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The prevalence of non-alcoholic fatty liver disease (NAFLD) is globally increasing. Gaining
control over disease-related events in non-alcoholic steatohepatitis (NASH), an advanced
form of NAFLD, is currently an unmet medical need. Hepatic fibrosis is a critical prognostic
factor in NAFLD/NASH. Therefore, a better understanding of the pathophysiology of
hepatic fibrosis and the development of related therapies are of great importance. G
protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of
a great variety of extracellular ligands. GPCRs represent major drug targets, as indicated
by the fact that about 40% of all drugs currently used in clinical practice mediate their
therapeutic effects by acting on GPCRs. Like many other organs, various GPCRs play a
role in regulating liver function. It is predicted that more than 50 GPCRs are expressed in
the liver. However, our knowledge of how GPCRs regulate liver metabolism and fibrosis in
the different cell types of the liver is very limited. In particular, a better understanding of the
role of GPCRs in hepatic stellate cells (HSCs), the primary cells that regulate liver fibrosis,
may lead to the development of drugs that can improve hepatic fibrosis in NAFLD/NASH.
In this review, we describe the functions of multiple GPCRs expressed in HSCs, their roles
in liver fibrogenesis, and finally speculate on the development of novel treatments for
NAFLD/NASH.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a predominant liver
disease with a rapid increase in prevalence worldwide,
accounting for the hepatic phenotype of the metabolic
syndrome (1). NAFLD is a broad disease ranging from simple
fatty liver to non-alcoholic steatohepatitis (NASH), advanced
fibrosis, cirrhosis, and hepatocellular carcinoma (2). A complex
combination of genetic and environmental factors shapes the
pathogenesis and stages of NAFLD (1). These factors include
patatin-like phospholipase domain-containing protein 3
(PNPLA3), dietary fats, insulin resistance, intestinal bacteria,
oxidative stress, endoplasmic reticulum stress, lipotoxicity and
immune response (Figure 1) (1, 3–5). Among the many factors
involved in NAFLD, hepatic fibrogenesis has recently been
identified as a prognostic factor in patients with NAFLD (6, 7).

The liver is composed of hepatocytes, biliary epithelial cells,
hepatic stellate cells (HSCs), smooth muscle cells, vascular
endothelial cells, various immune cells, and sinusoidal
endothelial cells (8). Each of these cell types has unique
functions and collectively regulates liver function at multiple
levels (8). Among these cells, liver fibrosis mainly occurs
through the activation of HSCs in various liver diseases,
including NAFLD/NASH (1). HSCs reside in the space of
Disse between the basolateral surface of hepatocytes and the
anti-lateral surface of the fenestrated sinusoidal endothelial cell
layer (9). In the space of Disse, biomolecules are exchanged
between the portal blood flow from the gastrointestinal tract
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and the hepatocytes (9). HSCs respond to signals such as
cytokines and growth factors from hepatocytes, macrophages,
and sinusoidal endothelial cells (9). HSCs are activated by liver
injury and become proliferative fibrogenic myofibroblasts,
which play the most important role in liver fibrosis (1).
Therefore, a better understanding of the function and the
regulatory mechanisms of HSCs may prove useful for the
treatment of NAFLD/NASH.

G protein-coupled receptors (GPCRs) are cell surface
receptors that mediate the function of a wide range of
extracellular ligands including, neurotransmitters, secondary
metabolites and hormones (10). The human genome contains
approximately 800 GPCR genes, accounting for 3-4% of all
human genes (11). Approximately 40% of the drugs used in
clinical practice exhibit therapeutic effects by acting on GPCRs,
thus highlighting the importance of understanding how GPCRs
work at the cellular and molecular level (12). Ligand-bound
GPCRs recognize and activate heterotrimeric G proteins
comprising Ga, Gb, and Gg. G proteins are classified into four
families according to their a subunits: Gs, Gi, Gq, and G12/13
(Figure 2) (10). Gs and Gi regulate adenylyl cyclase activity, Gq
activates phospholipase Cb, and G12/13 stimulates the guanine
nucleotide exchange factor of small GTPases of the Rho family
(10). It is predicted that more than 50 GPCRs are expressed in
the liver (13). Similar to most other cell types, the functions of
HSCs, which have important roles in fibrosis, are also regulated
by GPCRs. However, our knowledge of how GPCRs regulate
HSCs is insufficient.
FIGURE 1 | Factors causing NAFLD/NASH in human.
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This review primarily focuses on the function of GPCRs
expressed in HSCs and summarizes the information that
could be valuable in uncovering the mechanisms of fibrosis
and developing new therapies for NAFLD patients. The
receptors discussed in this review were selected by mining the
GPCR expression data published by Regard et al. (13) and
GPCR-related articles on HSCs in PubMed. To describe the G
protein coupling properties of the different GPCRs, we referred
to the IUPHAR/BPS Guide to Pharmacology (https://www.
guidetopharmacology.org/GRAC/FamilyDisplayForward?
familyId=694).
ROLE OF Gs-COUPLED GPCRs IN HSCs

