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Introduction
Metabolic dysfunction-associated steatotic liver disease 
(MASLD), has become a significant global health con-
cern, affecting approximately 38% of adults worldwide [1, 
2]. Previous study demonstrated that more than 30% of 
patients can progress to fibrosis and ultimately cirrhosis 
[3, 4], which significantly increases the risk of liver-spe-
cific mortality [5–7].

The nomenclature MASLD reflects the central role 
of metabolic dysfunction in disease pathogenesis. An 
increasing number of studies have shown that meta-
bolic factors are responsible for the occurrence and 
development of this disease [8]. From the perspective of 
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Abstract
Background  Metabolic factors are considered to influence disease progression in patients with Metabolic 
Dysfunction-Associated Steatotic Liver Disease (MASLD), but the impact of individual metabolic factors on the survival 
rate of patients with MASLD is still unclear.

Aims  This article aims to reveal how metabolic components affect the survival of patients with this disease.

Methods  A total of 3,086 participants with MASLD based on the diagnostic criteria established at the Delphi 
conference from NHANES III were included in this analysis. COX regression model (C-index = 0.64) was used to analyze 
the all-cause and attributable mortality of different number of metabolic factors. Elastic Network Regression model 
(C-index = 0.69), Accelerated Failure Time model and Randomized Survival Forest model (C-index = 0.63) based on 
machine learning were used to analyze the weight of each metabolic factor, and a Metabolism-related survival risk 
score formula was established and verified.

Results  This study found that not only the number of metabolic factors had different effects on all-cause survival in 
MASLD patients, but also the degree of impact of different metabolic factors on survival was quite different, among 
which poor glycemic control was the most important influencing factor.

Conclusion  This study highlights the clinical value of relevant metabolic factors in predicting survival in the MASLD 
patient population. Related metabolic factors can be used as surrogate biomarkers for the follow-up of MASLD 
patients.
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metabolic regulatory mechanisms in vivo, some metab-
olism-associated genes were found to participate in the 
progression of hepatic de novo lipogenesis and liver fat 
accumulation [9]. For example, the GPAM gene, which 
plays a role in metabolism, initiates triglyceride synthesis. 
A missense variant of this gene has been linked to fibro-
sis progression in MASLD patients [10], which may affect 
survival rates. The same idea has been demonstrated 
in clinical studies. Multiple large-scale cohort studies 
have demonstrated that metabolic factors affect fibrosis 
progression in MASLD patients [11, 12], which in turn 
affects their survival.

Recently, international experts, through a Delphi con-
sensus process, suggested changing the current nomen-
clature as MASLD, thereby improving the assessment of 
metabolic factors in MASLD [13]. However, while cur-
rent research indicates a potential link between meta-
bolic traits and the advancement of MASLD, uncertainty 
persists regarding the correlation between metabolic 
traits and prognosis of MASLD. Thus, it is essential to 
investigate how metabolic traits impact the prognosis of 
MASLD patients and to address metabolic risk factors 
and improve risk stratification [14, 15].

This study presents a novel exploration into how met-
abolic profiles influence survival outcomes in patients 
with MASLD. By analyzing a cohort of 3,086 patients, 
the research uncovered that the prognostic outcomes 
vary significantly based on the number and combinations 
of metabolic factors present, despite the diagnostic flex-
ibility in MASLD which allows for diagnosis based on a 
single metabolic factor. Hyperglycemia emerged as the 
most critical risk factor, followed by hypertension, with 
other factors showing comparatively lesser impact. Inno-
vatively, a machine learning algorithm was utilized to 
develop a scoring formula that enables a more scientific 
and precise stratification of metabolic risk among these 
patients, enhancing the predictive accuracy of treatment 

outcomes. This approach marks a significant advance-
ment in the personalized management and treatment of 
MASLD.

Materials and methods
Population included
In this study, the MASLD population was identified 
retrospectively using the NHANES. The population 
health data and analysis methods of NHANES III can be 
accessed publicly on the website. Survival data for the 
screened MASLD population are linked to the public-use 
mortality file. The research protocol was approved by the 
Research Ethics Review Board of the Centers for Disease 
Control and Prevention, and written informed consent 
was obtained from all participants. In this study, partici-
pants in NHANES III cohort (N = 20,050) underwent a 
stepwise exclusion process as illustrated in Fig. 1. Firstly, 
5,253 individuals were excluded because of the incom-
plete liver ultrasound data. Subsequently, 2,118 partici-
pants were excluded due to missing covariates. Finally, 
9,593 participants were excluded as they did not meet the 
predefined inclusion criteria for MASLD or had evidence 
of other liver diseases. This resulted in a final analytic 
sample of 3,086 participants.

Covariates
Covariates assessed for inclusion in this analysis included 
age, gender, race, education level, poverty-to-income 
ratio (PIR), smoking, alcohol use, BMI, waist circumfer-
ence, blood pressure measurement, and test results such 
as fasting glucose, glycosylated haemoglobin, triglyc-
erides, HDL-cholesterol, and alanine aminotransferase 
(ALT).

