison experiment with other particle swarm
optimizers

In this experiment, we compare LLSOwith PSO and compet-
itive swarm optimizer (CSO) [44] under the same evaluation
times. Apart from the swarm optimizer used in the swarm-
optimizer-assisted simulation module being different, all
other experimental settings are the same, where T1 � 21,
T2 � 0, T3 � 3. To better verify the advantages of LLSO,
we conduct the comparison on four instances. The result is
shown in Fig. 4. In the comparison result, LLSO outperforms
PSO and CSO in all instances. Although CSO has almost the
same convergence result as LLSO with enough evaluation
times, LLSO is faster than CSO to reach convergence. More-
over, whether convergence speed or convergence result, PSO
is not good as LLSO and CSO. Therefore, compared with
PSO and CSO, LLSO has the advantage of being the swarm
optimizer in the swarm-optimizer-assisted simulation mod-
ule.

Discussion

(1). Although EMDE only has the competitive simulation
ability compared with data-driven methods, EMDE shows
good prediction ability.We contribute it to the combination of
the epidemic mechanism-driven method and the data-driven
method. With better prediction ability, EMDE can help the
government and medical institutions take more precise epi-
demic prevention measures.
(2). From the experiment of studying the effectiveness of the
data-driven parameter optimization approach,we can see that
this approach is effective in EMDE. Since the approach is the
key to combining mechanism-driven and data-driven meth-
ods, the validity of the approach demonstrates the effective
combination of mechanism-driven and data-driven methods.
(3). Compared with numerical optimization methods and
other particle swarm optimizers, SSM used LLSO shows
superiorities in the simulation and prediction of the spread
of the EID in the last two experiments.

Conclusions

First, we construct an EMDE model for the EID. In EMDE,
due to the unignored influence of the population migration
on the spread of the EID, the population migration is consid-
ered into a standard SEIR mechanism to simulate the spread
process of the EID. Second, we assemble epidemic data and
population data to construct a data-driven approach in EMDE
to optimize parameters for the improved mechanism. Third,
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Fig. 4 Comparison results with PSO and CSO in different instances. a 1–4 weeks b 2–5 weeks c 3–6 weeks d 4–7 weeks

under the improved model, a swarm-optimizer-assisted sim-
ulation and prediction method is proposed, which contains
two modules. In the first module, the LLSO algorithm assist
EMDE optimize the required parameters. In the second
module, based on the epidemic mechanism with population
migration and optimized parameters, the EID spread in the
next few days is predicted. Moreover, we compare with our
work with data-driven methods and numerical optimization
methods to validate the effectiveness of EMDE and SSM.

In the future, the control of EIDs in large-scale networks
will remain a difficult problem. Studying large-scale network
propagation [45], tracking important nodes in large-scale net-
works [46], extracting significant network structure [47],may
help solve this problem.
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