Adrenoceptors
Norepinephrine (NE) and epinephrine (EPI) are released from
the sympathetic nerve endings and regulate liver metabolism,
among numerous other functions (14). NE and EPI activate Gs-
linked hepatic b-adrenoceptors (14). Sigala et al. reported that all
three b-adrenoceptor subtypes (b1-3) are expressed in activated
human primary HSCs (hHSCs). Furthermore, the expression of
b-adrenoceptors in HSCs was increased in the livers of patients
with NAFLD cirrhosis (15). At the molecular level, exogenous
NE/EPI induced hHSC proliferation in a dose-dependent
manner via p38 MAP, PI3K, and MEK signaling. NE and EPI
increased collagen-1a2 expression via transforming growth
factor b (TGF-b). These results suggest that hHSCs utilize
Frontiers in Endocrinology | www.frontiersin.org 3
catecholamines for their survival and fibrotic functions
through activation of b-adrenoceptors (15). Similarly, using
cultured HSCs and liver-damaged mice, Oben et al.
demonstrated that HSCs express a- and b-adrenoceptors and
catecholamine biosynthetic enzymes in response to sympathetic
stimulation, release NE, and promote liver fibrogenesis (16).

Dopamine D1 Receptor (DRD1)
Yes-associated protein (YAP) and transcriptional coactivator
with PDZ-binding motif (TAZ) have been identified as
important factors promoting the activation of mesenchymal
cells in human fibrosis (17). Recently, the Gs-coupled
dopamine D1 receptor (DRD1) was found to be preferentially
expressed in mesenchymal cells of the lung and HSCs in the liver
(18). DRD1 stimulation selectively inhibited cellular YAP/TAZ
function, shifted the cell phenotype from profibrotic to fibrosis
resolving, and ameliorated liver fibrosis in mice (18). Although
further studies in the human liver are needed, targeting YAP/
TAZ via DRD1 could prove a useful pharmacological and cell-
selective approach to reverse liver fibrosis.

Adenosine A2A Receptor (A2-AR)
The adenosine A2A receptor (A2-AR) is a Gs -coupled receptor
expressed on rat and human HSCs (19). Adenosine is released
from injured tissues, and upon stimulation by adenosine, the
A2A-AR promotes collagen production by HSCs (19). Chan
et al. found that A2-AR-deficient mice are protected from the
development of liver fibrosis after exposure to CCl4 or
FIGURE 2 | G-protein classification and downstream signals.
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thioacetamide (19). The use of the adenosine receptor
antagonists such as caffeine or ZM241385 also reduced liver
fibrosis in wild-type mice exposed to CCl4 or thioacetamide in
the same study. These data indicate that hepatic A2-AR plays an
active role in the pathogenesis of liver fibrosis (19). The same
group reported that A2-AR stimulation promotes collagen
expression by HSCs through pathways linking protein kinase
A, src, and ERK 1/2 or p38 MAP kinase signaling pathways (20).
In addition, adenosine acts as a physiological inhibitor of the Rho
pathway and has also been proposed to promote the contraction
of HSCs (21). On the basis of these studies, A2-ARs represent a
potential target for drug discovery in liver fibrosis.

Parathyroid Hormone 1 Receptor (PTH1R)
Parathyroid hormone-like hormone (PTHLH) is a cytokine-like
polyprotein that is involved in the activation of HSCs in
conjunction with TGF-b (22). PTHLH activates HSCs
overexpressing TGF-b, and TGF-b promotes the differentiation
of HSCs into collagen-producing myofibroblasts (22). When
PTHLH was overexpressed in the liver in mice by gene delivery
with an adeno-associated virus, spontaneous development of liver
fibrosis was observed (23). At the molecular level, PTHLH
increased the activation of the hedgehog (Hh) pathway through
the Gs-coupled receptor PTHLH 1receptor (PTH1R), causing the
activation of HSCs (23).

Relaxin Family Peptide Receptors 1
(RXFP1) and 2 (RXFP2)
The mammalian hormone relaxin (RLN) is a potential inhibitor
of liver fibrosis by stimulating a GPCR known as relaxin family
peptide receptor 1 (RXFP1) (24, 25). Specifically, RLN down-
regulates collagen-I and TIMP-1, while upregulating interstitial
collagenase (MMP-1 in humans) (25). This study also found that
the expression of RXFP1 is up-regulated in myofibroblasts/
activated HSCs in human fibrotic liver and rat fibrotic liver
injury models (25). Another study showed that the Gs/Gi-
coupled relaxin family peptide receptor 2 (RXFP2) is also
highly expressed in cirrhotic liver (26). Similar to RXFP1,
RXFP2 is likely to be involved in the activation of HSCs
but the mechanism by which this occurs has not been
investigated (26).