Diagnosis of MASLD
In NHANES III participants, hepatic steatosis was iden-
tified using a Hepatic Steatosis ultrasound examination. 
In alignment with previous research [16, 17], This study 
considered participants to have hepatic steatosis if they 
exhibited mild, moderate or severe hepatic steatosis.

After hepatic steatosis was identified by ultrasonog-
raphy, we screen out patients with MASLD according 
to a new fatty liver disease nomenclature according to a 
multisociety Delphi consensus statement, It was decided 
that patients with steatosis and any cardiometabolic 
criteria would be diagnosed with MASLD [13], which 
was agreed that patients with steatosis and any one of 
the cardiometabolic criteria including:1)BMI ≥ 25  kg/
m²[23 Asia] OR WC > 94  cm (M) 80  cm (F); 2)Fast-
ing serum glucose ≥ 5.6 mmol/L [100  mg/dl] OR 2-hour 
post-load glucose levels ≥ 7.8 mmol/L [≥ 140  mg/dl] 
OR HbA1c ≥ 5.7% [39 mmol/L] OR type 2 diabetes OR 
treatment for type 2 diabetes; 3)Blood pressure ≥ 130/85 
mmHg OR specific antihypertensive drug treatment; 4)Fig. 1  Flow chart of data cleaning and inclusion of participants
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Plasma triglycerides ≥ 1.70 mmol/L [150 mg/dl] OR lipid 
lowering treatment; 5)Plasma HDL-cholesterol ≤ 1.0 
mmol/L [40 mg/dl] (M) and ≤ 1.3 mmol/L [50 mg/dl] (F) 
OR lipid lowering treatment would be considered to have 
MASLD.

Status of survival
In order to determine survival status, the Public-Use 
Linked Mortality File was used, which is linked to the 
National Death Index (NDI) data via a probability match-
ing algorithm and NHANES data is linked to the NDI. 
Deaths occurring before 1999 were classified according 
to ICD-9 codes, and deaths occurring after 1999 were 
classified according to ICD-10 codes.

Machine model selection
In this study, elastic network regression, accelerated time 
to failure (AFT) model and random forest model were 
selected to assess the relationship between independent 
variables and survival outcomes. Elastic network regres-
sion combined with L1 and L2 regularisation can effec-
tively deal with multicollinearity and variable selection, 
and provide stable regression coefficient estimates. The 
AFT model directly models survival time and can explain 
the additive multiplicative effect of the independent vari-
ables on survival time, which is complementary to the 
COX model and avoids the one-sidedness of a single 
model. The Random Forest model, as an integrated learn-
ing approach, is able to deal with non-linear relation-
ships and variable interactions, providing an independent 
assessment of significance. These models complement 
each other in validation to ensure the robustness and reli-
ability of the results.

Statistical analysis
In this paper, analysis of data is conducted using R (4.4.1) 
and relevant R packages (survival 3.7-0, glmnet 4.1-8 and 
other data processing packages, like the survey package: 
incorporating survey weights from NHANES III’s com-
plex survey design). A Kruskal-Wallis rank sum test and 
chi-square test were used to assess differences between 
the two groups. Variables were presented as means ± SD 
and frequency/percentage, with statistical significance 
set at P < 0.05.

The Hazard ratio (HR) and 95% confidence intervals 
(CIs) between metabolic factors and mortality were esti-
mated by Multivariable COX regression model. Three 
multivariable COX regression models were constructed, 
and metabolic factors were categorized into five groups 
based on cumulative numbers, with the group having 
only one metabolic trait serving as the reference.

A formula was constructed using Elastic Network 
model based on machine learning algorithms to calculate 
the weights of each metabolic factor. The magnitude of 

the weights was verified using Accelerated Failure Time 
model and Randomized Survival Forest model.

Results
Baseline data for participants categorized by metabolic 
factors
Of the 20,050 adults in NHANES III, after excluding 
null values of covariates and other relevant missing indi-
cators, we included 3,086 patients in this article with 
MASLD according to the recommended diagnostic cri-
teria. As Fig. 1 illustrates the specific screening process.

The baseline characteristics of participants with dif-
ferent metabolic factors are shown in Table 1. The num-
ber of metabolic factors in the screened patients are 
assessed and categorised them into groups M1, M2, M3, 
M4 and M5 on the basis of the number of cardiometa-
bolic criteria for which they fulfilled the Delphi consen-
sus statement(e.g. inclusion in Group M1 if only one 
metabolic criterion is met). As shown in Table  1, age, 
race, education level, smoking, and metabolism-related 
indicators such as abdominal obesity, body mass index 
(BMI), hypertension, diabetes, serum triglycerides, and 
HDL cholesterol were significantly different between the 
groups. Among the five groups, participants in the lower 
metabolic factors group were significantly younger and 
more likely to have higher education. They were also less 
likely to have a history of smoking, and they had lower 
prevalence of hypertension and diabetes, few abdominal 
obesity and BMI, and tended to have lower triglyceride 
(TG) levels and higher HDL-cholesterol levels.

The relationship between metabolic factors and mortality
COX regression analysis
Table 2 presents the associations between different num-
bers of metabolic factors and patient survival using three 
multivariable logistic regression models: Model 1, with-
out any covariate adjustments; Model 2, adjusted for 
age, sex, race/ethnicity, poverty degree, education level, 
and smoking status; Model 3, adjusted for age, sex, race/
ethnicity, poverty degree, education level, smoking sta-
tus, and alanine aminotransferase (ALT). In Model 3, 
compared to the M1 reference group, we found that an 
increase in metabolic factors was associated with higher 
all-cause mortality in MASLD patients (HR 1.67, 95%CI 
1.32–2.12 for M3; HR 2.02, 95%CI 1.59–2.55 for M4; 
and HR 2.26, 95%CI 1.77–2.88 for M5). However, there 
was no significant difference between the M2 group and 
the M1 group. When M2 was used as the reference, the 
all-cause mortality in the M3, M4, and M5 groups was 
higher. (HR 1.43, 95%CI 1.22–1.67 for M3; HR 1.72, 
95%CI 1.48-2.00 for M4; and HR 1.93, 95%CI 1.63–2.27 
for M5). Meanwhile, the test for trend was also statisti-
cally significant (P for trend < 0.001), which demonstrated 
that a progressive increase in risk correlating with more 
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Table 1  Baseline characteristics of study participants according to different metabolic factors, NHANES III (1988–1994)
Characteristic M1 

N = 4181
M2 
N = 6101

M3 
N = 8271

M4 
N = 7551

M5 
N = 4761

p-value2

Age (years) 38 (± 14) 45 (± 15) 49 (± 15) 54 (± 14) 57 (± 13) < 0.001
Sex 0.002
  Female 264 (63%) 361 (59%) 446 (54%) 396 (52%) 267 (56%)
  Male 154 (37%) 249 (41%) 381 (46%) 359 (48%) 209 (44%)
Race/ethnicity 0.001
  Mexican American 143 (34%) 219 (36%) 297 (36%) 310 (41%) 208 (44%)
  Non-Hispanic White 126 (30%) 226 (37%) 281 (34%) 272 (36%) 153 (32%)
  Non-Hispanic Black 15 (3.6%) 26 (4.3%) 34 (4.1%) 32 (4.2%) 12 (2.5%)
  Other races 134 (32%) 139 (23%) 215 (26%) 141 (19%) 103 (22%)
Poverty income ratio 0.302
  < 1.3 131 (31%) 192 (31%) 245 (30%) 217 (29%) 145 (30%)
  1.3–3.49 171 (41%) 233 (38%) 361 (44%) 312 (41%) 214 (45%)
  > 3.5 116 (28%) 185 (30%) 221 (27%) 225 (30%) 117 (25%)
Education level < 0.001
  ≤ High school 262 (63%) 460 (75%) 620 (75%) 583 (77%) 385 (81%)
  > High school 156 (37%) 150 (25%) 207 (25%) 172 (23%) 91 (19%)
Smoking exposure 166 (40%) 262 (43%) 397 (48%) 396 (52%) 264 (55%) < 0.001
Ever drank alcohol 92 (22%) 129 (21%) 164 (20%) 174 (23%) 106 (22%) 0.609
BMI, kg/m2 < 0.001
  30 72 (17%) 201 (33%) 407 (49%) 405 (54%) 285 (60%)
  25–30 101 (24%) 246 (40%) 327 (40%) 308 (41%) 171 (36%)
  25 245 (59%) 163 (27%) 93 (11%) 42 (5.6%) 20 (4.2%)
abdominal obesity 96 (23%) 257 (42%) 402 (49%) 413 (55%) 296 (62%) < 0.001
Hypertension 74 (18%) 229 (38%) 490 (59%) 555 (74%) 470 (99%) < 0.001
Diabetes 7 (1.7%) 36 (5.9%) 141 (17%) 245 (32%) 247 (52%) < 0.001
HDL-cholesterol 55 (± 14) 52 (± 15) 46 (± 13) 42 (± 12) 37 (± 7) < 0.001
Triglycerides 93 (± 38) 124 (± 70) 167 (± 98) 231 (± 139) 287 (± 144) < 0.001
ALT, U/L 25 (± 86) 22 (± 51) 31 (± 93) 30 (± 79) 32 (± 90) < 0.001
1Mean (±SD) or n (%) N:participants number 2Kruskal-Wallis rank sum test; Pearson's Chi-squared test

Table 2  Hazard ratios for different number of metabolic factors in patients with MASLD
Model 1 Model 2 Model 3