Prostaglandin E Receptor 2 (EP2)
The prostaglandin E2 (EP2) receptor is a Gs-coupled receptor
that is activated by prostaglandin E2 (PGE2) (27). Experiments
using immortalized human HSCs (LX-1) and primary HSCs
suggest that cyclooxygenase-2 (COX-2)-derived PGE2 inhibits
both the basal and TGF-b-mediated induction of collagen
synthesis (27). However, the role of COX-2-dependent
prostaglandins in liver fibrosis is controversial. As mentioned
above, there is some evidence that PGE2 inhibits the
development of hepatic fibrosis, while other studies have
shown that COX-2-dependent prostaglandins promote the
development of NASH and cirrhosis (27–31). These discrepant
results might be due to the different experimental models used
(32). Moreover, the relevance of hepatic EP2 receptors in
humans has not been clarified yet.
Frontiers in Endocrinology | www.frontiersin.org 4
Sphingosine-1-Phosphate
Receptor 2 (S1PR2)
Sphingosine-1-phosphate receptor 2 (S1PR2)-mediated
signaling includes Gs-, Gq-, and G12/13-dependent
mechanisms (33). It has been suggested that sinusoidal
vasoconstriction, in which HSCs act as a contractile apparatus,
plays an important role in the pathophysiology of portal
hypertension (33). Previous reports suggested that sphingosine
1-phosphate (S1P) stimulates HSC contractility and increases
portal pressure by activating Rho via S1PR2 (33). A recent study
reported that melatonin inhibits HSC activation via the
sphingosine kinase 1/S1P system (34). The authors reported
that both sphingosine-1-phosphate receptor 1 (S1PR1) and
sphingosine-1-phosphate receptor 3 (S1PR3) were associated
with liver fibrosis (34). S1PR2 may be involved in bile acid-
mediated lipid metabolism in hepatocytes although the
molecular mechanisms through which S1PR2 affects
hepatocyte and HSC function remains to be investigated (8).
ROLE OF Gi-COUPLED GPCRs IN HSCs

Cannabinoid Receptors 1 (CB1)
and 2 (CB2)
Cannabinoids are the active components of marijuana and act
through two Gi-coupled GPCRs, cannabinoid receptor 1 (CB1)
and cannabinoid receptor 2 (CB2) (35). CB1 is the most
abundant receptor in the mammalian brain but is also
expressed in peripheral tissues, including various cell types of
the liver (36). In a mouse model of liver failure, activation of CB1
on HSCs caused liver failure, and blocking CB1 slowed this
process (35). The therapeutic efficacy of CB1 blockers is limited
by neuropsychiatric side effects, but the use of novel CB1
antagonists limited to the periphery may overcome such limitations.

CB2 is expressed predominantly by immune and hematopoietic
cells (37). Julien et al. demonstrated that CB2 is not detected in
normal liver, but it is significantly expressed in non-parenchymal
cells in liver biopsy specimens from cirrhotic patients (37). These
authors also showed that CB2 is strongly expressed by cultured
hepatic myoblasts and activated HSCs. At the molecular level,
activation of CB2 caused growth inhibition and apoptosis of
these cells, suggesting that CB2 exhibits an anti-fibrotic effect
(37). In addition, mice lacking CB2 showed enhanced liver
fibrosis when chronically treated with CCl4, when compared to
wild-type mice (37). These data suggest that the anti-fibrotic
function of CB2 in chronic liver injury could by exploited for
therapeutic purposes.

C-C Chemokine Receptor (CCR)
The inflammatory response to hepatocyte injury plays an
important role in the activation of HSCs and liver fibrogenesis
(38). When hepatocyte injury occurs, bone marrow-derived
monocytes and macrophages are mobilized to the injury site,
and activation of resident macrophages (i.e., Kupffer cells) occurs
(38). The infiltrating monocytes/macrophages then amplify this
immune response by producing pro-inflammatory cytokines and
December 2021 | Volume 12 | Article 773432
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chemokines, which further promote the mobilization of
inflammatory cells and upregulate the activation of HSCs (38,
39). Fibrogenic cytokines (such as TGF-b) produced by activated
macrophages promote the differentiation of HSCs into
myofibroblasts, which form scar-forming matrix proteins such
as fibrillar collagen types 1 and 3 and the contractile protein a-
SMA, leading to progressive liver fibrosis (38, 40). HSCs express
the Gi-coupled receptors C-C chemokine receptor 2 (CCR2) and
C-C chemokine receptor 5 (CCR5) (40). There is growing
evidence that CCR2/CCR5 and its ligands, including MCP-1
(CCL2) and RANTES (CCL5), are involved in the pathogenesis
of liver fibrosis through the promotion of monocyte/macrophage
mobilization and tissue infiltration, and the activation of HSCs
after liver injury (41–44).