Metabolic Group HR1 95% CI1 p-value HR1 95% CI1 p-value HR1 95% CI1 p-value
M1 Reference Reference Reference
M2 1.74 1.35, 2.24 < 0.001 1.26 0.98, 1.63 0.074 1.26 0.98, 1.63 0.074
M3 2.58 2.04, 3.27 < 0.001 1.67 1.32, 2.12 < 0.001 1.67 1.32, 2.12 < 0.001
M4 3.71 2.94, 4.68 < 0.001 2.02 1.59, 2.56 < 0.001 2.02 1.59, 2.55 < 0.001
M5 5.01 3.95, 6.37 < 0.001 2.26 1.77, 2.89 < 0.001 2.26 1.77, 2.88 < 0.001
P for trend < 0.001 < 0.001 < 0.001
M2 Reference Reference Reference
M3 1.82 1.55, 2.12 < 0.001 1.43 1.22, 1.67 < 0.001 1.43 1.22, 1.67 < 0.001
M4 2.61 2.24, 3.03 < 0.001 1.72 1.48, 2.01 < 0.001 1.72 1.48, 2.00 < 0.001
M5 3.52 3.00, 4.14 < 0.001 1.93 1.64, 2.27 < 0.001 1.93 1.63, 2.27 < 0.001
P for trend < 0.001 < 0.001 < 0.001
Adjust:

Model 1: Unadjusted

Model 2: Adjusted for age, sex, race/ethnicity, poverty degree, education level, smoking status;

Model 3: Adjusted for age, sex, race/ethnicity, poverty degree, education level, smoking status, and alanine aminotransferase (ALT);
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metabolic factors. However, as shown in Supplementary 
Table 1, the number of metabolic factors was not signifi-
cantly associated with specific causes of death, such as 
cardiovascular and neoplasms, when attribution analyses 
were performed.

Survival analysis
Survival data were analyzed using the R package, and 
Kaplan-Meier survival curves were plotted to show sur-
vival rates for the M1-M5 group of participants. All-
cause mortality decreased progressively as the number of 
metabolic factors decreased in Fig. 2.

In addition, the included MASLD participants were 
grouped by different metabolic factor types. As shown 
in Supplementary Fig.  1, patients with hypertension or 

diabetes mellitus were significantly more likely to die 
from all causes, whereas the other three metabolic fac-
tors were not significantly different. Further, as shown in 
Supplementary Fig. 2, participants were stratified by the 
number of different metabolic factors, and survival rates 
were analyzed for combinations of different metabolic 
factor types. It was observed that patients with comorbid 
hypertension and diabetes mellitus in the different strati-
fied groups had significantly lower survival rates.

Subgroup analysis
Analyze the relationship between metabolic factors 
and the survival of patients with MASLD under condi-
tions of different age stages, gender, ethnicity, poverty, 
educational status, and smoking or drinking status, we 

Fig. 2  Kaplan-Meier survival curves grouped by the number of metabolic factors (from one to five). Patients were categorized into groups based on the 
number of metabolic factors they presented. Survival probabilities over time are shown for each group, illustrating the relationship between the number 
of metabolic factors and survival outcomes. Higher numbers of metabolic factors are associated with lower survival probabilities

 



Page 6 of 12Jin et al. Diabetology & Metabolic Syndrome          (2025) 17:226 

conducted subgroup analyses of the above factors. As 
shown in Fig. 3, when the exposure metabolic factor was 
hypertension, the relationship between metabolic fac-
tors and their survival was not significant in the non-
Hispanic black population (HR = 1.82, 95%CI: 0.97–3.41, 
P = 0.061). In contrast, the relationship was significant 
for all other stratification factors (P < 0.01). In addi-
tion, for the survival rate of MASLD, an interaction was 
observed between hypertension and gender, race, pov-
erty levels, and smoking. There were also interactions 
between hyperglycemia and age, gender, poverty levels, 
smoking and drinking (P for interaction < 0.05). Inter-
estingly, nonsmokers with hypertension or hyperglyce-
mia had a significantly higher risk of survival (HR = 3.68 
and HR = 3.09, respectively), this paradoxical associa-
tion may arise through three interrelated mechanisms: 
First, survivor bias could lead to selective attrition of 
smokers with severe comorbidities prior to follow-up. 
Second, smoking’s pleiotropic effects on inflammatory 
suppression (e.g., nicotine-mediated NF-κB inhibition) 
and catecholamine regulation might transiently mask 
metabolic dysfunction. Third, critical residual confound-
ing may exist in three domains: (1) unmeasured behav-
ioral gradients (e.g., differential healthcare utilization 
patterns and circadian disruption in smokers), (2) phar-
macological effect modifiers (e.g., interaction between 
smoking-induced cytochrome P450 activation and oral 
hypoglycemic drugs), and (3) epigenetic aging accelera-
tion that differentially modulates metabolic resilience. 
These unresolved complexities position our findings as 
a catalyst for three research frontiers: First, the para-
dox highlights the need for dynamic exposure-disease 
frameworks incorporating stochastic mortality compet-
ing risks. Second, it necessitates multi-omics investiga-
tions to disentangle smoking’s dual role as both toxin and 
biological response modifier. Finally, it underscores the 
imperative of developing exposure-specific comorbidity 

clocks that account for metabolic hysteresis effects. In 
addition, although the interaction between drinking and 
hypertension did not reach statistical significance (P for 
interaction = 0.091), stratified analyses showed a signifi-
cantly higher risk of survival in hypertension patients 
with drinking (HR = 3.35, 95% CI: 2.59–4.34), while the 
interaction between drinking and hyperglycemia is statis-
tical significance (P for interaction = 0.019) and stratified 
analyses also showed a significantly higher risk of sur-
vival in hyperglycemia patients with drinking (HR = 3.34, 
95% CI: 2.56–4.37). In racial subgroup analyses, the 
association between hypertension and the risk of death 
among non-Hispanic black patients did not reach statisti-
cal significance (HR = 1.82, 95%CI: 0.97–3.41, P = 0.061). 
In contrast, Mexican Americans, non-Hispanic whites, 
and other races showed significant associations. This het-
erogeneity may reflect the fact that genetic predisposi-
tion (e.g., APOL1 variants among blacks), socioeconomic 
factors, or healthcare accessibility such as systemic bar-
riers to healthcare access, low insurance coverage, and 
inadequate primary care may delay the diagnosis and 
management of metabolic disorders, resulting in con-
founders (e.g., uncontrolled comorbidities) that mask the 
true association. Future studies should explore whether 
culturally adapted interventions, such as community-
based BP monitoring, can reduce disparities in MASLD 
outcomes.

In Supplementary Fig.  3, metabolic factors such as 
abdominal obesity, higher TG, and lower HDL-choles-
terol levels appeared to be insignificantly associated with 
mortality in MASLD participants in the appeal subgroup.

The weight of each metabolic factor was evaluated by 
machine learning algorithm model
Elastic net regression (ENR) model
A machine learning-based metabolic risk scoring system 
was developed using Elastic Net Regression to quantify 

Fig. 3  Subgroup analyses of hypertension (HBP) and hyperglycemia (GLU) in MASLD patients. Comparing all-cause mortality between affected and unaf-
fected groups. Forest plots display HRs with 95% CIs (statistical significance if CI excludes 1). P values assess association strength; P for interaction tests 
subgroup effect differences. Elevated HRs indicate stronger metabolic factor-mortality links
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the predictive contributions of metabolic factors on sur-
vival outcomes. This method combines variable selection 
with regularization, effectively balancing model accuracy 
and generalizability. The final risk score was derived from 
weighted combinations of key metabolic factors, with 
coefficients presented in Table 3.
Formula:

	

Met − score = β1 × Mean arterial pressure

+ β2 × Glucose + β3 × Waistline + β4
× HDL − cholesterol + β5 × Triglycerides

Model optimization involved ten-fold cross-vali-
dation to determine the regularization parameter λ 
(lambda = 0.005030), which achieved minimal prediction 
error without overfitting (Supplementary Fig. 4). Patients 
were subsequently stratified into four risk quartiles (Q1-
Q4) based on their metabolic scores.

Ultimately, we calculated the metabolic risk score for 
this population based on the metabolic score formula in 
Table  3 and presented the survival curves based on the 
metabolic risk score quartiles in Supplementary Fig.  5. 
The Kaplan-Meier curves demonstrated progressively 
worse survival outcomes across ascending risk quartiles 
(log-rank test P < 0.001), with clear separation between 
adjacent quartiles. The sample was divided into four 
groups: Q1 (lowest risk), Q2, Q3, and Q4 (highest risk). 
These groupings revealed differences in survival probabil-
ities at different risk levels, with the Q1 group having sig-
nificantly higher survival probabilities than the Q4 group. 
There was a significant decrease in the number of high-
risk individuals (Q4), compared to the low-risk group 
(Q1), further confirming the strong association between 
higher metabolic scores and lower survival probabili-
ties and demonstrating that the metabolic score calcula-
tion formula we constructed is scientifically sound. This 
graded relationship visualized in Supplementary Fig.  5 
was quantitatively corroborated by the hazard ratios in 
Supplementary Table 2 with detailed information on 
hazard ratios (HR) for each risk subgroup, as well as 95% 
confidence intervals (CI). Specifically, compared to the 
lowest risk group Q1, the hazard ratios were 1.65 (95% 
CI: 1.38, 1.98, p < 0.001) for group Q2, 2.47 (95% CI: 2.08, 
2.93, p < 0.001) for group Q3, and as high as 3.65 (95% CI: 
3.09, 4.31, p < 0.001) for the highest risk group Q4. In the 
adjusted model 3, the test for trend is still statistically sig-
nificant (P for trend < 0.001).These data not only empha-
size the importance of metabolic scoring in predicting 
survival probability but also support the potential clinical 
value of this scoring system.

Accelerated failure time (AFT) model
In order to reassess and validate the magnitude of the 
weight of each metabolic factor, an AFT model based 
on a machine learning algorithm was used to assess the 
effect of each metabolic factor on the logarithmic scale 
of survival time, and the correlation coefficients are 
shown in Table  3. In addition, the acceleration factors 
were obtained by applying an exponential transforma-
tion to the coefficients, and this transformation provides 
a more intuitive explanation of the relative change in sur-
vival time for each unit change in the metabolic factors. 