To understand the function of CCR2 in HSCs, Seki et al.
performed bile duct ligation (BDL) in mice and showed
that CCR2 are strongly expressed in Kupffer cells and
HSCs but not in hepatocytes (44). In the same study, BDL-
and CCl4-induced liver fibrosis, as assessed by collagen
deposition, aSMA expression, and hydroxyproline content
of the liver, was markedly reduced in CCR2-deficient mice.
Using CCR2 chimeric mice, these authors also found that the
fibrotic response required CCR2 expression in resident
hepatocytes, including HSCs, but not in Kupffer cells (44).
In vitro experiments showed that HSCs lacking CCR2 or its
downstream mediator p47phox do not exhibit phosphorylation
of ERKs or protein kinase B (AKT), chemotaxis, or generation of
ROS in response to CC chemokines such as MCP-1 (CCL2),
MCP-2 (CCL8), or MCP-3 (CCL7) (44). These results indicate
that CCR2 promotes chemotaxis of HSCs and the development
of liver fibrosis.

Another study by Seki et al. addressed the function of C-C
chemokine receptor 5 (CCR5) in HSCs (42). CCR5 was strongly
expressed in cirrhotic human liver and experimental mouse
models of fibrogenesis. Further, hepatic fibrosis was greatly
reduced in mice treated with the CC chemokine inhibitor 35k or
mice lacking CCR5. At a molecular level, CCR5 promoted HSC
migration via a PI3K-dependent pathway, and CC chemokine-
induced migration was strongly suppressed in HSCs lacking
CCR5. These data suggest that CCR5 in HSCs contributes to
increased fibrosis, similar to CCR2 (42). On the basis of these
findings, CCR2 and CCR5 have become attractive targets for
antifibrotic therapy (40, 45). In line with this, cenicriviroc, an
oral dual CCR2/CCR5 antagonist, has demonstrated anti-fibrotic
effects in a thioacetamide-induced rat liver fibrosis model and in a
mouse model of diet-induced NASH (40). Cenicriviroc was in a
phase III clinical trial in patients with NASH, which was very
recently discontinued (NCT03028740) (46).

HSCs also express C-X-C motif receptor 4 (CXCR4) in vivo
and in vitro (47). CXCR4 is activated by stromal cell-derived
factor-1 (SDF-1a), an endogenous ligand of CXCR4 (47). The
ERK1/2 and phosphoinositide 3-kinase (PI3K) pathways
mediate the effects of SDF-1a on HSC collagen-I expression
and proliferation (47).

In contrast to other CXRs, the C-X-C motif receptor 3
(CXCR3) has been shown to inhibit liver fibrosis (48). CXCL9,
Frontiers in Endocrinology | www.frontiersin.org 5
a ligand for CXCR3, exhibited anti-fibrotic effects and
suppressed collagen production in LX-2 cells (48). In CXCR3-
deficient mice, liver fibrosis was enhanced, and fibrosis
progression was associated with a decrease in the number of
intrahepatic interferon-g-positive T cells and a reduction in
interferon-g mRNA (48). These data clearly indicate that
CXCL9-CXCR3 regulates Th1-related immune pathways. In
the light of these findings, stimulation of CXCR3 by CXCL9
might prove beneficial as an anti-fibrotic therapy.

Adenosine A3 Receptor (A3-AR)
The A3 adenosine receptor (A3-AR) is a Gi-coupled receptor
and is highly expressed in the liver affected by hepatitis (49).
Namodenoson, a selective agonist of A3-AR, induces robust anti-
inflammatory effects in the liver via deregulation of the Wnt/b-
catenin pathway (49). The effects of namodenoson in NASH
were also investigated using a mouse model of NASH (STAM
model), CCl4 fibrotic mice, and in LX-2 cells (50). In the STAM
model, namodenoson significantly reduced the NAFLD activity
score (NAS) and showed anti-inflammatory and anti-steatotic
effects. In the CCl4 fibrosis mouse model, namodenoson
significantly improved the degree of hepatic inflammation and
fibrosis. Furthermore, namodenoson regulated the Wnt/b-
catenin pathway and decreased PI3K expression in liver
extracts in CCl4-treated mice and LX2-cells. Overall, these
results indicate that namodenoson exerts a protective effect for
NASH through the regulation of the PI3K/NF-kB/Wnt/b-
catenin signaling pathway (50). Targeting A3-ARs may
represent a new direction in the pharmacotherapy of NASH.
In fact, a phase 2 clinical trial of namodenoson is currently
underway in Israel for the treatment of patients with
NASH (NCT04697810).

G Protein-Coupled Estrogen Receptor 1
(GPER)
The biological effects of estrogen are mediated by two
intracellular/nuclear estrogen receptors (ERs; Era and ERb)
and a transmembrane receptor (G protein-coupled estrogen
receptor 1; GPER) (51). These ER subtypes act on cells in
different ways and exert different biological responses. Previous
studies indicated that estrogen therapy can ameliorate liver
fibrosis and inhibit HSC activation through nuclear, ER-
dependent changes. Yet, the relationship between GPER and
liver fibrosis is unknown (51). Interestingly, a recent study
reported that tamoxifen, a drug widely used in the treatment
of breast cancer and an agonist of GPER, promotes mechanical
deactivation of HSCs via the GPER/RhoA/myosin axis (52). This
GPER-dependent HSC inactivation system provides new insight
into the anti-fibrotic effects of tamoxifen.

G-Protein Coupled Receptor 91 (GPR91)
Succinate is an essential intermediate of the tricarboxylic acid
cycle (53). Succinate binds to G-protein coupled receptor 91
(GPR91, succinate receptor 1) and activates HSCs, induces HSC
proliferation and migration, and attenuates HSC apoptosis (53).
Succinate-treated mice showed significant molecular changes,
December 2021 | Volume 12 | Article 773432
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including increased production of a-SMA, type 1 collagen, and
inflammatory cytokines such as IL-6 and TNF-a (53). Inhibiting
the accumulation of succinate might be an effective way to
reverse liver fibrosis by inhibiting HSC survival and
proliferation. Indeed, it has been shown that metformin
inhibits HSC activation by activating the AMPK pathway and
inhibiting the succinate-GPR91 pathway (54).
Somatostatin Receptor (SSTR)
Somatostatin exerts its effects by binding to a family of five Gi-
coupled somatostatin receptors (SSTR1 to SSTR5) (55). HSCs of
cirrhotic livers and culture-activated HSCs express all five SSTRs,
whereas SSTRs are not detected in HSCs of the normal liver (55,
56). Interestingly, an SSTR1 agonist, L-797,591, decreases the
migration of HSCs but does not affect HSC proliferation or
apoptosis (55). Another study suggests that the effect of
octreotide, a SSTR2/5 agonist, on liver fibrosis depends on the
cytokine microenvironment of HSCs (57). Thus, our knowledge
of SSTR regulation of HSC function is still limited and further
studies are needed.
Neuropeptide Y Receptor Y1 (Y1-R)
Neuropeptide Y (NPY) is a neuropeptide that is abundant in the
central and peripheral nervous systems of mammals (58). In
cirrhotic patients, serum levels of NPY are elevated and
positively correlated with the Model for End-Stage Liver Disease
(MELD) score (59). Moreover, the expression levels of NPY and
the corresponding Gi-coupled NPY receptor Y1 (Y1-R) were
enhanced in activated LX-2 cells (15, 59). At the molecular level,
both endogenous and exogenous NPY induced phosphorylation of
mTOR, p70S6K, and 4EBP1, thus promoting fibrotic responses in
HSCs via Y1-R activation. These responses were inhibited by a Y1-
R antagonist (BIBP3226) or Y1-R knockdown (59). These results
are indicative of an NPY-Y1-R-mediated fibrotic mechanism
in HSCs.
Lysophosphatidic Acid Receptor 1 (LPAR1)
The Lpar1 gene encodes lysophosphatidic acid receptor 1
(LPAR1), a GPCR that binds to the lipid signaling molecule
lysophosphatidic acid (LPA) (60). Previous studies have shown
that LPAR1 is expressed in activated HSCs, but minimal
expression has been reported in hepatocytes (61). Using single-
cell RNA sequencing of healthy and fibrotic mice, Dobbie et al.
demonstrated that HSCs consist of topologically distinct lobular
regions called portal vein-associated HSCs (PaHSCs) and central
vein-associated HSCs (CaHSCs) (60). These authors identified
the LPAR1 as a potential therapeutic target for collagen-
producing CaHSCs. LPAR1 blockade inhibits liver fibrosis in a
murine NASH model which is a finding of potential clinical
relevance (60).