Table 3  The weight of each metabolic factor was evaluated 
by different machine learning models model 1: elastic net 
regression (ENR) model
Variable Units Coefficients
Mean arterial pressure mmHg 0.022144
Glucose mmol/L 0.070084
Waistline cm 0.008983
HDL-cholesterol mg/dL 0.004648
Triglycerides (mg/dL) 0.000583
Formula:

Met-score = β1 × Mean arterial pressure + β2 × Glucose + β3 × Waistline + β4 × 
HDL-cholesterol + β5 × Triglycerides

All metabolic factors were standardised to improve ensure that the contribution 
of all variables to the score was measured in terms of their significance rather 
than their magnitude or unit, avoiding the influence of data scale on the model. 
Key variables via coefficient shrinkage and constructs an interpretable linear 
formula

βi = Coefficients

Model 2  Accelerated Failure Time (AFT) Model
Variable Units Coefficients Accel-

eration 
Factor 
(ecoefficient)

Mean arterial pressure mmHg −0.012004 98.57%
Glucose mmol/L −0.400049 95.61%
Waistline cm −0.004223 99.41%
HDL-cholesterol mg/dL −0.000321 99.67%
Triglycerides (mg/dL) −0.004082 99.96%
Negative coefficients indicate that these factors are associated with a reduction 
in survival time. The absolute magnitude of the coefficients indicates the 
strength of the effect, and these values are converted to acceleration factors 
by means of indices

Acceleration Factor = eCoefficients​

Model 3  Randomised survival forest (RSF) model
Variable Units Importance Comparative 

Importance
Mean arterial 
pressure

mmHg 0.113667 0.791

Glucose mmol/L 0.143742 1.000
Waistline cm 0.002718 0.019
HDL-cholesterol mg/dL −0.001273 −0.009
Triglycerides (mg/dL) 0.021256 0.148
Comparative Importance = Importance / Importance(Glucose), represents 
importance relative to diabetes weight
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For example, blood glucose has the largest weight in the 
graph, indicating that for each unit increase in blood 
glucose, survival time decreases to 95.61% of its original 
value.

Randomised survival forest(RSF) model
As above, the RSF model based on machine learning 
algorithms was again used to assess the impact of each 
metabolic factor, with the relevant importance shown 
in Table  3, and a relative importance was established 
with weights for diabetes. It still shows that the meta-
bolic factor of hyperglycemia has the greatest weight of 
importance.

Discussion
This study investigated the influence of metabolic factors 
on the survival outcomes of MASLD patients. Analysis 
of the cohort comprising 3,086 MASLD patients yielded 
two significant findings. Firstly, although diagnostic cri-
teria allow MASLD diagnosis based on a single meta-
bolic factor, prognostic outcomes differ among patients 
according to the quantity and combinations of metabolic 
profile types. Both single and mixed exposure models 
showed consistent results, with hyperglycemia emerg-
ing as the strongest risk factor and hypertension as the 
secondary influential factor. The remaining three meta-
bolic profiles were deemed comparatively weaker in 
their impact. A scoring formula was developed using a 
machine learning algorithm to facilitate a more scien-
tific stratification of metabolic risk within this patient 
population.

MASLD involves dysregulated metabolic factors affect-
ing the liver through multiple pathways. These interac-
tions lead to diverse clinical manifestations and differing 
disease progression rates [15]. Extensive research has 
demonstrated a strong association between metabolism-
related factors, such as type 2 diabetes mellitus, and the 
development of hepatic steatosis or fibrosis [18, 19]. The 
concomitant presence or sequential occurrence of mul-
tiple metabolic factors is associated with an increased 
severity of MASLD in patients. Mechanistically, multiple 
metabolic factors create greater lipid metabolism chal-
lenges compared to a single factor. This exacerbation 
results in the reprogramming of lipid metabolism [20], 
subsequently leading to increased lipid accumulation in 
the liver. The accumulated lipids induce oxidative stress 
and inflammation, impair hepatic fatty acid oxidation, 
and thereby facilitate the progression from MASLD to 
metabolic-associated steatohepatitis (MASH) [21, 22]. 
Research indicates that each additional metabolic pro-
file elevates the risk of cirrhosis and hepatocellular car-
cinoma (HCC) in patients with MASLD [23], thereby 
contributing to decreased survival rates among this 
population. However, there is a notable paucity of studies 

examining patients with various combinations of meta-
bolic profiles, and definitive investigations to elucidate 
the role of individual metabolic profiles within the meta-
bolically dysfunctional cohort remain absent.

This study originated from a key clinical observation: 
MASLD patients show differing prognoses depending 
on specific combinations and counts of metabolic profile 
types. Notably, in the single-exposure model, hyperglyce-
mia or hypertension showed significant correlations with 
reduced survival, whereas other metabolic factors lacked 
statistical significance. Meanwhile, following stratifica-
tion based on varying numbers of metabolic profiles, an 
elevated mortality risk was observed across all strata for 
individuals presenting with either hyperglycemia, hyper-
tension, or both. Consequently, there is substantial justifi-
cation to posit that each metabolic factor, despite serving 
as an independent diagnostic criterion, does not contrib-
ute uniformly to metabolic dysfunction within this popu-
lation. To achieve this objective, we employed an elastic 
network regression analysis of machine learning algo-
rithms to develop a scoring formula that quantifies the 
joint contribution of each metabolic factor. Subsequently, 
we validated the weights of these factors from multiple 
perspectives utilizing both the random forest model and 
the accelerated time-to-failure model. Our findings indi-
cated that hyperglycemia emerged as the most significant 
factor, followed by hypertension, while the remaining 
metabolic factors were comparatively less influential.

In addition to this, our subgroup analysis revealed a 
significant interaction between hyperglycemia and age. 
It was also found that younger patients (20–50 years 
old) had a higher risk than older age groups (HR = 2.08 
vs. HR = 1.47). Although hypertension showed insig-
nificant age interaction, young patients with hyperten-
sion had higher MASLD progression risk (HR = 1.97 vs. 
HR = 1.56). This age disparity may reflect accelerated 
hepatic fibrosis from prolonged metabolic stress expo-
sure. Besides, female patients with hyperglycemia had 
higher MASLD progression risk (Female HR = 3.04 vs. 
1.92 in males) and female hypertensive patients as the 
same (Female HR = 3.51 vs. HR = 1.99 in men), which 
may be related to the fact that, unlike the cardiovascular 
protection conferred by women in the general popula-
tion, women with MASLD may lose this advantage due 
to a high metabolic load [24]. Another important inter-
action was seen between poverty level and hypertension 
and hyperglycemia, suggesting that socioeconomic status 
significantly modifies the effect of metabolic risk factors 
on the prognosis of MASLD. Specifically: the interaction 
between poverty index and hyperglycemia: patients in 
the lowest poverty index group (Pir < 1.3) had the high-
est risk of MASLD progression (HR = 3.51), which was 
significantly higher than that in the moderate (HR = 2.25) 
and high poverty index groups (HR = 2.08). The 
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poverty-hypertension interaction showed similar signifi-
cance, potentially stemming from: (1) suboptimal blood 
pressure/glucose control, (2) limited access to healthy 
diets, and (3) chronic stress aggravating metabolic dys-
function in low-resource environments. This suggests 
socioeconomic deprivation may intensify hyperglyce-
mia’s hepatotoxic effects through constrained healthcare 
access and behavioral options. These findings support 
the development of individualized monitoring strategies 
and multidisciplinary intervention programs for high-
risk subgroups (women, young patients, and low-income 
populations). Future research on molecular mechanisms 
needs to be combined with public health measures (e.g., 
community health screening) to reduce health disparities 
and optimize precision management of MASLD.

Some studies have also found that hyperglycemia is 
often associated with a state of insulin resistance and 
that insulin resistance is an important driver of fatty liver 
development [2, 25]. In an insulin-resistant state, the liver 
synthesizes more fat while inhibiting fat export, promot-
ing fat accumulation in the liver [26]. At the same time, 
hyperglycemia increases oxidative stress and end prod-
ucts of glycosylation (AGEs) accumulation in the body 
by producing reactive oxygen species (ROS), which can 
bind to receptors on the cell surface (RAGE) to stimu-
late an inflammatory response [27, 28]. These factors can 
directly damage hepatocytes, exacerbate hepatic steato-
sis, and even progress to MASH, which may ultimately 
lead to cirrhosis or even hepatocellular carcinoma. 
Hypertension exerts dual effects: (1) elevated intravascu-
lar pressure mechanically damages hepatic vasculature, 
and (2) impaired endothelial dysfunction reduces hepatic 
perfusion. This combination exacerbates ischemic hepa-
tocyte damage [29]. Abdominal obesity, on the other 
hand, is mainly characterized by an increase in abdomi-
nal fat, which is more likely to release fatty acids into the 
liver than other types of fat, thus increasing fat deposition 
in the liver [30]. However, the process of fat deposition is 
relatively slow and may require other synergistic factors 
(e.g., insulin resistance) to accelerate. Although abdomi-
nal obesity and hyperlipidaemia contribute to fatty liver 
development, their effects may be relatively weak due to 
the indirect nature of their mechanisms of action, their 
slower rate, and the need for synergistic effects of other 
metabolic mechanisms. Therefore, managing hyperglyce-
mia and hypertension is particularly critical in the pre-
vention and treatment of fatty liver, and the development 
of a composite score is suggestive of risk stratification for 
management and early intervention in patients with fatty 
liver.