Smoothened Receptor (SMO)
The hedgehog (Hh) signaling pathway regulates the hepatic
progenitor cells and liver development (62). Hh signaling
includes the Gi- or G12/13-coupled receptor, smoothened
Frontiers in Endocrinology | www.frontiersin.org 6
(SMO) (63). Although Hh activation has been observed in
patients with NAFLD, evidence related to a role of SMO in
HSC function is sparse (63). A recent study showed that the Hh
pathway regulates HSC-mediated angiogenesis in the liver
demonstrating that liver angiogenesis and fibrogenesis are
accompanied by SMO and upregulation of hypoxia-inducible
factor-1a (HIF-1a) (64). Interestingly, heat shock protein 90
(HSP90) was characterized as a direct target gene for Hh
signaling in HSCs (64). Selective inhibition of Hh signaling in
HSCs may inhibit fibrosis progression in NAFLD/NASH.
Clearly, this pathway is in need of more detailed investigation.
Frizzled Receptor (Fz)
Wnt signaling is essential for development and implicated in
tumorigenesis (65). Wnt ligands bind to the Gi-coupled frizzled
receptor (Fz) to transmit downstream signals (65). The
expression of Fz2 Wnt4 and Wnt5 ligands were upregulated in
activated rat HSCs compared with quiescent rat HSCs in a DNA
microarray study (65). Similar findings were obtained in fibrotic
livers in mice (65). Further, the increased expression of Wnt5a
and its receptor Fz2 indicated that the Wnt/Fz pathway is
involved in the differentiation of quiescent HSCs into
myoblasts (65). Similar results have been reported by other
investigators (66). Wnt signaling could therefore play an
important role in the development of liver fibrosis.
C5a Receptor (C5aR)
C5a is an important component of complement system, a potent
chemokine that regulates cell migration in the innate immune
system (67). The receptor for C5a, the Gi-coupled C5a receptor
(C5aR), is an important regulator of liver immunity and fibrosis
(67). Although C5aR expression was detected in fibrotic mice,
C5a did not directly affect HSC activation itself but, interestingly,
affected HSC migration (68). These data suggest a new
mechanism by which the complement system contributes to
liver fibrosis.
Apelin Receptor (APJ)
Immunohistochemical analysis of human liver samples showed
that Apelin receptor (APJ) is almost absent in normal livers,
while HSCs in cirrhotic livers showed a high expression of APJ
(69, 70). In vitro, sustained hypoxia and lipopolysaccharide
promoted APJ expression in LX-2 cells (70). In turn, activation
of APJ promoted the expression of angiopoietin-1 and cell
survival in LX-2 cells (70). These results suggest that hypoxia
and inflammatory factors play a major role in the activation of
the apelin system in HSCs, which triggers angiogenic and
proliferative responses in chronic liver disease.
M2 and M3 Muscarinic
Acetylcholine Receptors
The neurotransmitter acetylcholine (ACh) plays a role in
hepatic fibrogenesis (71). Expression of the M2 muscarinic
ACh receptor (M2) is enhanced in human NASH livers as
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fibrosis progresses (71). Exogenously administered Ach induces
hHSC hyperproliferation and is accompanied with upregulation
of fibrotic markers, such as TGF-b and COL1A2 gene expression
(71). Ach exerts these effects in HSCs via M2 (Gi-coupled)
and M3 (Gq-coupled) acetylcholine receptors by activating
PI3K and MEK pathways (71). Further, cell proliferation
and expression of fibrotic markers are inhibited upon
pharmacological inhibition of M2 and M3 receptors, suggesting
that suppression of these receptors may lead to inhibition of
fibrosis (71).
ROLE OF Gq-COUPLED GPCRs IN HSCs

Angiotensin II Type I Receptor (AT1R)
The role of Gq coupled angiotensin II type I receptor (AT1R) is
relatively well investigated in the liver. In patients with chronic
liver diseases including NASH, the renin-angiotensin system
(RAS) is reported to be activated (72). In line with this finding,
angiotensin II induces HSC proliferation and increases TGF-b
expression via AT1R (72, 73). Furthermore, angiotensin II was
reported to induce hepatic fibrosis through the Janus kinase 2
(JAK2)-mediated intracellular action in HSCs (74). These
authors also showed that stimulation of AT1R in wild-type
mice resulted in JAK2 phosphorylation and activation of
RhoA, and Rho-associated kinase 1 (ROCK1), leading to HSC
activation and fibrosis (74). By contrast, these effects were
blocked in AT1R-deficient mice, indicating that AT1R
signaling may promote fibrosis (74).

Meta-analysis of the effects of angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers on patients with
liver fibrosis showed a reduction in serum hepatic fibrosis
markers such as TGF-b, TIMP-1, MMPs, and collagen (75).
Additionally, in a randomized, open-label, controlled trial in
compensated patients with alcoholic liver fibrosis (F2 or higher),
an AT1R blocker, candesartan, significantly reduced histological
fibrosis scores and decreased expression of aSMA, TGF-b,
TIMP-1, and MMPs (76). Thus, both animal and human
studies have shown the efficacy of angiotensin-AT1R blocking
drugs in improving fibrosis; however additional clinical trials are
needed to ensure the safe and efficient use of these agents in the
treatment of liver fibrosis.
Serotonin Receptor (5-HT)
Rat and human HSCs express several Gq-coupled serotonin
receptor subtypes, including serotonin receptor 1B (5-HT1B),
serotonin receptor 2A (5-HT2A), and serotonin receptor 2B (5-
HT2B). Interestingly, the expression of these receptors is
upregulated during HSC activation (77). Antagonizing 5-HT2A
in thioacetamide-treated rats and immortalized human HSCs
inhibits fibrosis and induces apoptosis (78). Stimulation of 5-
HT2B in HSCs has been shown to upregulate the expression of
TGF-b, a potent inhibitor of hepatocyte proliferation, and inhibit
hepatocyte regeneration (79). Hepatocyte proliferation is
enhanced in liver injury models that selectively antagonize 5-
HT2B, in mice lacking 5-HT2B, and in wild-type mice that are
Frontiers in Endocrinology | www.frontiersin.org 7
selectively depleted of HSCs (79). Additionally, 5-HT2B
antagonism reduces liver fibrosis in mice and improves liver
function (79).
Arginine Vasopressin
Receptor 1A (AVPR1A)
The arginine vasopressin receptor 1A (AVPR1A), which
mediates the potent vascular contractile actions of arginine
vasopressin (AVP), is also expressed in HSCs (80). AVP
increases intracellular calcium concentrations and induces
contraction in HSCs in a dose-dependent manner (80). In
addition, AVP increases MAPK activity, DNA synthesis, and
the number of HSCs in the same experimental settings (80).
These effects are similar to those observed in vascular smooth
muscle cells and are inhibited by AVPR1A antagonists (80).
Endothelin Receptor (ETR)
Endothelin (ET) has been implicated in the regulation of
hepatic microcirculation and the development of portal
hypertension (81). Expression of the Gq-coupled ET receptor
type A (ETAR) was up-regulated in HSCs by endotoxin via
both vasorelaxant nitric oxide (NO)-dependent and NO-
independent pathways (82). An endotoxin-ETAR interaction
could therefore be important in acute endotoxemia and chronic
liver injury.

On the other hand, immunohistochemical studies in normal
human liver tissues showed that ET receptor type B (ETBR;
coupling profile: Gs/Gi/Gq) is predominantly expressed in HSCs,
while ETAR is poorly expressed in these cells (81). The expression
of ETBR was significantly increased in HSCs of cirrhotic livers,
while ETAR expression was increased to a considerably lower
degree (81). These data suggest that the increased expression of
ETBR in the cirrhotic liver may enhance the effect of endothelin on
HSCs and increase hepatic microvascular tone.
G Protein-Coupled Receptor 55 (GPR55)
GPR55 is considered to be a putative Gq- or G12/13-coupled
receptor for cannabinoids in addition to the classical CB1 and
CB2 receptors. l-a-Lysophosphatidylinositol (LPI) is the only
known endogenous ligand for GPR55 (83). GPR55 has been
implicated in energy homeostasis in various organs (83). A
recent study showed that LPI blood levels and GPR55
expression in the liver were elevated in NASH patients (84).
Further, LPI increased lipid content in human hepatocytes and
mouse liver by inducing activation of the acetyl-coenzyme A
carboxylase (ACC) via adenosine monophosphate-activated
protein kinase, thus inducing de novo lipid synthesis and
decreasing beta-oxidation (84). Inhibition of GPR55 and
ACCa inhibited the action of LPI, and knockdown of GPR55
in vivo was sufficient to ameliorate liver damage in mice fed a
high-fat diet or a methionine-choline-deficient diet (84).
Furthermore, LPI promoted the initiation of HSC activation by
stimulating GPR55 and activating ACC. These findings suggest
that the LPI/GPR55 system is involved in the pathogenesis of
NAFLD/NASH by activating ACC (84).
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Protease-Activated Receptor-2 (PAR2)
Protease-activated receptor-2 (PAR2) is activated by serine
proteases and activated coagulation factors (85). PAR2 couples
to multiple G proteins (Gq, Gi, and G12/13) (85). In mice,
deletion of PAR2 suppressed the progression of CCl4-induced
liver fibrosis (86). PAR2 has been shown to stimulate activation
and proliferation, collagen production, and TGF-b protein
production in human HSCs (86).
ROLE OF G12/13 SIGNALING IN HSCs

Experiments with HSCs have shown that G12 and G13 regulate
TGF-b gene expression via a Rho/Rac-dependent increase in
activating protein 1 activity (87). Interestingly, G12 is
overexpressed in activated HSCs and fibrotic liver (88). In a
mouse model of liver fibrosis induced by CCl4, deletion of G12
suppressed fibrosis and liver damage (88). This effect was
attenuated by a lentivirus that introduced G12 into HSCs. The
activation of G12 promoted autophagy with c-Jun N-terminal
kinase-dependent ATG12-5 conjugation. Furthermore, miR-16
directly inhibited the de novo synthesis of G12 and altered
Frontiers in Endocrinology | www.frontiersin.org 8
autophagy in HSCs (88). These results suggest that
dysregulation of miR-16 in HSCs leads to overexpression of
G12 and activates HSCs by promoting autophagy (88).