In this study, hyperglycemia was found to be a central 
driver of survival risk in patients with MASLD, which 
exacerbates the process of hepatic lipid deposition and 
fibrosis through multiple mechanisms, including insulin 

resistance, oxidative stress, and dysregulation of the gut-
liver axis. In clinical practice, it is imperative to priori-
tize the use of hepatoprotective hypoglycemic agents, 
such as GLP-1 agonists and SGLT2 inhibitors [31–33], in 
conjunction with adherence to a Mediterranean diet and 
engagement in low-intensity interval training to enhance 
metabolic outcomes [34, 35]. However, in patients with 
comorbid hypertension, another recent review of the 
literature suggests that antihypertensive medications 
have not yet had a beneficial effect on the progression 
of MASLD, and the specific effect awaits follow-up [36]. 
In addition, the metabolic risk scoring model developed 
in this study can be used to accurately stratify patients 
by integrating parameters: high-risk patients need to be 
initiated with early assessment of hepatic fibrosis (e.g., 
FibroScan) and multidisciplinary interventions (endo-
crinology, hepatology), with dynamic adjustment of 
glycemic control targets and monitoring of treatment 
efficacy. This model provides a feasible way to form a 
scientific tool for individualized treatment, and as a pre-
liminary tool for individualized assessment of treatment, 
the model can be further optimized by combining multi-
omics data and precise intervention strategies in the 
future.

This study possesses several strengths. Firstly, we 
employed a multifaceted methodological approach to 
investigate the effects of different metabolic factors on 
survival risk in MALSD patients, illustrating that survival 
within this population is contingent upon both the quan-
tity and type of metabolic traits. More importantly, we 
utilized diverse machine learning algorithms to construct 
and validate a model that comprehensively evaluates the 
significance of each metabolic factor, and we developed 
formulas to calculate metabolic risk scores.

This study acknowledges several limitations that should 
be considered when interpreting the findings. While we 
examined the influence of select metabolic profiles on 
survival in patients with MASLD, it is possible that other 
metabolic factors not included in this assessment may 
also impact survival outcomes. Future research would 
benefit from incorporating a broader range of metabolic 
factors to enhance the predictive accuracy and validity 
of survival models in this population. Additionally, the 
retrospective nature of the study introduces potential 
biases, including selection bias and information bias, 
which are common in such study designs. The reliance 
on self-reported variables from NHANES III may fur-
ther introduce inaccuracies, as self-reported data can be 
subject to recall bias and social desirability bias. These 
limitations may affect the precision of our estimates and 
the generalizability of our findings. Specifically regard-
ing generalizability, while the NHANES cohort provides 
population-level insights, the clinical applicability of 
our risk model requires rigorous external validation in 
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distinct clinical settings (e.g., hospital-based cohorts) 
and geographic populations to assess spectrum bias and 
transportability. Furthermore, practical implementation 
barriers must be acknowledged, including interoperabil-
ity challenges with electronic health record systems and 
temporal availability of specialized biomarkers in rou-
tine clinical practice. Moreover, the absence of detailed 
survival information in the database constrained our 
analysis, particularly limiting our ability to conduct a 
comprehensive assessment of liver-related mortality. 
The unavailability of such specific mortality data in the 
attributable Cox analysis represents another significant 
limitation, potentially leading to residual confounding. 
Given these constraints, the results should be inter-
preted with caution. While efforts were made to adjust 
for potential confounders, unmeasured confounding 
variables may still influence the observed associations. 
Importantly, the clinical implications should be contex-
tualized within these methodological constraints. Future 
validation studies should adhere to TRIPOD guidelines 
to evaluate both discrimination and calibration across 
diverse populations. Concurrent implementation sci-
ence research is needed to address system-level barriers, 
including development of point-of-care calculation tools 
and pilot testing through quality improvement initiatives. 
Future research with prospective study designs, objective 
measurement of metabolic factors, and complete mortal-
ity data, including liver-related mortality, is necessary to 
further validate and expand upon our findings.

Conclusions
In conclusion, this study robustly demonstrates that 
metabolic factors, particularly elevated blood glucose 
levels and blood pressure, are closely linked to increased 
mortality rates among patients with MASLD. Utiliz-
ing machine learning algorithms, our research has sys-
tematically quantified the differential impacts of various 
metabolic dysfunctions on patient survival, revealing the 
complex interplay and potential underlying metabolic 
mechanisms at play. Importantly, the development of a 
metabolic scoring system based on these findings repre-
sents a transformative step forward. This scoring system 
not only offers a practical tool for assessing patient health 
status but also enhances the ability to predict survival 
outcomes in clinical settings. The early identification and 
stratification of high-risk patients through this scoring 
mechanism can facilitate timely and targeted interven-
tions, potentially improving survival rates and paving 
the way for personalized therapeutic strategies in the 
management of MASLD. This study sets a foundation for 
future research to explore and refine these interventions, 
emphasizing its significant clinical relevance and pro-
spective impact on healthcare.This proactive approach 
in patient management could transform standard care 

practices, leading to better health outcomes and more 
efficient use of medical resources. Future research could 
focus on validating and refining this scoring system to 
ensure its efficacy across diverse populations, with the 
aim of integrating it into routine clinical workflows.
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