CLOSING REMARKS

Table 1 and Figure 3 summarize the GPCRs present in HSCs that
are predicted to be involved in the promotion and suppression of
liverfibrosis, as described in thismanuscript. It is interesting tonote
that most of the GPCRs in HSCs are involved in activating liver
fibrosis; however, some of the receptors contribute to the
suppression of fibrosis. Theoretically, suppression of fibrosis-
promoting receptors or stimulation of fibrosis-suppressing
receptors in HSCs could lead to the treatment or prevention of
liver fibrosis. Clearly, multiple factors are intervening in the
modification of GPCR action in HSCs, including the activity of
GPCRs expressed in hepatocytes, biliary epithelial cells, vascular
endothelial cells, and various immune cells in the liver, aswell as the
activity of extrahepatic GPCRs. Furthermore, in addition to the
receptors discussed above,many otherGPCRs are present inHSCs,
including many orphan receptors (13). The potential roles of these
receptors in regulating hepatic fibrosis remain to be explored.
TABLE 1 | Fibrotic function of G protein-coupled receptors expressed in HSCs.

Receptor name Family Effect on liver fibrosis Primary Transduction Mechanisms Reference

b1-adrenoceptor (ADRB1) Adrenoceptors ⇧ Gs (15, 16)
b2-adrenoceptor (ADRB2) Adrenoceptors ⇧ Gs (15)
b3-adrenoceptor (ADRB3) Adrenoceptors ⇧ Gs (15)
Dopamine receptor D1 (DRD1) Dopamine receptors Gs (18)
Adenosine A2A receptor (A2-AR) Adenosine receptors ⇧ Gs Gq (19)
Parathyroid hormone 1 receptor (PTH1R) Parathyroid hormone receptors ⇧ Gs (23)
Relaxin family peptide receptor 1 (RXFP1) Relaxin family peptide receptors Gs Gi (26)
Relaxin family peptide receptor 2 (RXFP2) Relaxin family peptide receptors Gs Gi (26)
Prostaglandin E receptor 2 (EP2) Prostanoid receptors ⇧ Gs (27)
Sphingosine-1-phosphate receptor 2 (S1PR2) Lysophospholipid (S1P) receptors ⇧ Gs Gq G12/13 (33)
Endothelin receptor type A (ETBR) Endothelin receptors ⇧ Gs Gi Gq (81)
Cannabinoid receptor 1 (CB1) Cannabinoid receptors ⇧ Gi (36)
Cannabinoid receptor 2 (CB2) Cannabinoid receptors Gi (36)
C-C chemokine receptor type 2 (CCR2) Chemokine receptors ⇧ Gi (40)
C-C chemokine receptor type 5 (CCR5) Chemokine receptors ⇧ Gi (40)
C-X-C motif chemokine receptor 3 (CXCR3) Chemokine receptors Gi (48, 49)
C-X-C motif chemokine receptor 4 (CXCR4) Chemokine receptors ⇧ Gi (48, 49)
Adenosine A3 receptor (A3-AR) Adenosine receptors Gi (49)
G protein-coupled estrogen receptor 1 (GPER) G protein-coupled estrogen receptor Gi (51)
G protein-coupled bile acid receptor 91 (GPR91) Succinate receptors ⇧ Gi (54)
Neuropeptide Y receptor Y1 (Y1-R)　 Neuropeptide Y receptors ⇧ Gi (15, 59)
Lysophosphatidic acid receptor 1 (LPAR1) Lysophospholipid receptors ⇧ Gi Gq　 G12/13 (60)
Smoothened receptor (SMO) Class Frizzled GPCRs ⇧ Gi G12/13 (63)
Frizzled receptor 2 (Fz2) Class Frizzled GPCRs ⇧ Gi (65)
C5a receptor (C5aR) Complement peptide receptors ⇧ Gi (67)
Apelin receptor (APJ) Apelin receptor ⇧ Gi (70)
M2 acetylcholine receptor (M2) Acetylcholine receptors (muscarinic) ⇧ Gi (71)
M3 acetylcholine receptor (M3) Acetylcholine receptors (muscarinic) ⇧ Gq (71)
Angiotensin II type I receptor (AT1R) Angiotensin receptors ⇧ Gq (72, 73)
a1A-adrenoceptor (ADRA1A) Adrenoceptors ⇧ Gq (59)
Serotonin receptor 1B (5-HT1B) 5-Hydroxytryptamine receptors ⇧ Gq (77)
Serotonin receptor 2A (5-HT2A) 5-Hydroxytryptamine receptors ⇧ Gq (77)
Arginine vasopressin receptor 1A (AVPR1A) Vasopressin and oxytocin receptors ⇧ Gq (80)
Endothelin receptor type A (ETAR) Endothelin receptors ⇧ Gq (82)
G protein-coupled receptor 55 (GPR55) GPR18, GPR55 and GPR119 ⇧ Gq G12/13 (83)
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In conclusion, an improved understanding of the functions of
GPCRs in HSCs may lead to the development of novel drugs that
could prove clinically useful for the treatment of chronic liver
disease, NAFLD, and NASH.
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